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Abstract

In this paper we derive the relation
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valid for ε ∈ (0, 1), t > 0 and 0 < |h| ≤ ε. These inequalities estimate
the rates of convergence of
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and enable numerical computation of a power with a base close to unity
and large exponent.
Key words and phrases: approximation of powers, asymptotic in-
equalities, computation of powers with large exponent and base close
to unity, exponential function, estimation of powers.

Resumen
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válida para ε ∈ (0, 1), t > 0 y 0 < |h| ≤ ε. Estas desigualdades estiman
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y permiten el cálculo numérico de una potencia de base cercana a la
unidad y gran exponente.
Palabras y frases clave: aproximación de potencias, desigualdades
asintóticas, cálculo de una potencia de base cercana a la unidad y gran
exponente, función exponencial, estimación de potencias.

1 Introduction

How to compute at for a close to 1 and t being very large? Such question oc-
curs when we want to obtain numerical value of the solution xn = x0(1+h)n =
x0

(

1 + nh
n

)n
of difference equation xn −xn−1 = hxn, (h = const. ≈ 0), which

is frequently replaced by its continuous version, namely the differential equa-
tion, dx

dt = hx, having solution x = x(0)eht. Although the computation of at

is usually an easy task, especially in the age of computers, the question is
not as simple as it seems. For example, using calculators to compute “sin-
gular” powers such as α = (1 − 10−59.1)10

58.6

and β = (1 + 10−58.6)10
59.1

we
do not obtain correct result due to overflow problems. For the same reason,
the computation of numbers α and β above is not quite an easy task, even
for powerful math software, like Mathematica [5], for example. Moreover, if
powers α and β are substituted by “more singular” powers, even Mathematica
does not give a useful result.

However, it is well known that
(

1 + x
t

)t ≈ ex for t large, according to

convergence lim
t→∞

(

1 + x
t

)t
= ex. But, to use this approximation for numerical

computation of powers like α and β, we need simple bounds for the errors,
i.e. we need simple functions A(t, x) and B(t, x), close to 1 for t large, such

that A(t, x) · ex ≤
(

1 + x
t

)t ≤ B(t, x) · ex for t large. To this effect let us go
back to the definition of a power to find such functions A(t, x) and B(t, x).

Several authors introduce power with positive base and real exponent by
allowing for exponent first positive integer values and then generalize the
notion of the power from the case when the exponent is negative integer to
the cases when the exponent is rational and real. This requires a lot of time
and a fair of effort to prove the additivity and differentiability properties of
real exponential function. Hence, we not recommend this approach to powers,
not even from only the theoretical point of view. In addition, this way is
not productive for our purpose as well. Fortunately, there exists an easier
method based on the definite integral. Choosing this method, the logarithmic
and exponential functions can be introduced easily, and their fundamental
properties can be derived in a simple manner (see for example [1, p. 409] or
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[4, p. 117]).

To sum up, the logarithmic function ln : R+ → R, ln(x) :=
∫ x

1
1
t dt,

is differentiable, strictly monotonically increasing bijection with derivative
ln′(x) = 1

x and with the additive property ln(x1 x2) = ln(x1) + ln(x2), ob-
tained by substituting the integration variable with a new one. Its inverse
function, exp := ln−1 : R → R+, called the exponential function, is con-
sequently also differentiable, strictly monotonically increasing bijection with
derivative exp′(x) = exp(x) and with the additive property exp(x1 + x2) =
exp(x1) exp(x2).

The power of a positive real number a is defined by

ax := exp(x ln(a)), x ∈ R.

Powers, defined this way, have all the usual properties, which are easily veri-
fied. With the Euler number e := exp(1), the identity exp(x) = ex holds for
every real x. By showing that the derivative of quotient q(x) := e−xf(x) is
identically equal to 0, provided that function f : R → R+ is differentiable, its
derivative coincides with itself and f(0) = 1, it becomes clear that the expo-
nent function is the unique differentiable function, whose derivative coincides
with itself and takes the value 1 at the point 0.

Taylor’s formula and the equality exp′(x) = exp(x) enable us to make some
initial numerically useful approximations for the exponential function. Using
Taylor’s formula, we can also approximate logarithms. Therefore, computa-
tion of “regular” powers is not a hard work. On the other hand, computation
of “singular” powers, as has been mentioned above, could be rather problem-
atic. We would like to find a way how to compute such “singular” powers, as

well as we would like to estimate the expression
(

1 + x
t

)t
for t large.

2 Monotonous convergence

Our main concern is the function

t 7−→
(

1 +
x

t

)t

=: E(x, t) (1)

Divulgaciones Matemáticas Vol. 13 No. 1(2005), pp. 21–34



24 Vito Lampret

defined on the intervals I−x := (−∞,−max{0, x}) and I+
x := (−min{0, x},∞)

for any real x. For nonzero x we have

lim
|t|→∞

lnE(x, t) = lim
|t|→∞

[

x · t
x

ln
(

1 +
x

t

)

]

= x · lim
τ→0

ln(1 + τ) − ln(1)

τ

= x · ln′(1) = x.

This means, due to continuity (differentiability) of logarithmic function, that
lim

|t|→∞
E(x, t) exists and is equal to ex for every real x:

lim
|t|→∞

(

1 +
x

t

)t

= ex. (2)

For every t ∈ I−x ∪ I+
x we have

d

dt
E(x, t) = L(x, t) · E(x, t), (3)

where

L(x, t) := ln
(

1 +
x

t

)

− x

t+ x
. (3a)

The function t 7−→ L(x, t) has derivative

d

dt
L(x, t) =

1

1 + x
t

(

− x

t2

)

+
x

(t+ x)2
= − x2

t(t+ x)2
.

Consequently, it is strictly monotonically increasing on the interval I−x and
decreasing on the interval I+

x for any x 6= 0. Therefore, L(x, t) > 0 for x 6= 0
and t ∈ I−x ∪ I+

x , because lim|t|→∞ L(x, t) = 0 for any x. Furthermore, since
E(x, t) > 0, we conclude from (3) that the function t 7→ E(x, t) increases
strictly monotonously on both intervals I−x and I+

x for every x 6= 0. Hence,
for any x 6= 0, the convergence

lim
t→∞

(

1 +
x

t

)t

= ex = lim
t→∞

(

1 − x

t

)−t

(4)

is strictly monotonically increasing or decreasing, respectively. Figure 1 illus-
trates this dynamics.
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3 The rate of convergence lim
t→∞

(

1 + x
t

)t

For any ε ∈ [0, 1) the function fε : (−1,∞) → R, defined by

fε(τ) := ln(1 + τ) − τ +
τ2

2(1 − ε)
,
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Figure 1: limt→∞

(

1 + x
t

)t
= ex = limt→∞

(

1 − x
t

)−t
.

has derivative

f ′
ε (τ) =

1

1 + τ
− 1 +

τ

1 − ε
=

(τ + ε)τ

(1 − ε)(1 + τ)
.

Therefore

min
τ≥−ε

fε(τ) = fε(0) = 0

and consequently fε(τ) > 0 for τ ∈ [−ε,∞)\{0}. That is

eτ− τ
2

2(1−ε) < 1 + τ (5)

for any ε ∈ [0, 1) and for every nonzero τ ≥ −ε.
Similarly, for any ε ∈ [0, 1), we treat the function gε : (−1,∞) → R defined

by

gε(τ) := τ − τ2

2(1 + ε)
− ln(1 + τ) .

Its derivative,

g′ε(τ) = 1 − τ

1 + ε
− 1

1 + τ
= − (τ−ε) · τ

(1 + ε)(1 + τ)
,
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shows that
min

−1<τ≤ε
gε(τ) = gε(0) = 0 .

Hence, gε(τ) > 0 for τ ∈ (−1, ε]\{0}; thus

1 + τ < eτ− τ
2

2(1+ε) (5a)

for every ε ∈ [0, 1) and for every nonzero τ such that −1 < τ ≤ ε.
Let us exploit the above relations (5) and (5a). Indeed, for any real x 6= 0,

ε ∈ (0, 1), and t ≥ |x|ε the number τ := x
t 6= 0 lies on the interval [−ε, ε].

Therefore, according to (5) and (5a), the following relation holds

e
x

t
− x

2

2(1−ε)t2 < 1 +
x

t
< e

x

t
− x

2

2(1+ε)t2 .

Taking the powers we obtain the main estimate

ex− x
2

2(1−ε)t <
(

1 +
x

t

)t

< ex− x
2

2(1+ε)t , (6)

valid for every real x 6= 0, ε ∈ (0, 1) and t ≥ |x| /ε. From these inequalities
we obtain, taking h = x

t , the asymptotic estimate

exp

(

ht− h2t

2(1 − ε)

)

< (1 + h)t < exp

(

ht− h2t

2(1 + ε)

)

, (6a)

true for ε ∈ (0, 1), t > 0 and 0 < |h| ≤ ε.
Figure 2 illustrates the estimate (6) for x = 1 and x = −1, and for ε = 1

10 ,
where dashed curves represent lower and upper bounds. Considering the
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Figure 2: Lower and upper bounds (6) for the function t 7→
(

1 + x
t

)t
.

approximation
(

1 +
x

t

)t

≈ ex, (7)
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we obtain from (6) the asymptotic estimate

1 − e−
x
2

2(1+ε)t < r(x, t) < 1 − e−
x
2

2(1−ε)t (8)

for the relative error

r(x, t) :=
ex −

(

1 + x
t

)t

ex
, (8a)

which holds with the same conditions as were quoted for (6).
Figure 3 illustrates the estimate (8) for x = ±1 and x = ±2 at ε = 1

10 .
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Figure 3: Estimate (8) of the convergence r(x, t) → 0 as t → ∞.

From (8) we can get an additional, less accurate, but simpler estimate
for r(x). To this effect we observe that the function ϕ : R → R, defined by
ϕ(τ) := τ + e−τ − 1, has a positive derivative for τ > 0. This means ϕ(τ) > 0,
i.e. there holds the estimate

1 − e−τ < τ (9)

for τ > 0; consequently the function ψ :R → R, where

ψ(τ) := 1 − e−τ − τ + τ2/2, (10)

has a derivative
ψ′(τ) = e−τ − 1 + τ > 0

for τ > 0. Hence, we have found that ψ(τ) is positive for τ positive. Therefore,
by definition (10), we have

1 − e−τ > τ − τ2

2
= τ(1 − τ

2
) (11)

for τ > 0. Combining (8) with (9) and (11), we obtain the estimate

x2

2(1 + ε)

(

1 − x2

4(1 + ε)t

)

· 1

t
< r(x, t) <

x2

2(1 − ε)
· 1

t
, (12)
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which holds for every real x 6= 0, ε ∈ (0, 1) and t ≥ |x| /ε. Referring to (8a),

the left part of this relation is obviously interesting only in case t > x2

4(1+ε) ,

since r(x, t) > 0 for x 6= 0 and t > 0, due to the fact that
(

1 + x
t

)t
converges

monotonously from below towards ex as t → ∞, see §2. Bounds presented
in (12) are close to the bounds in (8). In Figure 4 we illustrate this fact for
t ∈ [10, 30] by plotting graphs of differences between lower (left) and upper
(right) bounds dl(ε, x, t) and du(ε, x, t)

dl(ε, x, t) :=

[

1 − exp

(

− x2

2(1 + ε)t

)]

−
[

x2

2(1 + ε)t

(

1 − x2

4(1 + ε)t

)]

and

du(ε, x, t) :=
x2

2(1 − ε)t
−

[

1 − exp

(

− x2

2(1 − ε)t

)]

.

10-5

2x10-5

10 20 30

x2= 1, ¶=

1
�������

10

t

2x10-3
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1
�������

10

t

Figure 4: Graphs of differences dl (left) and du (right).

According to definition (8a) we find, from relation (12) above, the estimate

exx2

2(1 + ε)

(

1 − x2

4(1 + ε)t

)

· 1

t
< ex−

(

1 +
x

t

)t

<
exx2

2(1 − ε)
· 1

t
, (12a)

valid under the same conditions as were stated for (12). We also note an
obvious and useful fact that the function

t 7→ 1 − x2

4(1 + ε)t

increases monotonously on the interval (0,∞), while the functions

ε 7→ 1

1 + ε
and ε 7→ 1

1 − ε

respectively, decrease and increase monotonously on the interval (0, 1).
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Setting ε = 1
2 in (12) we deduce the estimate

x2

3

(

1 − x2

6t

)

· 1

t
< r(x, t) < x2 · 1

t
, (12b)

which is valid for x 6= 0 and t ≥ 2 |x|. For the same reasons as were stated in
comment to (12), the left part of this estimate is interesting only if t ≥ x2/6.

From (12b) we can extract the relation
(

1 − x2

t

)

· ex <
(

1 +
x

t

)t

<

[

1 − x2

3t

(

1 − x2

6t

)]

· ex, (13)

which holds for x 6= 0 and t ≥ 2 |x|. Considering the remark above, the left
part of this relation is obviously interesting only for t > max{2|x|, x2} and
the right part for t > max{2|x|, x2/6}. Putting h = x

t into (13), we obtain
the estimate

(

1 − h2t
)

· eht < (1 + h)
t
<

[

1 − h2t

3

(

1 − h2t

6

)]

· eht, (14)

valid for t > 0 and 0 < |h| ≤ 1/2. Having t positive, the left side of (14) is
obviously interesting only for 0 < |h| < min{1/2, 1/

√
t} and the right side for

0 < |h| < min{1/2,
√

6/t}.
Taking x 6= 0 and t > |x|, and putting ε := |x|

t in (12a), we obtain the
estimate

exx2

2
· t

t+ |x|

(

1 − x2

4(t+ |x|

)

< t

[

ex −
(

1 +
x

t

)t
]

<
exx2

2
· t

t− |x| , (15)

valid for x 6= 0 and t > |x|. Letting t to approach infinity in (15), we obtain
the next result

lim
t→∞

[

t ·
(

ex −
(

1 +
x

t

)t
)]

=
exx2

2
. (16)

Figure 5 illustrates estimate (15) for t ∈ [10, 100].

4 Examples

4.1 Let us take x = 1. Choosing ε = 1
2 , the relation (12a) can be applied

to those t which fulfil the condition t ≥ |x| /ε = 2. Hence, for all t ≥ 2, the
following estimate holds

e

2 × 3
2

(

1 − 1

4 × 3
2 × 2

)

· 1

t
< e−

(

1 +
1

t

)t

<
e

2 × 1
2

· 1

t
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Figure 5: Bounds (15) for the convergence (16).

i.e.
2.7

3

11

12
· 1

t
< e−

(

1 +
1

t

)t

< 2.8 · 1

t

or
0.8

t
< e−

(

1 +
1

t

)t

<
2.8

t
.

If we take ε = 0.1 in (12a), then, for t ≥ 10, we obtain the relation

e

2 × 1.1

(

1 − 1

4 × 1.1 × 10

)

· 1

t
< e−

(

1 +
1

t

)t

<
e

2 × 0.9
· 1

t
.

Thus, we have more accurate estimate

1.20

t
< e−

(

1 +
1

t

)t

<
1.51

t
,

true for t ≥ 10.
Taking ε = 0.01 and t ≥ 100 in (12a), we obtain the estimate

e

2 × 1.01

(

1 − 1

4 × 1.01 × 100

)

· 1

t
< e−

(

1 +
1

t

)t

<
e

2 × 0.99
· 1

t
,

which amounts to an even more accurate relation

1.34

t
< e−

(

1 +
1

t

)t

<
1.38

t
, (17)

valid for t ≥ 100. For ε still closer to 0, we would obtain from (12a) further
more accurate estimates, which are certainly true for larger values of t.
4.2 Setting x = −1, ε = 0.01 and t ≥ 100 in (12a) we obtain

1

e · 2 · 1.01

(

1 − 1

4 · 1.01 · 100

)

· 1

t
<

1

e
−

(

1 − 1

t

)t

<
1

e · 2 · 0.99
· 1

t
,
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i.e.
0.181

t
<

1

e
−

(

1 − 1

t

)t

<
0.186

t
(18)

for t ≥ 100 .

4.3 To determine power α :=
(

1 − 10−59.1
)1058.6

we use (14), setting h =
−10−59.1 and t = 10 58.6. Since ht = −10−0.5 and h2t = 10−59.6 we estimate

α >
(

1 − 10−59.6
)

· e−10−0.5

> e−10−0.5 − (10−0.6e−10−0.5

) · 10−59

> e−10−0.5 − 0.2 · 10−59 > e−10−0.5 − 10−59

and

α <

[

1 − 10−59.6

3

(

1 − 10−59.6

6

)]

· e−10−0.5

<
[

1 − 0.3 · 10−59.6
(

1 − 10−1
)]

· e−10−0.5

=
(

1 − 2.7 · 10−60.6
)

· e−10−0.5

= e−10−0.5 −
(

2.7 · 10−0.6 · e−10−0.5
)

· 10−60

< e−10−0.5 − 0.4 · 10−60 < e−10−0.5 − 10−61.

Hence,

exp

( −1√
10

)

− 10−59 < α < exp

( −1√
10

)

− 10−61

or numerically α = 0. 728 893 414 110 024 601 973 . . . , where all 21 decimal
places are correct.

4.4 To compute power β :=
(

1 + 10−58.6
)1059.1

we put h = 10−58.6 and t =
10 59.1. Since ht = 10 0.5 and h2t = 10−58.1 we are estimating, according to
(14), as follows:

β >
(

1 − 10−58.1
)

· e10 0.5

> e10
0.5 − (10−0.1e10

0.5

)10−58

> e10
0.5 − 20 · 10−58 > e10

0.5 − 10−56

and

β <

[

1 − 10−58.1

3

(

1 − 10−58.1

6

)]

· e10 0.5

<
[

1 − 0.3 · 10−58.1
(

1 − 10−1
)]

· e10 0.5

=
(

1 − 2.7 · 10−59.1
)

· e10 0.5

= e10
0.5 −

(

2.7 · 10−0.1 · e10 0.5
)

· 10−59

< e10
0.5 − 50 · 10−59 < e10

0.5 − 10−58,
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thus
exp

(√
10

)

− 10−56 < β < exp
(√

10
)

− 10−58

or numerically β = 23. 624 342 922 017 801 092 . . . , where all 18 decimal places
are correct.

5 Remarks

5.1 Using a slightly different techniques as those that have been applied de-
riving (17), we can obtain an estimate, similar to (17). Namely, putting ε = 0
in (5) we get, for τ > 0, the estimate

exp

(

τ − τ2

2

)

< 1 + τ

or
1 − τ

2
< ln(1 + τ)1/τ

i.e.
e− (1 + τ)1/τ < e− e1−

τ

2 . (19)

To get an opposite inequality, we consider the function

F (τ) := τ − τ2

2
+
τ3

3
− ln(1 + τ),

having the derivative

F ′(τ) =
τ3

1 + τ
> 0

for τ > 0. Hence, F (τ) > F (0) = 0 for τ > 0, that is

τ − τ2

2
+
τ3

3
> ln(1 + τ)

or

1 − τ

2
+
τ2

3
> ln(1 + τ)1/τ ,

i.e.

e− (1 + τ)1/τ > e− e1−
τ

2 + τ
2

3

at any τ > 0. Combining this relation with (19), we find that the estimate

e ·
(

1 − e
−
�

τ

2 −
τ
2

3

�)

< e− (1 + τ)1/τ < e ·
(

1 − e−
τ

2

)

(20)
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holds for every τ > 0.

For τ ∈
(

0, 3
2

)

, the number

d(τ) :=
τ

2
− τ2

3
= τ

(

1

2
− τ

3

)

is lying on the interval
(

0, 3
16

)

⊂ (0, 1). But, the function G :d 7→ 1−e−d−e−1d
strictly increases on interval (0, 1), due to its positive derivative. Therefore,
for d ∈ (0, 1), we have G(d) > G(0) = 0, i.e. 1− e−d > d/e. Hence, according
to (9), we get

d

e
< 1 − e−d < d

for every d ∈ (0, 1). With this in mind, according to (20), we conclude with
relation

e · 1

e

(

τ

2
− τ2

3

)

< e− (1 + τ)1/τ < e · τ
2
,

valid for every τ ∈
(

0, 3
2

)

. Consequently, setting τ = 1
t , we obtain the estimate

1

2t
− 1

3t2
< e−

(

1 +
1

t

)t

<
e

2t
, (21)

true for t > 2/3.

5.2 Inequalities (6) have been obtained already in [2], but using an integral.

6 Questions

6.1 Prove or disprove the equality

lim
t→∞

{

t

[

exx2

2
− t

(

ex −
(

1 +
x

t

)t
)]}

=
exx3

24
(3x+ 8)

and find further “nested limits”, together with suitable estimates.

6.2 How to estimate the norm ‖
(

1 + x
n

)n − ex‖ from below and from above
for n ∈ N and x ∈ A, A being real or complex unital Banach algebra, possibly
B∗ algebra or only the field C or matrix algebra Cn×n?
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