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A b s t r a c t. Let G be a graph with n vertices and m edges. Then its
cyclomatic number is c = m−n+1 . If λ1, λ2, . . . , λn are the eigenvalues of
G , then its energy is E(G) =

∑n
i=1 |λi| . The graph G is said to be hyperen-

ergetic if E(G) > E(Kn) = 2n− 2 . It is known [Nikiforov, J. Math. Anal.
Appl. 327 (2007) 735–738] that almost all graphs are hyperenergetic. We
now show that for any c < ∞ , there is only a finite number of hyperenergetic
graphs with cyclomatic number c . In particular, there are no hyperenergetic
graphs with c ≤ 8 .
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1. Introduction

Let G be a simple graph with n vertices and m edges. Then the cyclo-
matic number of G is c = m−n+1 . Throughout this paper, without loss of
generality, we assume that G is connected. If so, then a graph with c = 0 is
called a tree. Graphs with c = 1, 2, 3, 4, . . . are said to be unicyclic, bicyclic,
tricyclic, tetracyclic,. . . , respectively.
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Let λ1, λ2, . . . , λn be the eigenvalues of the graph G [3, 5]. Then the
energy of G is defined as

E = E(G) =
n∑

i=1

|λi| .

Details on the mathematical theory of graph energy can be found in the
recent reviews [7, 10, 20]; for the chemical background and applications of
E see [8, 12].

Earlier empirical studies (especially those restricted to molecular graphs)
showed that the energy can be approximated by [13, 14, 15, 21] or bounded
by [2, 21] expressions in which the only variables are n and m , and in which
E is a monotonically increasing function of m . This observation lead to
the conjecture that the complete graph Kn , possessing the greatest possible
number of edges, has maximum energy. The conjecture was found to be false
[2]. In [2] it was shown that for n ≤ 7 the n-vertex graph with maximal
energy is Kn . However, for n ≥ 8 there exist graphs with energy exceeding
2n − 2 . Graphs whose energy exceeds the energy of the complete graph,
i. e., n-vertex graphs for which E(G) > E(Kn) = 2n − 2 , were named
hyperenergetic graphs [6].

The first systematic construction of hyperenergetic graphs was discov-
ered by Walikar et al. [27]. After that, hyperenergeticity was verified for
numerous classes of graphs [1, 11, 16, 19, 23, 24, 25]. Some other graphs
were shown to be not hyperenergetic [9, 26]. Researches along these lines
were much slowed down after Nikiforov discovered that almost all graphs
are hyperenergetic [22]. In fact, Nikiforov proved a much stronger result:

Theorem 1. [22] For almost all graphs(
1

4
+ o(1)

)
n3/2 < E(G) <

(
1

2
+ o(1)

)
n3/2 .

2. Hyperenergetic graphs with fixed cyclomatic number

Bearing in mind Theorem 1, it is somewhat surprising that the number
of hyperenergetic graphs with any fixed value c of the cyclomatic number is
limited. Namely, we have:

Theorem 2. For any value of c , 0 ≤ c < ∞ , the number of hyperen-
ergetic graphs with cyclomatic number c is finite.
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In fact, there is an even stronger restriction:

Theorem 3. No graph with cyclomatic number c and more than c ver-
tices is hyperenergetic.

P r o o f. The energy of any graph G with n vertices and m edges is
bounded from above by [17, 18]

E(G) ≤ 2m

n
+

√√√√(n− 1)

[
2m−

(
2m

m

)2
]
.

Therefore, if

2m

n
+

√√√√(n− 1)

[
2m−

(
2m

m

)2
]
≤ 2n− 2 (1)

then the respective graph cannot be hyperenergetic.

Inequality (1) can be transformed into

2m2 −m(n− 1)(n+ 4)− 2n(n− 1)2 ≥ 0

whose solutions are m ≥ n(n − 1)/2 and m ≤ 2(n − 1) . It cannot be
m > n(n − 1)/2 , since an n-vertex graph has at most n(n − 1)/2 edges.
Therefore, the graphically feasible solutions of (1) are m = n(n− 1)/2 and
m ≤ 2(n − 1) . The solution m = n(n − 1)/2 is not interesting, since then
G ∼= Kn . Thus m ≤ 2(n − 1) i. e., m < 2n − 1 is a sufficient condition for
non-hyperenergeticity of the graph G . Now,

m < 2n− 1 ⇐⇒ m− n+ 1 < n ⇐⇒ n > c

which implies Theorem 3, which in turn implies Theorem 2. �

3. Applications to graphs with small cyclomatic number

Lemma 4. A graph with cyclomatic number c has at least

⌈
3 +

√
1 + 8c

2

⌉
vertices.
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P r o o f. The cyclomatic number of the complete graph is c(Kn) =
(n− 1)(n− 2)/2 , from which

n(Kn) =
3 +

√
1 + 8 c(Kn)

2
.

Lemma 4 follows now from the fact that if c(Kn) < c ≤ c(Kn+1) , then the
graph with cyclomatic number c must have at least n(Kn+1) vertices. �

According to Lemma 4, a graph with cyclomatic number 0, 1, 2, 3, 4, 5,
and 6 must have at least 1, 3, 4, 4, 5, 5, and 5 vertices, respectively. This
implies:

Theorem 5. (a) There are no hyperenergetic trees.
(b) There are no hyperenergetic unicyclic graphs.
(c) There are no hyperenergetic bicyclic graphs.
(d) There are no hyperenergetic tricyclic graphs.
(e) There are no hyperenergetic tetracyclic graphs.
(f) There are no hyperenergetic pentacyclic graphs.
(g) There are no hyperenergetic hexacyclic graphs.

P r o o f. According to Theorem 3, in order that a tree, unicyclic, bicyclic,
tricyclic, and tetracyclic graph be hyperenergetic, these must have less than
1, 2, 3, 4, and 5 vertices, respectively. By Lemma 4, this is impossible. This
proves (a), (b), (c), (d), and (e).

By Theorem 3, in order that a pentacyclic graph be hyperenergetic, it
must have less than 6 vertices. By Lemma 4, a pentacyclic graph must
have at least 5 vertices. Therefore, we need to examine pentacyclic graphs
with 5 vertices, i. e., graphs with n = 5 and m = 9 . The only such graph
is K5 − e , obtained by deleting an edge from K5 . Since E(K5 − e) =
7.2915 . . . < 2 · 5− 2 , this graph is not hyperenergetic. This proves (f).

By Theorem 3, in order that a hexacyclic graph be hyperenergetic, it
must have less than 7 vertices. By Lemma 4, a hexacyclic graph must
have at least 5 vertices. Therefore, we need to examine hexacyclic graphs
with 5 and 6 vertices. The only hexacyclic graph with 5 vertices is K5 ,
which by definition is not hyperenergetic. We therefore have to examine the
hexacyclic graphs with 6 vertices, i. e., graphs with n = 6 andm = 11 . From
the available tables of six-vertex graphs [4] we get that there exist exactly
nine such graphs. These are depicted in Fig. 1, together with the calculated
energies. None of these graphs has energy greater than 10, implying that
none of these are hyperenergetic. This proves (f). �
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E=8.58480 E=9.65685 E=9.06814

E=9.27622 E=8.97858 E=7.53287

E=8.55890 E=8.66324 E=8.82843

Fig. 1. Graphs needed for in the proof of part (g) of Theorem 5

By an analogous way of reasoning, but assisted by use of computers, we
could extend Theorem 5 also to the cases c = 7 and c = 8 . If c = 7 then all
heptacyclic graphs with 6 and 7 vertices need to be constructed and their
energies calculated. If c = 8 then all octacyclic graphs with 6, 7, and 8
vertices need to be constructed and their energies calculated. After this has
been done we found that none is hyperenergetic. This leads to:

Proposition 6. (h) There are no hyperenergetic heptacyclic graphs.
(i) There are no hyperenergetic octacyclic graphs.

For greater values of c , the considerations become so complicated that,
without a massive use of computers, are not feasible. Anyway, at some
point we must reach a value of c for which there exist c-cyclic hyperenergetic
graphs. This value of the cyclomatic number is less than or equal to 11, as
seen from the example shown in Fig. 2.
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E=14.18599

Fig. 2. A hyperenergetic graph with cyclomatic number 11

In the work [2], by means of a computer–aided combinatorial optimiza-
tion method (called “variable neighborhood search”), it was found that for
n ≤ 7 there are no hyperenergetic graphs, and that there exist hyperener-
getic graphs with n = 8 . If we would accept this finding as mathematically
correct, then both Theorem 5 and part (h) of Proposition 6 would follow
immediately. In addition, in order to verify part (i) of Proposition 6, it
would be sufficient to check only the octacyclic graphs with 8 vertices.
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