A GENERAL METHOD TO SOLVE FRACTIONAL DIFFERENTIAL EQUATIONS ON R

B. STANKOVIĆ

(Presented at the 4th Meeting, held on May 21, 2010)
A bstract. Linear differential equations with constant coefficients and Riemann-Liouville fractional derivatives defined on the real axis are analysed in a subspace of tempered distributions. This method can also give the classical solutions.

AMS Mathematics Subject Classification (2000): 26A33,34A08
Key Words: fractional differential equations, Wright's function

1. Introduction

The present paper is devoted to a method to obtain explicit solutions to equation

$$
\begin{equation*}
\sum_{i=0}^{m} A_{i}\left(-\infty D_{t}^{\alpha_{i}} y\right)(t)=f(t), \quad-\infty<t<\infty \tag{1.1}
\end{equation*}
$$

where $_\infty D_{t}^{\alpha_{i}}$ are Riemann-Liouville left fractional derivatives. In the literature there are different results of special cases of equation (1.1) defined on a bounded interval, on real axis and on Half-axis. In the monograph [3],
published in year 2006, such results have been quoted giving a rich literature on equation (1.1).

In the meantime, other papers, books and conference proceedings have also appeared. We mention only two books: [13] published in 2005 and [9] in 2008. We believe that such a method, as it is ours, which gives the generalized solutions and classical too, to equation (1.1) was a missing link.

2. Preliminaries

2.1. Wright's functions

The Wright's function (cf. [12]) is defined by the series

$$
\phi(\beta, \rho ; z)=\sum_{i=0}^{\infty} \frac{z^{i}}{\Gamma(i+1) \Gamma(\rho i+\beta)}, z \in C
$$

where $-1<\rho<0$ and $\beta \in R$ are fixed.
We use functions $F_{\nu}(x)$,

$$
F_{\nu}(x)=\phi\left(0,-\nu,-x^{-\nu}\right), x>0,0<\nu<1 .
$$

We quote some properties of F_{ν} (cf. [12] and [7]):

1) $\int_{0}^{\infty} \exp (-s t) F_{\nu}\left(t / x^{1 / \nu}\right) \frac{d t}{\nu x}=s^{\nu-1} \exp \left(-x s^{\nu}\right), x>0, s \in C$, Re $s>0$;
2) $F_{\nu}(x) \sim \frac{1}{\pi} \sin \nu \pi \frac{\Gamma(\nu+1)}{x^{\nu}}, x \rightarrow \infty$;
3) $F_{\nu}(x)>0, x>0$;
4) $F_{\nu}\left(\sigma / x^{1 / \nu}\right)=y^{1 / 2} \exp (-y) \sum_{m=0}^{M} A_{m} y^{-m}+O\left(y^{-M}\right)$,
where $y=(1-\nu) \nu^{\frac{\nu}{1-\nu}} x^{\frac{1}{1-\nu}} / \sigma^{\frac{\nu}{1-\nu}}$ and A_{m} are constants depending on $\nu, m=0, \ldots, M$.
It follows that $\left|F_{\nu}\left(\sigma / x^{1 / \nu}\right)\right| \leq C\left(x^{1 /(1-\nu)} / \sigma^{\nu / 1-\nu}\right)^{1 / 2} \exp \left(-\gamma x^{1 /(1-\nu)} / \sigma^{\nu / 1-\nu}\right)$, where C and γ are positive constants.
5) $\int_{0}^{\infty} F_{\nu}\left(\sigma / x^{1 / \nu}\right) x^{\alpha} \frac{d x}{\nu x}=\frac{\Gamma(\alpha+1)}{\Gamma \nu \alpha+1} \sigma^{\nu \alpha}, \alpha>-1$.
2.2. The Fourier transform in $\mathcal{S}^{\prime}\left(\mathcal{S}^{\prime}\right.$ is the space of tempered distributions)
6) Let $\varphi \in \mathcal{S}$, the Fourier transform $\mathcal{F} \varphi$ is

$$
\begin{equation*}
\mathcal{F} \varphi=\int_{-\infty}^{\infty} e^{-\omega t} \varphi(t) d t, \mathcal{F}^{-1}(\varphi)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{i \omega t} \varphi(t) d t \tag{2.1}
\end{equation*}
$$

If $f \in \mathcal{S}^{\prime}$, then $\mathcal{F} f$ is defined as

$$
\langle\mathcal{F} f, \varphi\rangle=\langle f, \mathcal{F} \varphi\rangle, \varphi \in \mathcal{S}
$$

2) If the distribution f is defined by the function f belonging to $L^{1}(\mathbf{R})$, then $\mathcal{F} f$ is given by the same formula as in the case $f \in \mathcal{S}$.
3) The Fourier transform of the n-the derivative of $f \in \mathcal{S}^{\prime}$ is

$$
\begin{equation*}
\mathcal{F}\left(f^{(m)}\right)=(i \omega)^{m} \mathcal{F} f \tag{2.2}
\end{equation*}
$$

4) Finally we have for $b<0$ and $\beta \geq 1$ (cf. [6], p.207):

$$
\mathcal{F}\left(H(-t) e^{b|t|} \frac{|t|^{\beta-1}}{\Gamma(\beta)}\right)(i \omega)=\frac{(-1)^{\beta}}{(b+i \omega)^{\beta}}, \beta \geq 1 .
$$

For the space of tempered distributions \mathcal{S}^{\prime} cf. [5], [8] and [10].

2.3. The left Riemann-Lionville derivative on \mathbf{R}

Let $Y \in L^{p}(\mathbf{R})(x)$ and $\alpha=k+\gamma, k \in \mathbf{N}_{0}, \gamma \in[0,1)$. Then

$$
\begin{equation*}
{ }_{-\infty} I_{x}^{1-\gamma} Y(x)=\frac{1}{\Gamma(1-\gamma)} \int_{-\infty}^{x} \frac{Y(t) d t}{(x-t)^{\gamma}} \tag{2.3}
\end{equation*}
$$

The left fractional integral ${ }_{-\infty} I_{x}^{1-\gamma} Y$ is defined for $Y \in L^{p}(\mathbf{R}), 1 \leq p<$ $\frac{1}{1-\gamma}$. The operator ${ }_{-\infty} I_{x}^{1-\gamma}$ is bounded from $L^{p}(\mathbf{R})$ to $L^{q}(\mathbf{R})$ if and only if $1<p<\frac{1}{\gamma-1}$ and $q=\frac{p}{1-(1-\gamma) p}$. (cf. [4],p.102-103).

The left fractional derivative is

$$
{ }_{-\infty} D_{t}^{\alpha} Y=\left(\frac{d}{d t}\right)^{k+1}{ }_{-\infty} I_{t}^{1-\gamma} Y .
$$

We extend the left fractional derivative ${ }_{-\infty} D_{t}^{\alpha}$ to a subclass of tempered distributions \mathcal{S}^{\prime}.

The function

$$
h_{\eta}(t)= \begin{cases}t^{\eta-1} / \Gamma(\eta), & t>0 \tag{2.4}\\ 0, & t<0, \quad \eta>0\end{cases}
$$

defines a regular tempered distribution. Then the fractional integral ${ }_{-\infty} I_{t}^{1-\gamma} Y$ given by (2.3) can be written as:

$$
{ }_{-\infty} I_{t}^{1-\gamma} Y=h_{\gamma} * Y
$$

(cf. [4],p.94).
Definition 2.1. Let $f \in \mathcal{S}^{\prime}$. If $h_{\gamma} * f$ exists and belongs to \mathcal{S}^{\prime}, then

$$
{ }_{-\infty} D_{t}^{\alpha} f=\delta^{(k+1)} *\left(h_{\gamma} * f\right), \alpha=k+\gamma, \alpha \in \mathbf{N}_{0}, \gamma \in[0,1)
$$

We quote some classes of tempered distributions for which there exist ${ }_{-\infty} D_{t}^{\alpha}$:

1) Space of rapidly decreasing distributions (denoted by \mathcal{O}_{C}^{\prime}). Since $h_{\alpha} \in$ $\mathcal{S}^{\prime}, \alpha>0$, for every $g \in \mathcal{O}_{C}^{\prime}, h_{\alpha} * g \in \mathcal{S}^{\prime}$ (cf. [5], T.II, p.103). Then ${ }_{-\infty} D_{t}^{\alpha} g$ exists for every $\alpha>0$.
2) $f \in L^{p}(\mathbf{R}), 1<p<\frac{1}{1-\gamma}$, has ${ }_{-\infty} D_{t}^{\alpha} f, \alpha=k+\gamma$. If $f \in L^{p}(\mathbf{R}), 1<$ $p<\frac{1}{1-\gamma}$, we have seen that ${ }_{-\infty} I_{t}^{1-\gamma} f \in L^{q}(\mathbf{R}), q=\frac{p}{1-(1-\gamma) p}$.
3) Class ρ :
$f \in L_{l o c}^{1}(\mathbf{R}), \operatorname{supp} f \subset[a, \infty), a>-\infty$ and for some $k \in \mathbf{N}_{0}, 0<$ $M<\infty$, admitting the estimation $|f(x)| \leq M(x-a)^{k}$ for x sufficiently large.
If $f \in \rho$, then ${ }_{-\infty} D_{t}^{\alpha} f$ exists for every $\alpha>0$.
Namely, for $\gamma<1$,

$$
\begin{aligned}
\left|\left(-\infty I_{t}^{1-\gamma} f\right)(t)\right| & =\left|\frac{1}{\Gamma(1-\gamma)} \int_{-\infty}^{t} \frac{f(\tau)}{(t-\tau)^{\gamma}} d \tau\right| \\
& \leq H(t-a) \frac{M(t-a)^{k+1-\gamma}}{\Gamma(2-\gamma)}
\end{aligned}
$$

Hence, ${ }_{-\infty} I_{t}^{1-\gamma} f \in \rho \subset \mathcal{S}^{\prime}$ and ${ }_{-\infty} D_{t}^{\alpha} f$ exists.

Lemma 2.1. If $f=D^{l} F=\delta^{(l)} * F, l \in \mathbf{N}$, then

$$
{ }_{-\infty} D_{t}^{\alpha} f=\delta^{(k+1)} *\left(h_{\gamma} * D^{l} F\right)=\delta^{(k+1+l)} *\left(h_{\gamma} * F\right)
$$

The proof follows from the property of the derivative of the convolution (cf. [10],p. 65 or [5], T. II , p.16).

3. A theorem for the Fourier transform

Theorem 3.1. Let $0<\nu<1, \beta \geq 1$.

1) If $f(t)=H(t) e^{-a t} \frac{t^{\beta-1}}{\Gamma(\beta)}$, Re $a>0$, then

$$
\begin{align*}
& \left(\mathcal{F}_{-\infty} D_{t}^{1-\nu} H(t) \int_{-\infty}^{\infty} F_{\nu}\left(t / \tau^{1 / \nu}\right) H(\tau) e^{-a \tau} \frac{\tau^{\beta-1}}{\Gamma(\beta)} \frac{d \tau}{\nu \tau}\right)(i \omega) \\
= & \frac{1}{\left(a+(i \omega)^{\nu}\right)^{\beta}} . \tag{3.1}
\end{align*}
$$

2) If $f(t)=H(-t) e^{b|t|} \frac{|t|^{\beta-1}}{\Gamma(\beta)}$, Re $b<0$, then

$$
\begin{align*}
& \left(\mathcal{F}_{-\infty} D_{t}^{1-\nu} H(t) \int_{-\infty}^{\infty} F_{\nu}\left(t /|\tau|^{1 / \nu}\right) H(-\tau) e^{b|\tau|} \frac{\tau^{\beta-1}}{\Gamma(\beta)} \frac{d \tau}{\nu \tau}\right) \\
= & \frac{(-1)^{\beta}}{\left(b+(i \omega)^{\nu}\right)^{\beta}} . \tag{3.2}
\end{align*}
$$

Proof. First we prove some properties of the functions

$$
\begin{align*}
& \psi_{1, \beta, 1 / q_{0}}(a, t) \equiv H(t) \int_{-\infty}^{\infty} F_{1 / q_{0}}\left(t / \tau^{q_{0}}\right) H(\tau) e^{-a \tau} \frac{\tau^{\beta-1}}{\Gamma(\beta)} \frac{q_{0} d \tau}{\tau} \tag{3.3}\\
& \psi_{2, \beta, 1 / q_{0}}(b, t) \equiv H(t) \int_{-\infty}^{\infty} F_{1 / q_{0}}\left(t /|\tau|^{q_{0}}\right) H(-\tau) e^{b|\tau|} \frac{|\tau|^{\beta-1}}{\Gamma(\beta)} \frac{q_{0} d \tau}{\tau}
\end{align*}
$$

where $a>0, b<0$.

We consider first the function $\psi_{1, \beta, 1 / q_{0}}(a, t)$.
Since $F_{1 / q_{0}}(x)>0, x>0$ and $F_{1 / q_{0}}(x) \rightarrow 0, x \rightarrow 0,(c f .2 .13)$ and 4)), we have

$$
\left|\psi_{1, \beta, 1 / q_{0}}(a, t)\right| \leq \int_{0}^{\infty} F_{1 / q_{0}}\left(t / \tau^{q_{0}}\right) \frac{\tau^{\beta-1}}{\Gamma(\beta)} \frac{q_{0} d \tau}{\tau} .
$$

By (2.15)) it follows that

$$
\left|\psi_{1, \beta, 1 / q_{0}}(a, t)\right| \leq H(t) C t^{\frac{1}{q_{0}}(\beta-1)}, t \in(-\infty, \infty), \beta \geq 1 .
$$

Also, if we take care that the function

$$
e^{-a \tau} \frac{\tau^{\beta-1}}{\Gamma(\beta)}, a>0, \beta \geq 1,
$$

is bounded on $[0, \infty)$, we have by 2.15)

$$
\left|\psi_{1, \beta, 1 / q_{0}}(a, t)\right| \leq H(t) K \int_{0}^{\infty} F_{1 / q_{0}}\left(t / \tau^{1 / \nu}\right) \frac{q_{0} d \tau}{\tau}=K
$$

By the last two inequalities it follows that $\psi_{1, \beta, 1 / q_{0}}(a, t)$ is a bounded function on $(-\infty, \infty)$, supp $\psi_{1, \beta, 1 / q_{0}}(a, t) \subset[0, \infty)$ and $\psi_{1, \beta, 1 / q_{0}}(a, t) \sim C t^{\frac{1}{q_{0}}(\beta-1)}$, $t \rightarrow 0$.

For the function $\psi_{2, \beta, 1 / q_{0}}(b, t)$ the procedure is just the same because

$$
\begin{aligned}
\left|\psi_{2, \beta, 1 / q_{0}}(b, t)\right| & \leq H(t)\left|\int_{-\infty}^{0} F_{\nu}\left(t /|\tau|^{1 / \nu}\right) H(-\tau) e^{b \mid \tau} \frac{|\tau|^{\beta-1}}{\Gamma(\beta)} \frac{d \tau}{\nu \tau}\right| \\
& \leq H(t) \int_{0}^{\infty} F_{\nu}\left(t / u^{1 / \nu}\right) e^{b u} \frac{u^{\beta-1}}{\Gamma(\beta)} \frac{d u}{\nu u} .
\end{aligned}
$$

The function $\psi_{2, \beta, 1 / q_{0}}(b, t)$ is also a bounded function on $(-\infty, \infty)$, $\operatorname{supp}_{2, \beta, 1 / q_{0}}(b, t) \subset[0, \infty), \psi_{2, \beta, 1 / q_{0}}(b, t) \sim t^{\frac{1}{q_{0}}(\beta-1)}, t \rightarrow 0$.

Hence, $\psi_{1, \beta, 1 / q_{0}}$ and $\psi_{2, \beta, 1 / q_{0}}$ belong to the class ρ and there exist ${ }_{-\infty} D_{t}^{\alpha} \psi_{1, \beta, 1 / q_{0}}(a, t)$ and ${ }_{-\infty} D_{t}^{\alpha} \psi_{2, \beta, 1 / q_{0}}(b, t), \alpha>0$. Now we can prove the first part of the Theorem.

Since $f \in L^{1}(\mathbf{R})$, we have

$$
\begin{equation*}
\int_{-\infty}^{\infty} e^{-i \omega t} f(t) d t=\int_{0}^{\infty} e^{-(a+i \omega) t} \frac{t^{\beta-1}}{\Gamma(\beta)} d t=\frac{1}{(a+i \omega)^{\beta}} \tag{3.4}
\end{equation*}
$$

We have to prove that for $\omega \in(-\infty, \infty)$:

$$
\begin{align*}
& (i \omega)^{1-\nu} \int_{-\infty}^{\infty} e^{-i \omega t} d t H(t) \int_{-\infty}^{\infty} F_{\nu}\left(t / \tau^{1 / \nu}\right) H(\tau) e^{-a \tau} \frac{\tau^{\beta-1}}{\Gamma(\beta)} \frac{d \tau}{\nu \tau} \tag{3.5}\\
= & (i \omega)^{1-\nu} \int_{-\infty}^{\infty} H(\tau) e^{-a \tau} \frac{\tau^{\beta-1}}{\Gamma(\beta+1)} d \tau \int_{-\infty}^{\infty} H(t) e^{-i \omega t} F_{\nu}\left(t / \tau^{1 / \nu}\right) \frac{d t}{\nu \tau} .
\end{align*}
$$

By Fubini's theorem for $0<\tau_{1} \leq \tau \leq \tau_{2}<\infty$, and by the properties 2) and 4) of the function F_{ν} (cf. 2.1) we have

$$
\begin{align*}
& (i \omega)^{1-\nu} \int_{\tau_{1}}^{\tau_{2}} f(\tau) d \tau \int_{0}^{\infty} e^{-i \omega t} F_{\nu}\left(t / \tau^{1 / \nu}\right) \frac{d \tau}{\nu \tau} \tag{3.6}\\
= & (i \omega)^{1-\nu} \int_{0}^{\infty} e^{-i \omega t} d t \int_{\tau_{1}}^{\tau_{2}} F_{\nu}\left(t / \tau^{1 / \nu}\right) f(\tau) \frac{d \tau}{\nu \tau} .
\end{align*}
$$

Let us prove that

$$
\begin{aligned}
& \lim _{\tau_{1} \rightarrow 0} \lim _{\tau_{2} \rightarrow \infty}(i \omega)^{1-\nu} \int_{0}^{\infty} e^{i \omega t} d t \int_{\tau_{1}}^{\tau_{2}} F_{\nu}\left(t / \tau^{1 / \nu}\right) f(\tau) \frac{d \tau}{\nu \tau}= \\
= & (-i \omega)^{1-\nu} \int_{0}^{\infty} e^{-i \omega t} \int_{0}^{\infty} F_{\nu}\left(t / \tau^{1 / \nu}\right) f(\tau) \frac{d \tau}{\nu \tau} .
\end{aligned}
$$

First we show that

$$
\lim _{\tau_{1} \rightarrow 0} I=\lim _{\tau_{1} \rightarrow 0}(i \omega)^{1-\nu} \int_{0}^{\infty} e^{-i \omega t} d t \int_{0}^{\tau_{1}} F_{\nu}\left(t / \tau^{1 / \nu}\right) f(\tau) \frac{d \tau}{\nu \tau}=0
$$

By (3.6) and by property 1) of F_{ν}, for any $\epsilon>0$ there exists τ_{1}^{ϵ} such that $0<\tau_{1}^{\prime \prime}<\tau_{1}^{\prime}<\tau^{\epsilon}$ and

$$
\begin{aligned}
\left|I\left(\tau_{1}^{\prime}\right)-I\left(\tau_{1}^{\prime \prime}\right)\right| & =\left|(i \omega)^{1-\nu} \int_{0}^{\infty} e^{-i \omega t} d t \int_{\tau_{1}^{\prime \prime}}^{\tau_{1}^{\prime}} F_{\nu}\left(t / \tau^{1 / \nu}\right) f(\tau) \frac{d \tau}{\nu \tau}\right| \\
& \leq\left|e^{-\tau^{\prime \prime}(\omega i)^{\nu}}\right| \int_{\tau_{1}^{\prime \prime}}^{\tau_{1}^{\prime}}|f(\tau)| d \tau<\epsilon
\end{aligned}
$$

Analogously we can proceed in the case $\tau_{2} \rightarrow \infty$. Thus (3.5) is proved. If we use once more property 1) of F_{ν} and (3.5) we have by (3.4):

$$
\begin{aligned}
& \left(\mathcal{F}_{-\infty} D_{x}^{1-\nu} H(t) \int_{-\infty}^{\infty} F_{\nu}\left(t / \tau^{1 / \nu}\right) H(\tau) e^{-a \tau} \frac{\tau^{\beta-1}}{\Gamma(\beta)} \frac{d \tau}{\nu \tau}\right)(i \omega) \\
= & (i \omega)^{1-\nu}\left(\mathcal{F} H(t) \int_{-\infty}^{\infty} F_{\nu}\left(t / \tau^{1 / \nu}\right) H(\tau) e^{-a \tau} \frac{\tau^{\beta-1}}{\Gamma(\beta)} \frac{d \tau}{\nu \tau}\right)(i \omega) \\
= & (i \omega)^{1-\nu} \int_{-\infty}^{\infty} H(\tau) e^{-a \tau} \frac{\tau^{\beta-1}}{\Gamma(\beta)}(i \omega)^{\nu-1} e^{-\tau(i \omega)^{\nu}} d \tau \\
= & \left(\frac{1}{a+(i \omega)^{\nu}}\right)^{\beta}
\end{aligned}
$$

where $\operatorname{Re} \tau(i \omega)^{\nu}=\tau|\omega| \cos \nu \frac{\pi}{2}>0, \tau>0$.
The first part of Theorem 3.1 is proved.
As regards the second part of the Theorem, we start with (cf. 2.2 4))

$$
\begin{equation*}
\mathcal{F}\left(H(-\tau) e^{b|\tau|} \frac{|\tau|^{\beta-1}}{\Gamma(\beta)}\right)(i \omega)=\frac{1}{(-b-(i \omega))^{\beta}}=\frac{(-1)^{\beta}}{(b+(i \omega))^{\beta}} \tag{3.7}
\end{equation*}
$$

Then for $f(t)=e^{b|\tau|} \frac{\mid \tau \tau^{\beta-1}}{\Gamma(\beta)}, t \geq 0$, we have, similar to (3.6),

$$
\begin{align*}
I & =(i \omega)^{1-\nu} \int_{-\infty}^{\infty} e^{-i \omega t} H(t) d t \int_{-\tau_{1}}^{-\tau_{2}} F_{\nu}\left(t /|\tau|^{1 / \nu}\right) H(-\tau) f(\tau) \frac{d \tau}{\nu \tau} \\
& =(i \omega)^{1-\nu} \int_{-\tau_{1}}^{-\tau_{2}} H(-\tau) f(\tau) d \tau \int_{0}^{\infty} e^{-i \omega t} F_{\nu}\left(t /|\tau|^{1 / \nu}\right) \frac{1}{\nu \tau} d t \tag{3.8}\\
& =(i \omega)^{1-\nu} \int_{-\tau_{1}}^{-\tau_{2}} H(-\tau) f(\tau)(i \omega)^{\nu-1} e^{-|\tau|(i \omega)^{\nu}} \frac{d \tau}{\nu \tau}
\end{align*}
$$

The proof that

$$
\begin{gather*}
\lim _{\tau_{1} \rightarrow \infty} \lim _{\tau_{2} \rightarrow 0} I= \tag{3.9}\\
\left.=(i \omega)^{1-\nu} \int_{-\infty}^{\infty} e^{-\omega t} H(t) d t \int_{-\infty}^{\infty} F_{\nu}\left(t /|\tau|^{1 / \nu}\right) H(-\tau) f(t) \frac{d \tau}{\nu \tau}\right)
\end{gather*}
$$

is the same as the proof of (3.6). It remains only to use (3.7) in (3.8) taking care of (3.9), which gives:

$$
\lim _{\tau_{1} \rightarrow \infty} \lim _{\tau_{2} \rightarrow 0} I=\frac{(-1)^{\beta}}{\left(b+(i \omega)^{\nu}\right)^{\beta}}
$$

This proves Theorem 3.1.

4. Equation with left fractional derivatives on \mathbf{R}

4.1. A method to find solutions

Assume for equation

$$
\begin{equation*}
\sum_{i=0}^{m} A_{i}\left(-\infty D_{t}^{\alpha_{i}} Y\right)(t)=f(t), t \in \mathbf{R}, f \in \mathcal{S}^{\prime} \tag{4.1}
\end{equation*}
$$

the following conditions: $\alpha_{0}=0, \alpha_{i}=\frac{p_{i}}{q_{i}}=\frac{\beta_{i}}{q_{0}}=k_{i}+\gamma_{i} ; p_{i}, \beta_{i}, k_{i} \in \mathbf{N}_{0}$ and $q_{1}, q_{0} \in \mathbf{N} ; \gamma_{i} \in[0,1)$ for $i=1, \ldots, m ; \alpha_{1}<\alpha_{2}<\ldots<\alpha_{m}$.

Let us suppose that $Y \subset \mathcal{S}^{\prime}$ and such that ${ }_{-\infty} D_{t}^{\alpha_{i}} Y, i=1, \ldots, m$, exist (cf. Definition 2.1).

We apply the Fourier transform to (4.1) which gives

$$
\begin{equation*}
\sum_{i=0}^{m} A_{i}(i \omega)^{\alpha_{i}}(\mathcal{F} Y)(i \omega)=(\mathcal{F} f)(i \omega), \omega \in \mathbf{R} \tag{4.2}
\end{equation*}
$$

Hence,

$$
\begin{align*}
(\mathcal{F} Y)(i \omega) & =\frac{1}{\sum_{i=0}^{m} A_{i}(i \omega)^{\alpha_{i}}}(\mathcal{F} f)(i \omega) \\
& =\frac{1}{\sum_{i=0}^{m} A_{i}\left((i \omega)^{1 / q_{0}}\right)^{\beta_{i}}}(\mathcal{F} f)(i \omega) \tag{4.3}
\end{align*}
$$

Let $P(z)$ and $Q(z)$ denote the following functions:

$$
\begin{equation*}
P(z)=\sum_{i=0}^{m} A_{i} z^{\beta_{i}}, \quad Q(z)=\frac{1}{P(z)} \tag{4.4}
\end{equation*}
$$

Then $Q(z)$ can be written as the sum of elements of the form $C_{r}(z+r)^{-k_{r}}$ and $z C_{r}^{\prime}\left(z^{2}+r^{2}\right)^{-k_{r}}$, where C_{r} and C_{r}^{\prime} are constants, $r \in \mathbf{R}$ and $k \in \mathbf{N}$. If $z=(i \omega)^{1 / q_{0}}$, we have by (4.3)

$$
\begin{equation*}
Y=\left(\mathcal{F}^{-1} Q\left((i \omega)^{1 / q_{0}}\right)\right) * f \tag{4.5}
\end{equation*}
$$

This gives only formally a solution to (4.1). Therefore we have to analyse (4.5).

4.2. The function $\mathcal{F}^{-1} Q\left((i \omega)^{1 / q_{0}}\right)$

Let in the polynomial $P(z)=\sum_{i=0}^{m} A_{i} z^{\beta_{i}}$ the coefficient $A_{0} \neq 0$. With our supposition $\alpha_{0}=0$, we have $P(0) \neq 0$ and

$$
\begin{equation*}
Q(z)=\frac{1}{P(z)}=\sum_{p=1}^{p_{0}} \sum_{i=1}^{k_{p}} \frac{M_{i, p}}{\left(z-r_{p}\right)^{i}}, \tag{4.6}
\end{equation*}
$$

where r_{p} are the zeros of $P(z)$ and k_{p} are theirs multiplicities, $p=1, \ldots, p_{0}, k_{1}+$ $\ldots+k_{p_{0}}=\beta_{m}, k_{1} \leq \ldots \leq k_{p_{0}}$. In this case we have $r_{p} \neq 0, p=1, \ldots, p_{0}$. First we consider this situation. But if $A_{0}=0$, then $P(z)=z^{l} P_{1}(z), l \in \mathbf{N}$ where $P_{1}(0) \neq 0$. This will be considered separately.
Case $A_{0} \neq 0$. To realize $\mathcal{F}^{-1} Q\left((i \omega)^{1 / q_{0}}\right)$, we have to find

$$
\begin{equation*}
\left(\mathcal{F}^{-1}\left((i \omega)^{1 / q_{0}}+r\right)^{-k}\right)(t), \operatorname{Re} r \neq 0 \tag{4.7}
\end{equation*}
$$

and

$$
\begin{equation*}
(i \omega)^{1 / q_{0}}\left((i \omega)^{2 / q_{0}}+(\operatorname{Im} r)^{2}\right)^{-k}(t), \text { Re } r=0, \operatorname{Im} r \neq 0 \tag{4.8}
\end{equation*}
$$

By Theorem 3.1 we have to separate three cases:
Re $r_{p}>0$, Re $r_{p}<0$ and Re $r_{p}=0$. In cases Re $r_{p}>0$ and Re $r_{p}<0$, (4.7) is realized by Theorem 3.1, i.e., by (3.1) and by (3.2), respectively. We have for $r_{p}>0$

$$
\begin{align*}
\left((i \omega)^{1 / q_{0}}+r_{p}\right)^{-k_{p}} & =\mathcal{F}\left({ }_{-\infty} D_{t}^{1-1 / q_{0}} H(t) \times\right. \\
& \left.\times \int_{-\infty}^{\infty} F_{1 / q_{0}}\left(t / \tau^{q_{0}}\right) H(\tau) e^{-r_{p} \tau} \frac{\tau^{k_{p}-1}}{\Gamma\left(k_{p}\right)} \frac{q_{0} d \tau}{\tau}\right)(i \omega), \tag{4.9}
\end{align*}
$$

and for $r_{p}<0$:

$$
\begin{align*}
\frac{(-1)^{k_{p}}}{\left((i \omega)^{1 / q_{0}}+r_{p}\right)} & =\mathcal{F}\left({ }_{-\infty} D_{t}^{1-1 / q_{0}} H(t) \int_{-\infty}^{\infty} F_{1 / q_{0}}\left(t /|\tau|^{q_{0}}\right) \times\right. \\
& \left.\times H(-\tau) e^{-r_{p}|\tau|} \frac{|\tau|^{k_{p}-1}}{\Gamma\left(k_{p}\right)} \frac{q_{0} d \tau}{\tau}\right)(i \omega), \tag{4.10}
\end{align*}
$$

It remains the case $\operatorname{Re} r=0$. If $\operatorname{Re} r=0$ and $\operatorname{Im} r \neq 0$, we can take $q_{0}>2$ (otherwise equation (4.1) reduces to ordinary differential equation). We can apply (3.1) to (4.8) to obtain

$$
\begin{align*}
& (i \omega)^{1 / q_{0}}\left((i \omega)^{2 / q_{0}}+\left(\operatorname{Im} r_{p}\right)^{2}\right)^{-k_{p}}= \\
= & \mathcal{F}\left[{ }_{-\infty} D_{t}^{1-1 / q_{0}} H(t) \int_{-\infty}^{\infty} F_{2 / q_{0}}\left(t / \tau^{q_{0} / 2}\right) H(\tau) e^{-\left(\operatorname{Im} r_{p}\right)^{2} \tau} \frac{\tau^{\beta-1}}{\Gamma(\beta)} \frac{q_{0} d \tau}{2 \tau}\right](i \omega) \\
= & \mathcal{F}\left[{ }_{-\infty} D_{t}^{1-1 / q_{0}} \psi_{1, i, 2 / q_{0}}\left(\left(\operatorname{Im} r_{p}\right)^{2}, t\right)\right](i \omega) . \tag{4.11}
\end{align*}
$$

Case $A_{0}=0$. Then $P(z)=z^{l} P_{1}(z), l \in \mathbf{N}$ and $P_{1}(0) \neq 0$. Hence,

$$
Q(z)=\frac{1}{P(z)}=\frac{1}{z^{l} P_{1}(z)},
$$

and

$$
\begin{equation*}
Q\left((i \omega)^{1 / q_{0}}\right)=(i \omega)^{-l / q_{0}} \frac{1}{P_{1}\left((i \omega)^{1 / q_{0}}\right)}=(i \omega)^{-l / q_{0}} Q_{1}\left((i \omega)^{1 / q_{0}}\right) . \tag{4.12}
\end{equation*}
$$

4.3. Existence and the analytical form of the solutions to (4.1)

Supposing that $Y(t)$ in (4.1) has all the left fractional derivatives ${ }_{-\infty} D_{t}^{\alpha_{i}}, i=$ $1, \ldots, m$, (Definition 2.1) and that they belong to \mathcal{S}^{\prime}. We find its possible analytical form given by (4.5). Selecting an f in (4.1) we have to prove that Y given by (4.5) has all presumed properties.

If we find f "sufficiently good" such that Y given by (4.5) is a numerical function which has all classical fractional derivatives ${ }_{-\infty} D_{t}^{\alpha_{i}}, i=1, \ldots, m$, then this function Y is a classical solution. This follows from Definition 2.1.

As an application of the proposed solving method we prove the following theorem.

Theorem 4.1. Let ${ }_{-\infty} D_{t}^{1-1 / q_{0}} f=F$, where F belongs to the class ρ. The equation (4.1) has a generalized solution Y belonging to the class ρ, as
F does. The solution Y is given by (4.5) which can be realized by (4.9), (4.10), (4.11) and (4.12) in case $A_{0} \neq 0$ and for $A_{0}=0$ we have to use (4.13) in addition.

Proof. From (4.3) it follows that

$$
(\mathcal{F} Y)(i \omega)=Q\left((i \omega)^{1 / q_{0}}\right)(\mathcal{F} f)(i \omega)
$$

If $A_{0} \neq 0$, the zeros r_{p} of $P(z)$ are different from zero. Hence

$$
Q\left((i \omega)^{1 / q_{0}}\right)(\mathcal{F} f)(i \omega)=\sum_{p=1}^{p_{0}} \sum_{i=1}^{k_{p}} \frac{M_{i, p}}{\left((i \omega)^{1 / q_{0}}+r_{p}\right)^{i}}(\mathcal{F} f)(i \omega),
$$

where $r_{p} \neq 0$.
If $r_{p}>0$, then by (4.9) and by using notation in (3.3) we have:

$$
\begin{aligned}
& \frac{1}{\left((i \omega)^{1 / q_{0}}+r_{p}\right)^{i}}(\mathcal{F} f)(i \omega)= \\
= & (i \omega)^{1-1 / q_{0}}\left(\mathcal{F} \psi_{1, i, 1 / q_{0}}\left(r_{p}, \cdot\right)\right)(i \omega)(\mathcal{F} f)(i \omega) \\
= & \left(\mathcal{F} \psi_{1, i, 1 / q_{0}}\left(r_{p}, \cdot\right)\right)(i \omega)\left(\mathcal{F}-\infty D^{1-1 / q_{0}} f\right)(i \omega) \\
= & \left(\mathcal{F} \psi_{1, i, 1 / q_{0}}\left(r_{p}, \cdot\right)\right)(i \omega)(\mathcal{F} F)(i \omega) \\
= & \mathcal{F}\left(\psi_{1, i, 1 / q_{0}}\left(r_{p}, \cdot\right) * F\right)(i \omega) .
\end{aligned}
$$

The function $\psi_{1, i, 1 / q_{0}}$ is a continuous and bounded function on $[0, \infty)$ and the function F belongs to the class ρ. Then

$$
Y=\psi_{1, i, 1 / q_{0}}\left(r_{p}, \cdot\right) * F
$$

belongs also to the class ρ.
If we use (4.10) and notation (3.3) we obtain for $r_{p}<0$:

$$
\begin{aligned}
& \frac{1}{\left((i \omega)^{1 / q_{0}}+r_{p}\right)^{i}}(\mathcal{F} f)(i \omega)= \\
= & (i \omega)^{1-1 / q_{0}}\left(\mathcal{F} \psi_{2, i, 1 / q_{0}}\left(r_{p}, \cdot\right)\right)(i \omega)(\mathcal{F} f)(i \omega) \\
= & \left(\mathcal{F} \psi_{2, i, 1 / q_{0}}\left(r_{p}, \cdot\right)\right)(i \omega)\left(\mathcal{F}_{-\infty} D^{1-1 / q_{0}} f\right)(i \omega) \\
= & \left(\mathcal{F} \psi_{2, i, 1 / q_{0}}\left(r_{p}, \cdot\right) * F\right)(i \omega) .
\end{aligned}
$$

So we have the same situation as for $r_{p}>0$.

Finally if $\operatorname{Re} r_{p}=0$, $\operatorname{Im} r \neq 0$, by (4.11) is

$$
\begin{aligned}
& (i \omega)^{1 / q_{0}}\left((i \omega)^{2 / q_{0}}+\left(\operatorname{Im} r_{p}\right)^{2}\right)^{-i}(\mathcal{F} f)(i \omega)= \\
= & (i \omega)^{1 / q_{0}}\left(\mathcal{F}_{-\infty} D_{t}^{1-2 / q_{0}} \psi_{1, \beta, 2 / q_{0}}\left(\left(\operatorname{Im} r_{p}\right)^{2}, t\right)\right)(i \omega)(\mathcal{F} f)(i \omega) \\
= & \left(\mathcal{F} \psi_{1, \beta, 2 / q_{0}}\left(\left(\operatorname{Im~}_{p}\right)^{2}, t\right)\right)(i \omega)\left(\mathcal{F}_{-\infty} D^{1-1 / q_{0}} f\right)(i \omega) \\
= & \left(\mathcal{F} \psi_{1, \beta, 2 / q_{0}}\left(\left(\operatorname{Im} r_{p}\right)^{2}, \cdot\right) * F\right)(i \omega) .
\end{aligned}
$$

Hence, in case Re $r_{p}=0 \operatorname{Im} r_{p} \neq 0$, we have

$$
Y=\left(\psi_{1, \beta, 2 / q_{0}}\left(\left(\operatorname{Im} r_{p}\right)^{2}, \cdot\right) * F\right) \in \rho
$$

If $A_{0}=0$, then by (4.3) $\mathcal{F} Y$ is

$$
(\mathcal{F} Y)(i \omega)=\frac{1}{(i \omega)^{l / q_{0}}} \frac{1}{P_{1}\left((i \omega)^{1 / q_{0}}\right)}(\mathcal{F} f)(i \omega) .
$$

We have seen that

$$
Q\left((i \omega)^{1 / q_{0}}\right)(\mathcal{F} f)(i \omega) \equiv \mathcal{F} \mathcal{U}, \mathcal{U} \in \rho
$$

Now we can write the solution Y to (4.1) as

$$
\begin{equation*}
Y={ }_{-\infty} I_{t}^{l / q_{0}} \mathcal{U} \in \rho \tag{4.13}
\end{equation*}
$$

This completes the proof.

Remark.

1) Since ${ }_{-\infty} D_{t}^{1-1 / q_{0}} H(t-a)(t-a)^{1 / q_{0}-1}=0$, and since $H(t-a)(t-$ $a)^{1 / q_{0}-1} \in \rho$ for any $a>-\infty$, we have the same solution Y to (4.1) even though we add to f the function $C H(t-a)(t-a)^{1 / q_{0}-1}$, where C is a constant.
2) With the exposed method we can obtain the classical solutions too. We have only to suppose that f has "enough good" properties. So, if in Theorem 4.2 we have for F additional property: $F \in A C^{k_{m}+1}([a, b])$ for every $b<\infty, F^{(k)}(a)=0, k=0, \ldots, k_{m}$, then the solution to equation (4.1), with $A_{0} \neq 0$, is given as in 4.2. Let us remark that $A C^{n}([a, b])$ is the space of absolute continuous functions. To prove this assertion it is enough to show that there exists

$$
{ }_{-\infty} D_{t}^{\alpha_{i}}\left(\psi_{j, i, 1 / q_{0}}\left(r_{p}, \cdot\right) * F\right)(t)
$$

for $j=1,2, i=1, \ldots, m$ and for all zeros r_{p} of $P(z)$.
We know (cf. [4], p.39) that ${ }_{-\infty} D_{t}^{\alpha} G, \alpha>0$, exists on (a, b) if $G \in$ $A C^{n}([a, b])$. Then by [2], p. 119 and properties of F, the derivative of the convolution is

$$
\begin{aligned}
E & =\left(\frac{d}{d t}\right)^{k_{m}}\left(\psi_{j, i, 1 / q_{0}}\left(r_{p}, \cdot\right) * F\right)=\psi_{j, i, 1 / q_{0}}\left(r_{p}, \cdot\right) *\left(\frac{d}{d t}\right)^{k_{m}} F \\
& =\int_{0}^{t}\left(\psi_{j, i, 1 / q_{0}}\left(r_{p}, \cdot\right) * F^{\left(k_{m}+1\right)}\right)(\tau) d \tau
\end{aligned}
$$

This proves that $E \in A C[a, b]$ and that

$$
\left(\psi_{j, i, 1 / q_{0}}\left(r_{p}, \cdot\right) * F\right) \in A C^{k_{m}+1}, j=1,2
$$

REFERENCES

[1] Yu. A. Brich kov, A. P. Prudnikov, Integral transforms of generalized functions, Nauka, Moscow, 1957 (in Russian).
[2] G. D o et sch, Handbuch der Lalace-Transformation I, Birkhäuser-Verlag, Basel, 1950.
[3] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006.
[4] S. G. S a m k o, A. A. K il b a s, O. I. M a r i c h e v, Fractional Integrals and Derivatives, Theory and Applications, Gordon and Breach Science Publishers, Amsterdam, 1993.
[5] L. S chwartz, Théorie des Distributions, Hermann, Paris, 1966.
[6] L. S c h w a r tz, Méthodes mathématiques pour les sciences physiques, Hermann, Paris, 1961.
[7] B. S t a n k o v i ć, Sur une classe d' équations intégrales singuliéres, Recueil des travaux de l'Académie Serbe des Sciences XLIII, 4:81-130, 1955.
[8] Z. S z m y d t, Fourier transformation and linear differential equations, Polish Scientific Publisher, Warszawa, 1977.
[9] V. V. U c h a y k i n, Method of Fractional derivatives, Artishok, Uljanovsk, 2008 (in Russian).
[10] V. S. Vladimiro v, Generalized Functions in Mathematical Phisics, Mir, Moscow, 1979.
[11] E. M. W right, On the coefficients of power series having exponential singularities, J. Lond. Math. Soc, 8:71-79,1953.
[12] E. M. W r i g h t, The Generalized Bessel Function of order greater then one, Quert. J. Math. Oxford series, pages 36-48, 1940.
[13] G. M. Z a s l a v s k y, Hamiltonian Chaos and Fractional Dynamics, University Press, Oxford, 2005.

Department of mathematics and informatics
University of Novi Sad
Trg Dositeja Obradovića 4
21000 Novi Sad
Serbia
E-mail: borasta@eunet.rs

