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Abstract

A complete analytical and numerical study of a new second order
finite difference discretization for derivatives and its associated scheme
for the Laplace’s operator is presented. It is based on a one side approx-
imation for the gradient at boundary nodes in a non-uniform staggered
(point distributed) grid. It is shown that the numerical scheme applied
to the discretization of the Laplacian operator has a global quadratic
convergence rate. In addition, it is also proved that this new discretiza-
tion scheme is conservative,as its formulation is naturally motivated.
That is, it is not necessary to introduce artifacts such as ghost points
or extended grid concepts to formulate it. Illustrative numerical tests
provide evidence that our new scheme is a better choice than standard
finite difference and/or support operator schemes to find numerical solu-
tion of boundary-layer like problems formulated in terms of the diffusion
equation.
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Resumen

Se presenta un estudio anaĺıtico y numérico completo de un nue-
vo esquema de discretizaciones en diferencia finitas de segundo orden
para discretizar derivadas y, como un ejemplo, el esquema de discre-
tización correspondiente al operador de Laplace. El esquema se basa
en la aproximación lateral para el gradiente en nodos en la frontera en
una malla escalonada (de puntos distribuidos) no uniforme. Se muestra
que al aplicar el esquema numérico a la discretización del operador de
Laplace, el mismo tiene una tasa de convergencia global de segundo
orden. Además, también se prueba que este nuevo esquema de discre-
tización es conservativo, siendo muy natural su formulación. Es decir,
en su formulación no es necesario recurrir a ideas artificiales como el
de puntos fantasmas o de mallas extendidas. Pruebas numéricas ilus-
trando el método dan evidencias que nuestro nuevo esquema es mejor
elección que los esquemas de diferencia finita normal y/o el de operador
de soporte para encontrar soluciones numéricas de problemas del tipo
de capa ĺımite formulado en términos de la ecuación de difusión.

Palabras y frases clave:discretizaciones miméticas; diferencias fi-
nitas; ecuaciones diferenciales parciales; ecuación de difusión; condicio-
nes de borde tipo Robin; capa ĺımite (boundary layer).

1 Introduction

By its simplicity and efficiency the finite difference methods are widely used
to solve partial differential equations. In particular, second order conservative
schemes can be easily obtained on uniform grids by using the so-called ghost
point extension. However, such approach assumes that the discretization of
both the partial differential equation and the boundary conditions are simulta-
neously valid at the extended boundary nodes. To avoid this problem one side
finite difference approximations has been proposed on the boundary but most
of them produce no conservative schemes having low order truncation error.
If non-uniform grids are used then convergence rates of these schemes deterio-
rates. This is particularly true for the Laplace operator. All these deficiencies
of finite difference schemes are well documented in textbooks [1, 2, 3, 4]. Over-
all it may be said that a correct discretization of the boundary conditions is
one of the main difficulties to be addressed in order to improve or develop
new discretization methods close to standard finite difference schemes.

In the last ten years a new generation of numerical methods named by
the generic label of mimetic methods has been developed. A partial review
of them, up to 2002, can be found in [5]. A key distinguishing feature of the
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mimetic discretizations approach is to produce discretizations of the operators
(i.e gradient, divergence, and/or curl) in terms of which the differential equa-
tion of the physical problem of interest is written, preserving symmetry and
conservation properties that are true in the continuum and satisfying discrete
version of the Green-Stokes theorem. This last condition ensures that the
discretization of the boundary conditions and of the differential equation are
compatible. It has been known for some time that numerical methods based
on such discretization produce better physically faithful results than standard
finite differences. Mimetic discretizations also has the great advantage that
their formulation is not more complex than standard finite differences.

In recent publications, Castillo and coworkers [6, 7] developed a systematic
procedure to obtain high order mimetic discretizations for the divergence and
gradient operators, attaining the same order of approximation at boundary
and inner points. Mimetic schemes for the steady state diffusion equation
based on Castillo-Grone approach have been reported in [8, 9, 10, 11, 12].
Each one of those articles provides evidence of quadratic convergence rates
for such schemes but a rigorous proof of it has not been published so far.

In this article we supply a rigorous proof of quadratic convergence for a
particular and unique finite difference discretizations of the Laplacian pro-
posed in [8], which is asymptotically equivalent to a second order mimetic
scheme based on the Castillo-Grone approach. In addition, an illustrative
test problem in one dimension is developed, providing a solid evidence of the
advantage for this second order scheme at numerically solving a boundary-
layer like problem, formulated in terms of the diffusion equation.

The rest of article is divided in six small sections. In the first section,
a short description of the continuous model used in the discretizations is
presented. After that the second order scheme for the Laplace operator along
with the gradient and divergence discretization are described. The proof of
its quadratic convergence rate and conservative properties are provided in the
following two sections. Next, the formulation and solution of an illustrative
numerical test problem is given, and then the conclusions of the present work
are summarized.

2 Continuous Model

In fact, being one of the most important and widely used equation of the
mathematical-physics, the range of physical and engineering problems mod-
eled by the diffusion equation (equation 1 below) includes heat transfer, flow
through porous medium, and the pricing of some financial instruments. Ac-
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cordingly, this wide range of applications of the diffusion equation some how
justify the effort and time devoted in finding ways of obtaining high quality
numerical solution of it on different contexts. Correspondingly, will be illus-
trating the robustness of the new scheme in solving one dimensional boundary-
layer like problems formulated in terms of this equation, which has the form.

−∇·
(←→

K (~x)·∇f(~x)
)

= F (~x) (1)

where
←→
K (~x) is a symmetric tensor, f(~x) is the target property we are looking

for, and F (~x) is a source term. For instance, in a heat transfer problem,
←→
K (~x),

f(~x), and F (~x) are respectively the thermal conductivity, the temperature,
and a source of heat influencing the domain of interest; in a porous media
flow they are, respectively, the permeability tensor, the pressure driving the
flow, and a source term (i.e. a producer or injector well in a oil field) affecting
the fluid flow in the region of interest.

In the one dimensional case, equation (1) takes the form,

−
d

dx

(

K(x)
df(x)

dx

)

= F (x) (2)

which in terms of the discretized operators via mimetic technique, is written
in the form,

−D(K(x)Gf) = F (3)

where D and G represents the discretized version of the divergence (∇·) and
the gradient (∇) operators. That is, rather than discretizing a particular dif-
ferential equation, the mimetic approach gives attention to the discretization
of the operators itself. In this form, once we have the discrete version of the
differential operators of interest, one could discretize any equation written in
terms of them by means of matrix computations.

To have a boundary value problem posed by equation 2, we will be impos-
ing boundary conditions of the Robin (mixed) type, which in its general form
can be written in the form

α0f(0)− β0(K(x)∇f(x)|x=0 = γ0

α1f(1) + β1(K(x)∇f(x)|x=1 = γ1
(4)

Let’s mention that the one-dimensional boundary value problem given by
equations (2) and (4) has a unique solution [15], unless there is a nontrivial
solution of the associated homogeneous problem of equation (2), satisfying
the boundary conditions (4).
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In this article we are analyzing the case where K(x) is the identity on the
above equations. In this situation, it has been found [16] that the problem
posed by (1) and Robin boundary conditions written in the form α f + β ∂ f

∂ n

on ∂ R, the surface bounding the domain of interest, has unique solution when
β
α

has a single sign for all its possible values.

3 Description of the Numerical Scheme

In order to describe the new method a staggered grid configuration is needed.
For simplicity, it is represented in figure 1 defining the interval [x0 = 0,xN+1 =
1]. This grid has N + 1 blocks of size h, each one of which has a central node
denoted by xi+ 1

2
for i = 0, N . Notice that the first and last block contains

an additional node at the boundaries denoted by x0 and xN+1 respectively.
This is not a standard grid and it receives several names in the literature.
In mimetic articles, the authors refers to it as a staggered uniform grid while
in the finite difference technical literature it is called a non-uniform point

distributed grid [13]. The spacing h between edges (xi) is obtained from h =
xN+1−x0

N+1 , and it follows xi = x0 + i h. In our notation fi = f(xi).

· · ·· · · ×× ×
x0 x1 xi xi+1 xN xN+1x 1

2
xi+ 1

2
xN+ 1

2

f0 f1 fi fi+1 fN fN+1f 1
2

fi+ 1
2

fN+ 1
2

Figure 1: Staggered (non-uniform point distributed) grid.

Following the notation of figure 1, the new one-sided finite difference ap-
proximation for the gradient at the boundary points x0 and xN+1 has the
form.

(Gf)0=
− 8

3f0 + 3f 1
2
− 1

3f 3
2

h
(5a)

(Gf)N+1=

8
3fN+1 − 3fN+ 1

2
+ 1

3fN−
1
2

h
(5b)

This approximation has the advantage that they may be obtained by straight-
forward application of Taylor expansions or applying the systematic approach
developed in [6]. They have second order truncation error and thus they
produce a better approximation of Robin’s boundary conditions

f(0) + β0f
′(0) = γ0

f(1) + β1f
′(1) = γ1

(6)

Divulgaciones Matemáticas Vol. 13 No. 1(2005), pp. 107–122



112 J.M. Guevara-Jordan, S. Rojas, M. Freites-Villegas, J.E. Castillo

than standard one side first order approximation for the derivatives. The
coefficients β0 and β1 are, without lost of generality, positive constants while
γ0 and γ1 have arbitrary values. At inner points (cell or edges), crosses in
figure 1, the gradient and divergence approximations coincide with standard
central difference schemes.

(Gf)i=
fi+ 1

2
− fi− 1

2

h
; i = 1, · · · , N (7a)

(Df)i+ 1
2

=
fi+1 − fi

h
; i = 0, · · · , N (7b)

It should be note that the discretized divergence operator (7b) is only defined
at the inner nodes.

Under these conditions the discretization of the Laplacian at inner nodes
is represented by the following expressions:

(DGf) 1
2
=

1

h2

(

8

3
f0 − 4f 1

2
+

4

3
f 3

2

)

= F 1
2

(8a)

(DGf)i+ 1
2
=

1

h2

(

fi+ 3
2
− 2fi+ 1

2
+ fi− 1

2

)

= Fi+ 1
2

; i = 2, · · · , N − 1 (8b)

(DGf)N+ 1
2
=

1

h2

(

8

3
fN+1 − 4fN+ 1

2
+

4

3
fN−

1
2

)

= FN+ 1
2
. (8c)

These expressions are the same as standard finite difference, but at nodes
x 1

2
and xN+ 1

2
where one-sided approximations (5a) and (5b) are being used

when computing the discretized Laplacian DG.
In this work only nontrivial Robin boundary conditions will be considered

for the Poisson equation. Numerical experiments have shown that this new
scheme does not have any advantage for Dirichlet conditions. The boundary
conditions (6) are discretized using the one-sided approximations (5a) and
(5b), resulting in the following equations

(

1−
8 β0

3 h

)

f0 +
3 β0

h
f 1

2
−

β0

3 h
f 3

2
= γ0 (9a)

(

1 +
8 β1

3 h

)

fN+1 −
3 β1

h
fN+ 1

2
+

β1

3 h
fN−

1
2

= γ1 (9b)

Equations (8) through (9) represents the new finite difference scheme for
the Laplace or Poisson equation developed in [8]. This system of equations is
asymptotically equivalent to the mimetic finite difference approximation based
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on the Castillo-Grone approach. In references [8, 9, 10] this scheme is studied
but the authors do not give any rigorous proof of its quadratic convergence
rate. We will be filling that gap in this article. That is, in the next section
we will be providing a rigorous proof of the quadratic convergence rate of the
new discretization scheme just presented.

4 Convergence

The convergence proof of the new finite difference scheme presented in this
section is achieved by making use of the following discrete version of the
maximum principle for elliptic equations.

Theorem 1. Suppose that region J is partitioned in two disjoint regions

J1, J2 and a non-negative auxiliary mesh function φ(x) is defined on J =
J1

⋃

J2. If a discrete approximation Lh of an elliptic equation on a mesh

satisfies Lhφ ≥ C1 on J1, Lhφ ≥ C2 on J2, and its truncation error Ti

satisfies |T1| ≤ Tr1 on J1, |T2| ≤ Tr2 on J2, then the error between the

approximated and exact solutions, ei, is bounded in the maximum norm by

([maxxǫJ1] max
{

Tr1

C1
, Tr2

C2

}

).

This theorem and its proof can be found in page 177 of [3]. Our approach
to prove convergence follows the same arguments given in [3], essentially by
fulfilling the hypothesis of Theorem 1. In our work the auxiliary mesh function
is

φ(x) = (x− p)
2

(10)

where p is a constant to be determined later.

As a first step substitute boundary conditions equations (9) in equations
(8a) and (8c). When this is done, the following discretizations are obtained

− 4

(

(2 β0 − h)

h2 (8 β0 − 3 h)

)

f 3
2
− 4

(

(2 β0 − 3 h)

h2 (8 β0 − 3 h)

)

f 1
2

(11a)

−
8 γ0

h (8 β0 − 3 h)
= F 1

2

− 4

(

(2 β1 + h)

h2 (8 β1 + 3 h)

)

fN−
1
2
− 4

(

(2 β1 + 3 h)

h2 (8 β1 + 3 h)

)

fN+ 1
2

(11b)

+
8 γ1

h (8 β1 + 3 h)
= FN+ 1

2

These expressions may be written in the following form
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(

4

3 h2
f 3

2
−

4

h2
f 1

2
+

8

3 h2
f0 − F 1

2

)

+ (12a)

8

h (8 β0 − 3 h)

((

1−
8 β0

3 h

)

f0 +
3 β0

h
f 1

2
−

β0

3 h
f 3

2
− γ0

)

= 0

(

4

3 h2
fN−

1
2
−

4

h2
fN+ 1

2
+

8

3 h2
fN+1 − FN+ 1

2

)

+ (12b)

8

h (8 β1 + 3 h)

((

1 +
8 β1

3 h

)

fN+1 +
3 β1

h
fN+ 1

2
−

β1

3 h
fN−

1
2
− γ1

)

= 0

which contains the differential equations and boundary conditions approx-
imations in single equations. A Taylor’s expansion calculation shows that
truncations error for equations (12a) and (12b), which will be denoted by T1

and Tn, are only first order.

|T1| ≤ O(h) and |Tn| ≤ O(h) (13)

Truncation error for (8b) at inner points will be denoted by Ti, and a standard
calculation shows that it is second order.

|Ti| ≤ O(h2) (14)

Let’s define the grid function as follows.

Lh(φ(xi)) =

8>><>>: −4 (h−2 β0)

h2 (8 β0−3 h)
φ(x 3

2
) − 4 (2 β0−3 h)

h2 (8 β0−3 h)
φ(x 1

2
) at x 1

2

1
h2

�
φ(xi+ 3

2
) − 2φ(xi+ 1

2
) + φ(xi− 1

2
)
�

at xi+ 1
2

4 (h+2 β1)

h2 (8 β1+3 h)
φ(xN−

1
2
) − 4 (2 β1+3 h)

h2 (8 β1+3 h)
φ(xN+ 1

2
) at xN+ 1

2

(15)

A quick substitution of (10) into (15) and after a simplification we obtain.

Lh(φ(xi)) =















2
(

1 + 4 p(p−2β0)
h(8 β0−3 h)

)

at x 1
2

2 at xi+ 1
2

2
(

1 + 8(1−p)(p−2β1−1)
h(8 β1+3 h)

)

at xN+ 1
2

(16)

It is always possible to pick and appropriated p in (10) and constant K1,
K2 in such a way that the following inequality holds
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Lh(φ(xi)) ≥











K1

h
at x 1

2

2 at xi+ 1
2

K2

h
at xN+ 1

2

(17)

Combining inequality (17), truncations errors (13, 14), and the modulus
maximum principle for grid functions results in the following estimate

|f ex − fnum| ≤ (max
x∈[0,1]

φ)·max

(

|T1|

K1/h
,
|Tn|

K2/h
,
|Ti|

2

)

≤ O(h2) (18)

which complete the proof.

5 Conservative Properties

A very important property that must satisfy any good numerical scheme is
to be conservative. In our context, a numerical scheme is conservative if it
satisfies a discrete version of the fundamental calculus theorem.

∫ 1

0

f ′′(x) dx = f ′(1)− f ′(0) (19)

If the integral of the above expression is approximated by a simple quadrature
rule on the staggered grid, then the following summations are obtained

n
∑

i=1

f ′′(xi)·h (20)

The second derivatives can be approximated using equations (8a-8b) and we
obtain the relation

n
∑

i=1

f ′′(xi)·h =
1

h2

(

8

3
f0 − 4f 1

2
+

4

3
f 3

2

)

h (21)

+

n−1
∑

i=2

1

h2

(

fi+ 3
2
− 2fi+ 1

2
+ fi− 1

2

)

h +
1

h2

(

8

3
fN+1 − 4fN+ 1

2
+

4

3
fN−

1
2

)

h

Most terms in the above summation are telescopic and we obtain this simpli-
fied expression
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8f0 − 9f 1
2

+ f 3
2

+ 8fN+1 − 9fN+ 1
2

+ fN−
1
2

3h
(22)

=
1

h

(

8

3
fN+1 − 3fN+ 1

2
+

1

3
fN−

1
2

)

−
1

h

(

−
8

3
f0 + 3f 1

2
−

1

3
f 3

2

)

which represents the discrete version of the right hand side of (19). Conse-
quently the conservative property of our scheme is guarantee.

6 Numerical Test

This section presents a comparative study among the new method, standard
finite difference scheme and support operator method by means of applying
the schemes to solve a one dimensional boundary value problem. It is impor-
tant to note that those methods are all conservative and they provide three
different alternatives to discretize boundary conditions on a staggered grid.
Maximum norm is used to quantify all errors in the numerical tests.

The implementation of the standard finite differences scheme is based on
the ghost point formulation, which uses second order central difference scheme
for Robin boundary conditions [2, 3], while the formulation of the support
operator schemes is presented in [14]. It uses a one-sided or lateral first order
finite difference scheme to approximate derivatives at boundary points. Our
new scheme uses one-sided or lateral second order finite difference scheme (5)
to obtain second order approximation (9) at the boundary.

These three methods cover all the possible alternatives for the discretiza-
tion of boundary conditions using second order schemes on a one-dimensional
staggered grid.

The one dimensional boundary value problem in this test is formulated in
terms of the ordinary differential equation

d2f

dx2
=

λexp(λx)

exp(λ) − 1
(23)

defined on the interval (0,1), and it’s solution must satisfy Robin boundary
conditions of the form

αf(0)− βf ′(0) = −1
αf(1) + βf ′(1) = 0

(24)

at the borders. Equations (23) and (24) form together a well posed problem
for α = −exp(λ), β = (exp(λ) − 1)/λ, being λ an arbitrary non-null real
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number. This problem has a unique analytical solution given by f(x) =
(exp(λx) − 1)/(exp(λ) − 1), and it represents a boundary layer for large values
of λ. Correspondingly, it is an excellent test problem to evaluate numerical
schemes with different discretization alternatives for boundary conditions.

In this test all the numerical methods were implemented on the staggered
grid described in figure 1. The value of the parameter λ was set equal to 20,
although similar results and conclusions are obtained for any positive value
of it. Numerical results are presented in tables 1 and 2 along with figures 2
and 3.

Grid Error Error Error
Size Finite Difference Support Operator New Method

16 0.3958 0.1861 0.0794
64 0.2206 0.0154 0.0045
256 0.0717 0.0010 0.0002

Table 1: Numerical Errors

Table 1 shows the numerical errors computed in the maximum norm. They
indicate that on refined grids the new method achieved at least three exact
digits in its approximation, while support operator and standard finite dif-
ference methods obtained only two and one exact digits respectively. Such
results indicate a clear advantage of our new scheme.

Method Rate

Standard Finite Differences 0.9104
Operator Support 2.0434

New Method 1.9796

Table 2: Numerical Convergence Rates

In Table 2 numerical convergence rates for each method are presented. A
quadratic convergence rate was obtained for both the new and support oper-
ator methods. This is the optimum possible rate for these two schemes and it
ratifies our theoretical result for the new scheme. Standard finite differences
schemes get a first order numerical convergence rate, which is a direct effect
of having a first order discretization for the Laplacian at nodes x 1

2
and xN+ 1

2
.

In the extended ghost point grid, those two nodes become internal nodes away
from the ghost boundary. Consequently, modulus maximum principle implies
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that first order truncation error in the Laplacian will be transferred completely
to the convergence rate and it cannot be canceled or balanced with second
order discretizations at boundary nodes. This low convergence rate for the
standard finite difference method can be fixed if an uniform block centered
grid is used in its implementation.

Figure 2 exhibits the error curves for each method based on a sequence of
256 runs. Their slope represents the numerical rates in table 2. This graph
gives clear evidence that the error for the new scheme is one order of magnitude
less than the support operator error. For standard finite differences case the
error is at least four times larger than the other two schemes on the finest grid
and this gap will increase under further grid refinements. If a uniform block
centered grid is used for the implementation of the standard finite difference,
then its error is comparable to the ones generated by the support operator
method. The new method, however, still shows a better precision than the
other two.

The approximated solutions computed by the three methods on a twenty
blocks grid are presented in figure 3. This graph deserves several comments.
The numerical solution computed with the new method lies over the analytical
curve at all grid points. For standard finite difference and support operator
solutions, theirs points agrees with the analytical curve only at the left bound-
ary. At the right boundary standard finite difference does not reach analytical
curve and this behavior push its points up, above the real solution. On the
other hand, most of the points in support operator solution are below the
analytical curve and its quality is comparable to standard finite difference at
this level of discretization. The great accuracy exhibited by the new method
in this test problem gives a strong evidence of its numerical advantages over
well known numerical schemes.

There is an important property related to our new scheme, which cannot
be matched by standard finite difference approximation. It essentially is the
rigorous treatment given in the new method to both the boundary conditions
and the differential equation. This advantage can easily be observed if the
non-homogeneous term in the differential equation has a singularity at the
boundary. In such case, the new method produces a robust code whose nu-
merical results are of high accuracy. On the contrary, standard finite difference
codes developed on any grid based on ghost point will break down because
it requires the regularity of the non-homogeneous term up to the boundary.
This last condition is artificial and it is one of the main deficiencies of standard
finite difference schemes. Such deficiencies are eliminated in the new scheme.
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Figure 2: One dimensional convergence rates

7 Conclusions and Discussion

A complete analytical and numerical study for a new second order conserv-
ative finite difference scheme has been presented. Theoretical and numerical
analysis of its quadratic convergence rate is a new contribution. This is not an
obvious result in view of the first order truncations errors in its mathematical
formulation.

The new scheme was applied to a selected test problem. The numerical
results indicate its main advantages over most common second order conser-
vative methods for problems with boundary layer.

The most important advantages of the new scheme are: it is conserva-
tive; its formulations at inner and boundary nodes is consistent; its numerical
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Figure 3: Comparing numerical solutions

implementation is more robust than most common second order finite dif-
ferences schemes; it is not based on ghost point techniques; and it gives a
rigorous discretization of both the boundary conditions and the differential
equation.
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