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Abstract

We present some results about the class of Alexandroff topologies
(i.e. topologies where the intersection of arbitrary many open sets is
open) from the perspective obtained when they are viewed as closed
subsets of the Cantor cuber 2X (the power set of X with the product
topology).
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Resumen

Presentamos algunos resultados sobre la clase de topoloǵıas Alexan-
droff (es decir, aquellas donde la intersección arbitraria de abiertos es
abierto) desde la perspectiva que se obtiene al verlas como conjuntos
cerrados del cubo de Cantor 2X (el conjunto potencia de X con la to-
poloǵıa producto).
Palabras y frases clave: topoloǵıas de Alexandroff, ret́ıculo de topo-
loǵıas.

1 Introduction

Given a topology τ on an infinite set X, by identifying a set with its char-
acteristic function, we can view τ as a subset of the cantor cube 2X (i.e.
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{0, 1}X with the product topology). Under this identification, we can talk
about open, closed, clopen, meager, etc. topologies. For instance, a topology
over N (or any countable set X) is said to be analytic, when it is an analytic
set as a subset of the cantor set 2N (i.e. a continuous image of the irrationals
[4]). The systematic study of analytic topologies initiated in [9, 10] shows
that by restricting our attention to analytic topologies some pathologies are
avoided and we get, for instance, a smoother theory of countable sequential
spaces. In this paper we will analyze, from this perspective, a particular class
of topologies, namely, the so called Alexandroff topologies.

A topology τ over X is said to be an Alexandroff topology if it is closed
under arbitrary intersection. Watson [11] attributed this notion to both
Alexandroff and Tucker and thus called them AT topologies; we will use
his notation denotating by AT (X) the collection of all AT topologies on
X. It is easy to verify that a topology is AT if for every x ∈ X the set
Nτ

x =
⋂{V : x ∈ V and V ∈ τ} is an open set. Nτ

x is called the irreducible
(or minimal) neighborhood of x (when there is no danger of confusion, we
will just write Nx instead of Nτ

x ). AT topologies are specially relevant for
the study of non T1 topologies (notice that the only T1 AT topology is the
discrete topology). They play an important role in the study of the lattice of
all topologies over a set [8, 11, 12] and recently have received more attention
due to its connection with digital topologies [5, 6].

The starting point for this work is the fact that AT topologies correspond
exactly to those which are closed as subsets of 2X . The collection of clopen
topologies is particularly simple, since they essentially correspond to topolo-
gies over finite sets (both results were known for the case of a countable set
X [9]). To state one of the contributions of this paper we need to recall some
notions. To each topology τ it is associated the following binary relation:

x ≤τ y if x ∈ clτ ({y}) (1)

where clτ denotes the closure operator of τ . It is easy to verify that ≤τ is
transitive and reflexive, so it is a pre-order on X which is called the pre-
order induced by τ (it is also called the specialization pre-order of τ). An
AT topology τ is uniquely determined by its associated ≤τ (see theorem 3.1).
Moreover, it is known that the map ρ 7→≤ρ is a complete lattice isomorphism
between the lattice of AT topologies and the lattice of pre-orders over X [8].
More information about the relation ≤τ can be found in [3, II 1.8]. The
pre-order ≤τ allows to introduce an equivalence relation ≈ over the lattice
TOP (X) of all topologies over X as follows

τ ≈ ρ if ≤τ=≤ρ (2)
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For instance, the collection of all T1 topologies forms an equivalence class. We
got interested in this equivalence relation after reading S. Watson’s work [12]
and we are thankful to him for allowing us to have a copy of it.

One of the results of this paper says that τ ≈ ρ iff τ and ρ have equal
closure in 2X . From this fact, we easily get that τ is T1 iff τ is dense in 2X .
Another curious result is that an AT topology is compact iff X is an isolated
point of τ in 2X .

Since AT (X) can be viewed as a subset of the hyperspace K(2X) of all
compact subsets of 2X with the Vietoris topology, it is natural to study the
topological properties of AT (X) as a subspace of K(2X). We will show in the
last section that AT (X) is homeomorphic to the collection of pre-orders over
X (with the topology inherited from the cantor cube 2X×X).

Our notation and terminology is standard [2, 7]. For our purposes it is
convenient to present the product topology in the following way. For every
K ⊆ F ⊆ X, we define the interval

[K, F ] = {A ∈ 2X : K ⊆ A ⊆ F} (3)

The collection of all intervals [K,F ] with K finite and F cofinite is a basis for
the product topology on 2X . Notice that these intervals are in fact clopen in
2X .

2 Closed and Open Topologies

We start with a characterization of closed topologies.

Theorem 2.1. Let τ be a topology over X. The following are equivalent
(i) τ is AT.
(ii) τ ⊆ 2X is closed.

Proof. (i) ⇒ (ii): Let Aα be a net of open sets in τ , and suppose that Aα

converges (in 2X) to a set A. We will show that A ∈ τ . Let x ∈ A and Nx

be the irreducible neighborhood of x (since τ is AT). It suffices to show that
Nx ⊆ A. Since Aα converges to A and x ∈ A, then there is β such x ∈ Aα

for all α > β. Since each Aα is open, then Nx ⊆ Aα for all α > β. Therefore
Nx ⊆ A.

(ii) ⇒ (i): Let x ∈ X and Aα be the net of all open neighborhoods of x
ordered by reversed inclusion. Then Aα converges (in 2X) to

⋂
Aα. Since τ

is closed, then
⋂

Aα ∈ τ and therefore τ is AT. ¤
The following proposition is probably well known and its proof is straight-

forward.
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Proposition 2.2. Let f, g : 2X × 2X → 2X h : 2X → 2X be the functions
defined by f(A,B) = A ∩B, g(A,B) = A ∪B and h(A) = X −A. Then f , g
and h are continuous and open. Moreover, h is a homeomorphism.

Proposition 2.3. (i) Let F ⊆ 2X be a closed subset closed under finite
intersections. Then F is closed under arbitrary intersections.
(ii) Let F ⊆ 2X be a closed subset closed under finite unions. Then F is
closed under arbitrary unions.

Proof. (i) Let Aα with α ∈ J be any collection of sets in F , and let K be
the collection of finite subsets of J ordered by inclusion. Let BS =

⋂
α∈S Aα,

then (BS : S ∈ K) is a net in F . Clearly, limS Bs =
⋂

α Aα. The proof of (ii)
is similar. ¤

Theorem 2.4. Let τ be a topology over X. The closure τ of τ in 2X is a
topology and therefore is the smallest AT topology containing τ .

Proof. By proposition 2.3, it is enough to show that τ is closed under finite
unions and intersections. Let A,B ∈ τ and let {Aα}, {Bβ} be two nets in τ
converging to A and B respectively. By proposition 2.2, the intersection and
union functions are continuous, thus Aα∩Bβ converges to A∩B and Aα∪Bβ

converges to A ∪B. Finally, it follows from theorem 2.1 that τ is AT ¤
Now we will show that open topologies correspond to topologies over finite

sets.

Theorem 2.5. Let τ be a topology over X. The following are equivalent.
(i) τ is open in 2X .
(ii) τ is clopen in 2X .
(iii) ∅, X are interior points of τ in 2X .
(iv) There is a finite τ -clopen set F whose complement is τ -discrete.

Proof. Clearly (i) implies (iii). Suppose now that (iii) holds, then there are
finite sets K and L such {A ∈ 2X : K ⊆ A} ⊆ τ and {A ∈ 2X : A∩L = ∅} ⊆ τ .
Let F = K ∪ L. Thus F is τ -clopen and X − F is discrete, hence (iv) holds.
Finally we will show that (iv) implies (ii). For every K ⊆ F with K ∈ τ , let
VK be the basic clopen set {A ⊆ X : K ⊆ A & A ∩ (F −K) = ∅}. Then by
(iv) VK ⊆ τ . On the other hand, given A ∈ τ put K = A ∩ F , then A ∈ VK .
Therefore τ =

⋃{VK : K ⊆ F, K ∈ τ}. Since F is finite, then τ is clopen in
2X . ¤
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3 The induced pre-order

The following result is well known [8] and shows that AT topologies are com-
pletely determined by its induced pre-order ≤τ given by (1).

Theorem 3.1. A topology τ over X is AT iff there is a unique binary relation
≤ over X which is transitive, reflexive and such that for all A ⊆ X the
following holds:

A ∈ τ iff {y ∈ X : x ≤ y} ⊆ A for every x ∈ A.

In this case, the irreducible neighborhood of x is

Nτ
x = {y ∈ X : x ≤ y}.

and moreover

clτ (A) =
⋃

x∈A

clτ ({x}) =
⋃

x∈A

{y ∈ X : y ≤ x}.

Thus ≤ is precisely ≤τ . Furthermore, τ is T0 iff ≤ is antisymmetric. ¤
For a given pre-order ≤ over X the AT topology given by theorem 3.1 will

be called the associated AT topology of ≤ and will be denoted τ(≤). Thus
the previous theorem implies that τ(≤ρ) = ρ for any AT topology ρ. The
following is a useful fact.

Proposition 3.2. If τ ⊆ ρ, then ≤ρ⊆≤τ . Moreover, for AT topologies the
converse also holds.

Proof. The first claim is obvious. For the second claim, let τ and ρ be AT
topologies over X such that ≤ρ⊆≤τ . Notice that Nρ

x ⊆ Nτ
x for all x ∈ X. It

suffices to show that Nτ
x is ρ-open. Let z ∈ Nτ

x , then Nρ
z ⊆ Nτ

z ⊆ Nτ
x . ¤

It is clear from theorem 3.1 that in the equivalence class (with respect
to relation ≈ defined in (2)) of a topology ρ there is a unique AT member,
namely τ(≤ρ). It is known that such AT topology is the largest element of
the equivalence class [3, p. 45], that is to say, ρ ⊆ τ(≤ρ) for every topology
ρ. This will be a consequence of the following

Theorem 3.3. Let τ and ρ be topologies over X. Then

τ ≈ ρ iff τ = ρ

where τ is the closure of τ in 2X . In particular, τ is the largest topology within
the equivalence class of τ .
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Proof. Let τ be a topology over X. By theorem 2.1, closed topologies are
AT and, by theorem 3.1, they are uniquely determined by their induced pre-
order. Thus it is clearly sufficient to show that ≤τ=≤τ . By proposition 3.2,
it suffices to show that ≤τ⊆≤τ . Suppose x 6≤τ y and let V ∈ τ such that
x ∈ V and y 6∈ V . By the definition of the product topology, there is W ∈ τ
such x ∈ W and y 6∈ W , thus x 6≤τ y. ¤

Since τ and τ induce the same pre-order, then we immediately get the
following corollaries

Corollary 3.4. Let τ be a topology over X. Then
(i) τ is T0 iff τ is T0.
(ii) τ is T1 iff τ is dense in 2X .

For a given pre-order ≤ over X, we will denote by Min(≤) the collection
of minimal elements of X, i.e. those x ∈ X such that there is no y < x.
Analogously we denote by Max(≤) the collection of maximal elements of X.
Notice that Min(≤) is closed and Max(≤) is open in the AT topology τ(≤).
Notice also that Max(≤) is contained in every τ(≤)-dense set. It is clear that
for an AT topology τ , the collection of τ -closed sets also form a topology,
called the cotopology of τ , which we will denote by coτ . Notice that x ≤coτ y
iff y ≤τ x. We will use this observation in the proof of the next result.

Proposition 3.5. Let τ be a T0 AT topology over X.

(i) ∅ is isolated in τ iff Max(≤τ ) is a finite τ -dense set iff there is a finite
τ -dense set.

(ii) X is isolated in τ iff Min(≤τ ) is finite and X =
⋃

x∈Min Nx iff there is
a finite set L such that X =

⋃
x∈L Nx.

Proof. To show (i) notice that if F ⊆ X is a cofinite set, then [∅, F ]∩ τ = {∅}
iff X\F is τ -dense. On the other hand, suppose L is a finite τ -dense set. Since
every point in Max(≤τ ) is τ -open, then Max(≤τ ) = Max(L,≤τ ). To see (ii),
just applied (i) to the cotopology coτ and recall that the map A 7→ X \ A is
a homeomorphism of 2X , so X is isolated in τ iff ∅ is isolated in coτ . ¤

Theorem 3.6. Let τ be a T0 AT topology. The following are equivalent
(i) (X, τ) is compact.
(ii) X is an isolated element of τ in 2X .

Proof. Suppose (X, τ) is compact. Consider the open covering of X given by
the irreducible neighborhoods Nx with x ∈ X. Then by compactness there is
a finite set K such that the Nx’s with x ∈ K is a finite covering of X. Then
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by proposition 3.5(ii) X is isolated in τ . Conversely, suppose X is isolated in
τ and let U be an open covering of X. Then by proposition 3.5(ii) any finite
subset of U containing Min(≤τ ) is a covering of X. ¤

4 Convergency of AT topologies

Let PO(X) denote the collection of all pre-orders over X with the topology
its inherited from 2X×X . Here we view a pre-order as a binary relation, thus
as a subset of X ×X. It is easily shown that PO(X) is a compact subset of
2X×X .

We have already mentioned that the map from PO(X) onto AT (X) given
by ≤7→ τ(≤) is a lattice isomorphism. We will show below that this map is
moreover a homeomorphism when AT (X) given the topology inherited from
K(2X) (the hyperspace of compact subsets of 2X with the Vietoris topology).
For the particular case of a countable set X, a different proof of this result
was given in [1].

First we fix the natural basis for the Vietories topology on K(2X). Since
2X is compact, the following sets form a basis for the Vietoris topology on
K(2X)

{C ∈ K(2X) : C ∩ [K, F ] 6= ∅} , {C ∈ K(2X) : C ⊆
n⋃

i=1

[Ki, Fi]}

where K, Ki ⊆ X are finite and F, Fi ⊆ X are cofinite and the interval [K,F ]
is defined by equation (3).

Theorem 4.1. The map from PO(X) to K(2X) that sends ≤ to τ(≤) is con-
tinuous and injective. Thus it is a homeomorphism of PO(X) onto AT (X).
In particular, AT (X) is a compact set with the Vietoris topology.

Proof. From theorem 3.1 it follows that T is injective and onto AT (X). So
it remains to show that it is continuous. Let {≤d}d∈D be a net in PO(X)
converging to a preorder ≤, where (D,¹) is a directed set. This means that
for every finite S ⊆ X there is d0 ∈ D such that

{(x, y) ∈ S2 : x ≤d y} = {(x, y) ∈ S2 : x ≤ y} for all d º d0 (4)

(viewing a pre-order as binary relations, i.e. as a subset of X2). Let τd and
τ denote the AT topologies associated to ≤d and ≤, respectively. There are
two cases to consider:
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Suppose first that τ ⊆ U :=
⋃n

i=1[Ki, Fi], where Ki ⊆ X is finite and Fi ⊆
is cofinite for i ≤ n. Let S =

⋃
i(Ki ∪ (X \ Fi)). Since S is finite, there is d0

such that (4) holds. We will show that τd ⊆ U for all d º d0. Fix d º d0,
V ∈ τd and let T = V ∩ S. Let NT be the union of Nτ

x for x ∈ T . Since
NT ∈ τ , then there is i such that Ki ⊆ NT ⊆ Fi. It suffices to show that
Ki ⊆ V ⊆ Fi. In fact, let y ∈ Ki, then there is x ∈ T such that x ≤ y. Since
(x, y) ∈ S2, then x ≤d y. Since V ∈ τd and x ∈ T ⊆ V , then y ∈ V . On
the other hand, if there is x ∈ V \ Fi, then x ∈ T , but this is impossible, as
T ⊆ NT ⊆ Fi.

Now suppose τ ∩ [K,F ] 6= ∅ for some finite K and cofinite F . Consider
S = K ∪ (X \ F ). As before fix d0 such that (4) holds. It is routine to show
that Vd =

⋃
x∈K Nτd

x belongs to [K,F ] for all d º d0. ¤
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