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Abstract

Let G be a finite abelian group and let ZFSs(G) and µs(G) be
respectively, the set of zero free sets and the set of minimal zero sets
of G. The Olson constant, O(G), is 1 + max{|S| : S ∈ ZFSs(G)}
and the strong Davenport constant, SD(G), is max{|S| : S ∈ µs(G)}.
We show that there exists a very large class of groups G for which
SD(G) = O(G). Then we give new values of SD(G).
Key words and phrases: zero sets, minimal zero sets, Davenport
constant, Olson constant, strong Davenport constant.

Resumen

Sea G un grupo abeliano finito. Sean ZFSs(G) y µs(G) respectiva-
mente, el conjunto de los conjuntos libres de ceros y el conjunto de los
conjuntos minimales de suma cero de G. La constante de Olson, O(G),
es 1 + max{|S| : S ∈ ZFSs(G)} y la constante fuerte de Davenport,
SD(G), es max{|S| : S ∈ µs(G)}. Mostramos que existe una clase bas-
tante grande de grupos G para los cuales se tiene SD(G) = O(G). En
consecuencia es posible establecer nuevos valores para SD(G).
Palabras y frases clave: conjuntos de suma cero, conjuntos minimales
de suma cero, constante de Davenport, constante de Olson, constante
fuerte de Davenport.
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1 Introduction

Let G be a finite abelian group. Then G = Zn1 ⊕ · · · ⊕ Znr , 1 < n1| · · · |nr,
where nr = exp(G) is the exponent of G and r is the rank of G. Let M(G) =∑r

i=1(ni − 1) + 1. In this paper, we denote by p a prime number.

Definition 1. Let G be a finite abelian group. The Davenport constant D(G)
is the least positive integer d such that every sequence of length d in G contains
a non-empty subsequence with zero-sum.

It is well known that M(G) ≤ D(G) ≤ |G| [12]. Moreover if G is the cyclic
group of order n then D(G) = n; for noncyclic groups we have:

Theorem 1 ([19]). Let G be a finite noncyclic group of order n then D(G) ≤
dn+1

2 e, where dxe denotes the smallest integer not less than x.

The following lemma is used:

Lemma 1 ([18]). Let G = Zpα1 ⊕ · · · ⊕ Zpαk be a p-group. Then we have
D(G) = M(G).

A zero sequence in G without zero subsequences is called a minimal zero
sequence. Let ZFS(G) be the set of zero free sequences in G. Let µ(G) be
the set of all minimal zero sequences. The number of distinct elements of a
sequence S is denoted by C(S) and its length by |S|.

It is clear that

D(G) = max{|S| : S ∈ µ(G)} = 1 + max{|S| : S ∈ ZFS(G)}.

Let σ(S) be the sum of elements of S and set
∑

S = {σ(T ) : T is a non-empty subsequence of S}.

Theorem 2 ([12]). Let G be a finite abelian group. Then for every zero free
sequence S in G with |S| = D(G)− 1 we have

∑
S ∪ {0} = G.

A set S is zero free if it contains no zero subsets. Let ZFSs(G) be the set
of zero free sets in G. A zero-sum set in G without zero-sum subsets is called
minimal zero set. Let µs(G) be the set of minimal zero sets.

Definition 2 ([5],[6],[12],[21]). Let G be a finite abelian group. The Olson
constant, denoted O(G), is the least positive integer d such that every subset
A ⊆ G, with |A| = d contains a non-empty subset with zero-sum.
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It is clear that O(G) ≤ D(G) and moreover we have:

O(G) = 1 + max{|S| : S ∈ ZFSs(G)}.

Related to the Olson constant are the works of Erdős and Heilbronn in [8],
Szemerédi in [22], Erdős in [9], Olson in [16, 17], Hamidoune and Zémor in [15]
Dias da Silva and Hamidoune in [7], where the existence conditions of sets, in
an abelian finite group G, with zero-sum are established. For example from
Hamidoune and Zémor works we can deduce that O(Zp) ≤ d√2p+5 ln(p)e and
for an arbitrary abelian group G, they proved that O(G) ≤ d

√
2|G|+ ε(|G|)e

where ε(n) = O( 3
√

n ln n). Moreover from Dias da Silva and Hamidoune
results we have O(Zp) ≤ b√4p− 7c.

In what follows we denote by vg(S) the multiplicity of g in a given sequence
S. The following result was proved by Bovey, Erdős and Niven.

Theorem 3 ([3]). Let S be a zero free sequence in Zn with |S| ≥ n+1
2 and

n ≥ 3. Then there exists some g ∈ Zn such that vg(S) ≥ 2|S| − n + 1.

Corollary 1. O(Zn) ≤ dn+1
2 e for n ≥ 3.

Proof. Directly from Theorem 3.

However, the following result due to Olson improves Corollary 1 for n ≥ 34.

Theorem 4 ([16, Corollary 3.2.1]). Let G be a finite abelian group. Then
O(G) ≤ 3

√
|G|.

Definition 3 ([4]). Let G be a finite abelian group. The strong Davenport
constant, denoted SD(G), is defined by

SD(G) = max{C(S) : S ∈ µ(G)}.

The next result shows that SD(G) is witnessed by minimal zero sets.

Theorem 5 ([4]). Let G be a finite abelian group of order n ≥ 3. Then there
exists a minimal zero sequence S such that C(S) = |S| = SD(G).

Remark 1. For some finite abelian group G of order n ≥ 3, there exists
S ∈ µ(G) with |S| = SD(G) and S 6∈ µs(G). Let S be the sequence in Zp of
length d = SD(Zp) consisting of d − 1 instances of the elements 1 and then
the element p − d − 1. It is clear that S ∈ µ(Zp) with length SD(Zp), but
S 6∈ µs(Zp).
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We have the following corollary:

Corollary 2. Let G be a finite abelian group of order n ≥ 3. Then we have:

SD(G) = max{|S| : S ∈ µs(G)}.

Proof. Directly from Theorem 5.

The Olson constant is defined in [5] and denoted by O(G) in honor to
the Olson works. In [6], [12] and [21] it is denoted by SD(G), Ds(G) and
Ol(G) respectively. In [1] Baginski noted that the constants O(G) and SD(G)
were different. He shows that SD(G) ≤ O(G) ≤ SD(G) + 1. For example
SD(Z3) = O(Z3) = 2, however O(Z4) = 3, SD(Z4) = 2 and O(Z2) = 2,
SD(Z2) = 1. Moreover Baginski poses the following problem:

Problem 1 ([1]). Determine for which finite abelian groups G of order ≥ 3
one has O(G) = SD(G).

The main goal of this paper is to show that there exists a very large class
of groups which have SD(G) = O(G).

Remark 2. The controversy between the constants O(G) and SD(G) is for the
construction of the minimal zero sets. The construction of the minimal zero
sequences is clear. If S is a zero free sequence then S ◦−σ(S) ∈ µ(G) where ◦
denotes the sequence concatenation operation. In the construction of minimal
zero sets from a zero free set S, we must check whether S ◦ −σ(S) ∈ µ(G) is
still a set. For example {1, 2} ∈ ZFSs(Z5) and 1, 2, 2 /∈ µs(Z5).

Let G be a finite abelian group. The minimal zero sequences S with
|S| = SD(G) are studied by Baginski in [1], where they are called Freeze
sequences. Nice properties of the groups and Freeze sequences are given when
SD(G) = O(G).

Problem 2. Many authors have studied the zero free sequences structure,
in an abelian finite group G, with length D(G) − 1. See for example: [2],
[10], [11], [12], [13], [14] and [20]. However there are few results on zero
free sets with cardinality O(G) − 1. A natural question is to ask about the
structure of S ∈ ZFSs(G) with maximal cardinality in groups G such that
SD(G) = O(G) = D(G) = M(G) or O(G) = D(G) = M(G).

This paper contains two main sections. In Section 1 a family of groups G
with O(G) = SD(G) is given. In Section 2, some reflections on the properties
of S ∈ ZFSs(Zs

p) of maximal cardinality are pointed out.
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2 Baginski Problem

The following proposition is due to Baginski. In order to be self-contained we
give its proof.

Proposition 1 ([1]). Let G be an abelian group. Then we have:

SD(G) ≤ O(G) ≤ SD(G) + 1.

Proof. Let A ⊆ G be with |A| = O(G) − 1 and A ∈ ZFSs(G). If |G| ≥ 2
then O(G) ≥ 2 and then A 6= ∅. So that the sequence A ◦ −σ(A) ∈ µ(G)
and it contains at least |A| different elements. Therefore O(G)− 1 ≤ SD(G).
Moreover, since each minimal zero sequences contains at most O(G) different
elements, we have SD(G) ≤ O(G).

Remark 3. Since SD(G) ≤ O(G) then the upper bounds on O(G) are also
valid for SD(G).

We use the following theorem and its corollary:

Theorem 6 ([12]). Let G = Zn1 ⊕ · · · ⊕ Znr ⊕ Zs+1
n with r ≥ 0, s ≥ 0,

1 < n1| · · · |nr|n and nr 6= n. If r + s
2 ≥ n, then there exists a minimal zero

set S in G such that |S| = M(G).

Corollary 3 ([12]). Let G = Zn1 ⊕ · · · ⊕ Znr ⊕ Zs+1
n with r ≥ 0, s ≥ 0,

1 < n1| · · · |nr|n and nr 6= n. If G is a p-group and r + s
2 ≥ n, then O(G) =

M(G) = D(G).

The following theorem gives a very large class of groups which have SD(G) =
O(G).

Theorem 7. Let G = Zn1⊕· · ·⊕Znr⊕Zs+1
n with r ≥ 0, s ≥ 0, 1 < n1| · · · |nr|n

and nr 6= n. If G is a p-group and r+ s
2 ≥ n, then SD(G) = O(G) = M(G) =

D(G).

Proof. By Theorem 6 we have M(G) ≤ SD(G). By Proposition 1 and
Corollary 3 we have M(G) ≤ SD(G) ≤ O(G) = M(G) = D(G). Therefore
SD(G) = O(G) = M(G) = D(G).

Corollary 4. Let Zs
p be an elementary p-group with s ≥ 2p + 1. Then

SD(Zs
p) = O(Zs

p) = D(Zs
p) = s(p− 1) + 1.

Proof. Directly from Theorem 7.
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Problem 3. Does it exist G = Zn1 ⊕ · · · ⊕ Znr ⊕ Zn with r ≥ 0, 1 <
n1| · · · |nr|n, nr 6= n and r ≥ n, different from the p-groups, such that D(G) =
M(G)? In the affirmative case we can also conclude, as in Theorem 7, that
SD(G) = O(G) = M(G) = D(G).

3 Zero free sets in Zs
p

Elementary p-groups Zs
p are vector spaces of dimension s over the finite field

Zp. In this section we deal with the property of set S ∈ ZFSs(Zs
p) with

|S| = s(p− 1). In particular when p = 2, 3.
We use the following proposition:

Proposition 2. For any zero free set in Zs
p with |S| = s(p − 1), we have∑

S ∪ {0} = Zs
p. Moreover {e1, . . . , es} ⊆ S, where e1, . . . , es is a basis of

vector space Zs
p.

Proof. Directly from Theorem 2 and the fact that D(Zs
p) = s(p− 1) + 1.

We have also the theorem:

Theorem 8 ([12]). Let S be a zero free sequence in Zs
p be with |S| = D(Zs

p)−
1 = s(p− 1). Then each two distinct elements in S are linearly independent.

Corollary 5. Let S be a zero free set in Zs
p with |S| = s(p − 1). Then each

two elements in S are linearly independent.

Gao and Geroldinger also give the following proposition:

Proposition 3 ([12]). Let S be a sequence in Zs
2 with s ≥ 1. Then S is a

zero free sequence if and only if S = {e1, . . . , ek} where e1, . . . , ek are linearly
independent over Z2

Corollary 6. The zero free sets S in Zs
2 are of the form {e1, . . . , ek} where

e1, . . . , ek are linearly independent over Z2.

We use the following theorem:

Theorem 9 ([1, 6]). O(Zs
2) = s + 1 for s ≥ 1.

The following result is cited in [1]. Here we give a proof.

Corollary 7. SD(Zs
2) = O(Zs

2) = D(Zs
2) = s + 1 for s ≥ 2.
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Proof. By Proposition 1 and Theorem 9, we have SD(Zs
2) ≤ O(Zs

2) = D(Zs
2).

The set S = {e1, e2, . . . , es, e1 + · · · + es}, where {ei}s
i=1 is a basis of the

vector space Zs
2, is a minimal zero set with |S| = D(Zs

2) = s+1. Therefore by
Corollary 2 we have D(Zs

2) ≤ SD(Zs
2). Hence SD(Zs

2) = O(Zs
2) = D(Zs

2) =
s + 1 for s ≥ 2. Note that for s ≥ 5 the result follows from Corollary 4.

Problem 4. Describe the structure of zero free sets S in Zs
p with |S| = s(p−1)

and s ≥ 2p + 1.

We have the following theorem:

Theorem 10 ([6, 21]). O(Zs
3) = D(Zs

3) = 2s + 1 for s ≥ 3.

In what follows we give some zero free sets S with |S| = O(Zs
3)− 1 = 2s.

Moreover two lemmas are given in order to derive zero-sum sets from the other
one. We will denote by {ei}s

i=1 the canonical basis of Zs
p, i.e., ei is the s-tuple

with entry 1 at position i and 0 elsewhere.

Example 1. Let S = {e1, e2, e3, e4, e1 + e2, e1 + e3, e1 + e4, e1 + e2 + e3 + e4} ∈
ZFSs(Z4

3 ). This set contains vectors with only coordinates equal 0 or 1.

In [21] Subocz gives the following zero free sets.

Example 2. Let S = {ei : 1 ≤ i ≤ s} ∪ {e1 + ei, 2 ≤ i ≤ s} ∪ {2e1 + e2 + e3} ∈
ZFSs(Zs

3), s ≥ 3 and |S| = 2s.

Example 3. Let (ij) denote the vector ei + ej in Z8
3 , 1 ≤ i, j ≤ 8. Let S =

{(12), (13), (14), (15), (16), (17), (18), (23), (24), (25), (26), (37), (47),
(58), (68), (78)} ⊆ Z8

3 . Then |S| = 16 and S is a zero free sets.

In this set, each vector contains exactly two coordinates equal to 1 and
the remaining coordinates are equal to 0. Each 8 elements in S constitutes a
basis of Z8

3 . Moreover S can be set in the following form:
Set e∗1 = (12) = (1, 1, 0, 0, 0, 0, 0, 0), e∗2 = (13) = (1, 0, 1, 0, 0, 0, 0, 0),

e∗3 = (14) = (1, 0, 0, 1, 0, 0, 0, 0), e∗4 = (15) = (1, 0, 0, 0, 1, 0, 0, 0), e∗5 = (16) =
(1, 0, 0, 0, 0, 1, 0, 0), e∗6 = (17) = (1, 0, 0, 0, 0, 0, 1, 0), e∗7 = (18) = (1, 0, 0, 0, 0, 0, 0, 1),
e∗8 = (23) = (0, 1, 1, 0, 0, 0, 0, 0), the basis chosen for Z8

3 . Then for the other
elements in S we have:

f9 = (24) = 2e∗2 + e∗3 + e∗8, f10 = (25) = 2e∗2 + e∗4 + e∗8, f11 = (26) =
2e∗2 +e∗5 +e∗8, f12 = (37) = 2e∗1 +e∗6 +e∗8, f13 = (47) = 2e∗1 +2e∗2 +e∗3 +e∗6 +e∗8,
f14 = (58) = 2e∗1 + 2e∗2 + e∗4 + e∗7 + e∗8,f15 = (68) = 2e∗1 + 2e∗2 + e∗5 + e∗7 + e∗8.
f16 = (78) = 2e∗1 + 2e∗2 + e∗6 + e∗7 + e∗8.

The following two lemmas can be used to build inductively zero free sets:

Lemma 2 ([21]). Let S be a zero free set in Zs
3 with s ≥ 3 and |S| = 2s.

Then S ∪ {es+1, e1 + es+1} is a zero free set in Zs+1
3 .

Divulgaciones Matemáticas Vol. 14 No. 1(2006), pp. 1–10



8 Oscar Ordaz, Domingo Quiroz

Lemma 3 ([21]). Let S be a zero free set in Zs
3 with s ≥ 3 and |S| = 2s.

Suppose that each vector in S has two coordinates equal to 1 and all other
coordinates equal to 0. Then S ∪ {e1 + es+1, e2 + es+1} is a zero free set in
Zs+1

3 .

Finally the following conjecture due to Subocz remains open.

Conjecture 1 ([21]). Let G be a finite abelian group of order n, then O(G) ≤
O(Zn).

The Conjecture 1, appears analogous to the following conjecture due to
Ponomarenko.

Conjecture 2 ([10]). Let G and H be finite abelian groups of the same order
and rank(G) ≤ rank(H). Then |µ(G)| ≥ |µ(H)|.

Moreover Ponomarenko in personal comunication, gives the following gen-
eralization of Conjecture 1:

Conjecture 3. Let G and H be finite abelian groups of the same order and
rank(G) ≤ rank(H). Then O(G) ≤ O(H).
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17 (1970), 227–229.
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