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Abstract
Let p ≡ 1 (mod 4) be a prime number and let ζ = e2πi/p be a

primitive root of unity. Then there exists a unique biquadratic extension
�eld Q(y)/Q that is a sub�eld of Q(ζ). The aim of this work is to
construct an algorithm for �nding such y explicitly. Finally we state a
general conjecture about the y we found.
Key words and phrases: biquadratic �elds, cyclotomic �elds, Galois
theory, algorithm.

Resumen
Sea p ≡ 1 (mod 4) un primo y sea ζ = e2πi/p una raíz primitiva

de la unidad. Entonces existe una única extensión bicuadrática Q(y)/Q
que es un subcuerpo de Q(ζ). El propósito de este trabajo es construir
un algoritmo para hallar y explícitamente. Finalmente se enuncia una
conjetura general acerca del y hallado.
Palabras y frases clave: cuerpo bicuadrático, cuerpo ciclotómico,
teoría de Galois, algoritmo.

Introduction
It is known that if p ≡ 1 (mod 4) then Q(

√
p) is the unique quadratic exten-

sion �eld of Q contained in Q(ζ), where ζ = e2πi/p (see �1 for references).
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Also, there exists a unique quadratic extension �eld Q(y) of Q(
√

p), and
therefore a biquadratic extension �eld of Q, contained in Q(ζ). Moreover
if |Gal(Q(ζ)/Q)| = 2kn with (2, n) = 1 then there exists a unique tower of
�elds:

Q = E0 ⊂ E1 ⊂ . . . ⊂ Ek ⊂ Q(ζ)

where [Ej : Ej−1] = 2 for all j = 1, . . . , k and [Q(ζ) : Ek] = n. It is known
that Ej/Q is a simple extension i.e., for all j there is an yj ∈ C such that
Ej = Q(yj). We consider this preliminaries in �1. Actually, our algorithm
is for calculating such y′js explicitly (see �2). The other major result in this
work is the conjecture in �3, it states an explicit algebraic expresion for y2

depending on p and a unique positive odd integer b such that p = a2 + b2 for
some integer a.

1 Preliminary results
The aim of this section is to show some results that will allow us to construct
the algorithm in �2.

1.1 Existence of a unique tower of p-th cyclotomic �elds
De�nition 1.1.1. Let m ≥ 1 and ζ = e2πi/m. We say that a number �eld
K is a m-th cyclotomic �eld if K is an intermediate �eld of Q(ζ)/Q i.e.,
Q ⊂ K ⊂ Q(ζ).

This is a somewhat variant of Lang's de�nition in [4], p. 71.

Lemma 1.1.2. Let G be a cyclic group of order m and generator g. If d
divides m then 〈gm/d〉 ⊂ G is its unique subgroup of order d.

Proof. See Lemma 41 in [7], p. 38.

For basic de�nitions in the following theorem see [7], pp. 35,43,47.

Theorem 1.1.3 (Fundamental Theorem of Galois Theory). Let E/F be a
Galois extension with Galois group G = Gal(E/F ). Let H ⊂ G be a subgroup,
and EH its �xed �eld, and let K be an intermediate �eld of E/F . Then

(1) The application H 7→ EH , is an order reversing biyection with inverse
K 7→ Gal(E/K).

(2) EGal(E/K) = K and Gal(E/EH) = H.

Divulgaciones Matemáticas Vol. 14 No. 1(2006), pp. 59�72



Algorithm for Finding a Biquadratic Cyclotomic Extension Field of Q 61

(3) [K : F ] = [G : Gal(E/K)] and [G : H] = [EH : F ].

(4) K/F is a Galois extension if and only if Gal(E/K) is a normal subgroup
of G.

Proof. See Theorem 63 in [7], pp. 49-50.

Theorem 1.1.4. Let m ≥ 1 be an integer and let ζ = e2πi/m. Then, Q(ζ)/Q
is a Galois extension with Galois group isomorphic to Z×m, whose order is
ϕ(m), where ϕ is Euler's phi function.

Proof. See [3], pp. 193-195.

Corollary 1.1.5. Let p be a prime number, let ζ = e2πi/p, and let E =
Q(ζ). Then, for every divisor d of p − 1 there exists a unique subgroup H ⊂
Gal(Q(ζ)/Q) of order d. Moreover, its �xed �eld EH is a Galois extension of
Q.

Proof. Follows from Lemma 1.1.2 and Theorem 1.1.3 because Theorem 1.1.4
implies that Gal(Q(ζ)/Q) is a cyclic group.

Corollary 1.1.6. With the same hypothesis of the above corollary, if |Gal(Q(ζ)/Q)| =
2kn with k ≥ 1, (2, n) = 1 then there exists a unique tower of �elds

Q = E0 ⊂ E1 ⊂ . . . ⊂ Ek ⊂ E = Q(ζ)

where [Ej : Ej−1] = 2 for all j = 1, . . . , k and [Q(ζ) : Ek] = n. Hence,
[Ej : Q] = 2j for all j.

Proof. Because of Lemma 1.1.2 and Theorem 1.1.4, there is a unique sequence
of cyclic groups

Gal(Q(ζ)/Q) = H0 ⊃ H1 ⊃ . . . ⊃ Hk ⊃ {0}

where Hj is the unique subgroup of G with order 2k−jn. Let Ej = EHj be the
�xed �eld of Hj , then the corollary follows from the Fundamental Theorem
of Galois Theory and from the following basic fact: If [E : F ] is �nite and K
is an intermediate �eld, then [E : F ] = [E : K][K : F ] (see, e.g., Lemma 31
and Exercise 75 in [7], pp. 30�31).
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1.2 Cyclotomic �elds are simple extensions
With the same notation of the previous subsection, we will prove that there
exists yj ∈ C such that Ej = Q(yj) for all j = 1, . . . , k.
Lemma 1.2.1 (Theorem of the Primitive Element). Every Galois extension
E/F is simple, i.e. there exists a y in E such that E = F (y).
Proof. See [7], p. 51.

From this lemma, Theorem 1.1.4 and Theorem 1.1.3, the next follows.
Corollary 1.2.2. Every Ej is a simple extension of Q.

Now the question is how to �nd an yj ∈ C such that Ej = Q(yj). Theorem
1.2.5 below addresses this question.
Remark 1.2.3. Let p be a prime and let g be a generator of Z×p , let E = Q(ζ)
where ζ = e2πi/p. It is easy to see that the application

φ : Z×p → Gal(E/Q) g 7→ γ0

with γ0(ζ) = ζg, is a group isomorphism. Based on this fact and Lemma 1.1.2
the only subgroup of Gal(E/Q) of order d is φ(〈g(p−1)/d〉) = 〈γ(p−1)/d

0 〉 where
γ

(p−1)/d
0 (ζ) = ζg(p−1)/d . Moreover, this implies that σ is an automorphism of
Q(ζ) if and only if σ(ζ) = ζm for some 1 ≤ m ≤ p−1 (from Theorem 1.1.3 (3)
we have [E : Q] = [Gal(E/Q) : Gal(E/E)] = |Gal(E/Q)| = p− 1).
Lemma 1.2.4. Let p be a prime and ζ = e2πi/p, and let 1 ≤ m ≤ p− 1 be an
integer. If

m∑

j=1

ζkj =
m∑

j=1

ζ`j , where 1 ≤ kj ≤ p− 1, 1 ≤ `j ≤ p− 1,

then the two sets of indices {kj : j = 1 . . . , m} and {`j : j = 1 . . . ,m} are
equal.
Proof. Let S = {0, 1, . . . , p− 1} \ {`j : j = 1, . . . , m} then

m∑

j=1

ζ`j +
∑

`∈S

ζ` = 0.

Hence
m∑

j=1

ζkj +
∑

`∈S

ζ` = 0.
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Let h(x) =
∑m

j=1 xkj +
∑

`∈S x` ∈ Z[x], then h has degree deg(h) ≤ p− 1
and ζ is one of its roots. Let f(x) = 1+x+x2 + . . .+xp−1 be the irreducible
polynomial of ζ. Since, by de�nition, the irreducible polynomial has minimal
degree we have deg(h) ≥ deg(f), thus deg(h) = deg(f).

It is well known that {g(x) ∈ Q[x] : g(α) = 0} is the principal ideal
generated over Q[x] by the irreducible polynomial of α. From this fact and
the last assertion of the above paragraph, we have h(x) = cf(x) for some
c ∈ Q.

Now, if some kj ∈ S then h(x) 6= cf(x) for all c ∈ Q. Therefore both sets
of indices are equal.

The following theorem summarizes what we have done so far and gives
us an explicit expression for yj in terms of the group Hj . This is an impor-
tant tool in the construction of algorithm in �2. We assume the notation of
Corollary 1.1.6 as well as that of its proof.

Theorem 1.2.5. Let p = 2kn + 1 be a prime with k ≥ 2, (2, n) = 1, and let
ζ = e2πi/p. Then there exists a unique tower of p-th cyclotomic �elds

Q = Q(y0) ⊂ Q(y1) ⊂ · · · ⊂ Q(yk) ⊂ Q(ζ)

where

(1) [Q(yj) : Q(yj−1)] = 2 for all j and [Q(ζ) : Q(yk)] = n

(2) yj =
∑

γ∈Hj
γ(ζ), where Hj ⊂ Gal(Q(ζ)/Q) is the subgroup of order

2k−jn.

(3) Moreover, if g is a generator of Z×p and a = g(p−1)/d is an element of
order d = |Hj | (actually a = aj and d = dj), then

yj =
d∑

`=1

ζa`

.

Proof. From Remark 1.2.3 we have Hj = {γ` : γ`(ζ) = ζa`

, ` = 1, . . . , d}, thus

∑

γ∈Hj

γ(ζ) =
d∑

`=1

ζa`

. (1.1)
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Then, because of Corollaries 1.1.6 and 1.2.2 we only need to prove that
Ej = Q(yj). By de�nition we have Ej = EHj . As well, it is clear that yj ∈
EHj , therefore Q(yj) ⊂ Ej . On the other hand, we know that Gal(Q(yj)/Q)
is a cyclic subgroup (by Theorem 1.1.4), hence and from Theorem 1.1.3,
(4) Q(yj)/Q is a Galois extension. Then, from Theorem 1.1.3, (2) we have
Q(yj) = EGal(E/Q(yj)). Thus Q(yj) = Ej if and only if Gal(E/Q(yj)) = Hj .

It is clear that Hj ⊂ Gal(E/Q(yj)). Let σ ∈ Gal(E/Q(yj)), then σ(yj) =
yj , and this implies ∑

γ∈Hj

σγ(ζ) =
∑

γ∈Hj

γ(ζ)

From this equality, equation (1.1) and Remark 1.2.3 we have two sums of |Hj |
powers of ζ, then from Lemma 1.2.4 follows that the two sets of exponents of
these powers are equal i.e., σHj = Hj , thus σ ∈ Hj . This completes the proof
of Gal(E/Q(yj)) = Hj .

1.3 A known case: Q(
√

p) ⊂ Q(ζ)

In this subsection p ≥ 3 is prime and ζ = e2πi/p a primitive root of unity.

Lemma 1.3.1. The subgroup of Z×p of order p− 1
2

is:

R =
{

a ∈ Z×p :
(

a

p

)
= 1

}

where
(

a

p

)
is the Legendre symbol. (R is the subgroup of quadratic residues

mod p).

Proof. By Lemma 1.1.2 we know that there is an unique subgroup of each
order d that divides p − 1. For a proof of the rest of the lemma see, e.g.,
Corollaries 1 and 2 in [3], p. 51.

Proposition 1.3.2. Let G =
p−1∑
a=1

(
a

p

)
ζa (a Gauss sum), then

(1) G = 1 + 2
∑

a∈R

ζa with R as in the previous lemma.

(2) If p ≡ 1 (mod 4) then G =
√

p.
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Proof. (1): G =
p−1∑
a=1

(
a

p

)
ζa +

(
1 +

p−1∑
a=1

ζa

)
= 1 + 2

∑
a∈R ζa.

(2): From (1) and Lemma 1.3.1 we have G =
∑p−1

a=0 ζa2 . For a proof of∑p−1
a=0 ζa2

=
√

p if p ≡ 1 (mod 4) see, e.g., [2], pp. 13-16.

Corollary 1.3.3. Suppose p ≡ 1 (mod 4) and let y =
∑

a∈R ζa. Then:

(1) Q(y) is the quadratic p-th cyclotomic �eld, i.e. it is the quadratic inter-
mediate �eld of Q(ζ)/Q.

(2) Q(y) = Q(
√

p).

Remark 1.3.4. Let K/Q be an extension �eld such that K = Q(a + bα) with
a, b ∈ Q and α ∈ C. Then it is easy to see that K = Q(α).

Proof. We know that there is only one quadratic sub�eld of Q(ζ) (see Corol-
lary 1.1.6 aforementioned). From Proposition 1.3.2 it follows that √p =
1 + 2y ∈ Q(ζ), thus Q(

√
p) ⊂ Q(ζ). By Remark 1.3.4 Q(1 + 2y) = Q(y),

hence Q(y) = Q(
√

p).

2 Algorithm and Results
In this section we will use the same notation as in the previous section. Let
us make two more remarks:
Remark 2.0.5. Recall that [Q(yj) : Q] = 2j , i.e. Q(yj) is a vector space over
Q of dimension 2j .

De�nition 2.0.6 (Vectors of Variables). Let p = 2kn + 1 be a prime, with
(2, n) = 1. Let V0 = (1) be a vector in C and, for 0 < j ≤ k, Vj+1 =
(Vj , yj+1Vj) ∈ C2j , where yj+1Vj is the standard scalar product of the scalar
yj+1 ∈ C and the vector Vj .

Example 2.0.7. V1 = (1, y1),
V2 = (1, y1, y2, y1y2),
V3 = (1, y1, y2, y1y2, y3, y1y3, y2y3, y1y2y3).

Lemma 2.0.8. Let m = 2j and Vj = (v1j , . . . , vmj) as before. Then
Q(yj) = Qm · Vj = {c · Vj =

∑m
`=1 c`v`j , with c ∈ Qm}.
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Proof. If j = 1 then Q(y1) = {a + by1 = (a, b) ·V1 with a, b ∈ Q}. The lemma
follows by induction on j because of Q(yj+1) = Q(yj)(yj+1)) = {A + Byj+1 :
A,B ∈ Q(yj)}. Therefore, by the inductive hypothesis A = c1 · Vj and
B = c2 · Vj with ci ∈ Q2j , thus A + Byj = (c1, c2) · (Vj , yj+1Vj) = c · Vj+1

with c = (c1, c2) ∈ Q2m. But 2m = 2j+1.

Corollary 2.0.9. If j ≥ 1, then yj is a root of some equation:

y2
j + c · Vj = 0

where c ∈ Qm with m = 2j.

Proof. We have that a+byj +y2
j = 0 for some a, b ∈ Q(yj−1). By the previous

lemma a + byj ∈ Qm · Vj .

2.1 Main algorithm
We use Mathematica for running our algorithms. For details about the com-
mands used see [9].

For running the main algorithm we need another algorithm for calculating
a generator of Z×p . See Table 1 for its description. Table 3 has the generators
for the �rst forty prime numbers p ≡ 1 (mod 4).

The algorithm for calculating the yj is described in Table 2, and Table 4 has
the results for y2 and y3 and for the �rst forty prime numbers p ≡ 1 (mod 4).

Table 1: Generator

Mathematica code
p = ∗input prime number value∗;
d =Complement[Divisors[p− 1], {1, p− 1}];
l =DivisorSigma[0, p− 1]− 2;
For[a = 2, a < p,
b =Table[PowerMod[a, d[[j]], p], {j, l}];
c = 0;
Do[If[b[[j]] == 1, c == 0, c = c + 1], {j, l}];
IF[c == 1, g = a;Print[g];Break[ ]]; a + +]
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Table 2: Main Algorithm

Mathematica Code
p = (*Input a Prime*);
g = (*Input a Generator*);
q = p− 1; F =FactorInteger[q]; k =F[[1]][[2]]; n = q/2k;
P =Sum[ζ(i−1), {i, p}]
(*Variables*)
V [0] = {1}; Do[V [i] =Union[V [i− 1], V [i− 1] ∗ yei], {i, k}];
(*Intermediate Field 0 < ne ≤ k*)
ne = (*Number �j� *) ; o[ne] = 2k−nen; nv = 2ne;
(*Galois Group*)
H[ne] =Table[PowerMod[g, j ∗ q/o[ne], p], {j, o[ne]− 1}];
yne =Sum[ζH[ne][[j]], {j, o[ne]}]; V [ne];
Do[v[i] =PolynomialRemainder[Expand[V [ne][[i]]], P, ζ], {i, nv}];
v[nv + 1] =PolynomialRemainder[Expand[ye[ne]2], P, ζ]; v[ne + 2] = P ;
vvf =Table[Coe�cient[v[i], ζ, j − 1], {i, nv + 2}, {j, p}];
vvc =Transpose[vvf ]; coef = NullSpace[vvc];
(*Radicals expression for yne*)
V e[0] = {1}; Do[V e[i] =Union[V e[i− 1], V e[i− 1] ∗ yi], {i, k}];
Ec[ne] =Sum[coef [[1]][[i]] ∗ V e[ne][[i]], {i, nv}] + coef [[1]][[nv + 1]] ∗ y2

ne

yne−1 =(*Input Previous Result*); Solve[Ec[ne] == 0, yne]

2.2 Meaning of Results on Table 4
The results for y2 are of the following form, with the β′s given by Table 4.

y2 =
1
4

(
−1 +

√
p +

√
(−1)r2p + 2β

√
p

)
where r =

p− 1
4

.

All the results for y3, with p ≡ 1 (mod 8) have a much more complicated
form: The c, c′, c′′ are given in Table 4 and r′ = p−1

8 .
Let ρ1 =

√
p and ρ2 =

√
(−1)r2p + 2β

√
p, then

y3 =
1
8

(
4y2 ±

√
(−1)r′4p + 4cρ1 + 2c′ρ2 + 2c′′ρ1ρ2

)
.
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Table 3: Primes p = 2kn + 1 with (n, 2) = 1 & Generator g of Zq

p k n g p k n g
5 2 1 2 257 8 1 3
13 2 3 2 281 3 35 3
17 4 1 3 313 3 39 10
29 2 7 2 337 4 21 10
37 2 9 2 401 4 25 3
41 3 5 6 409 3 51 21
53 2 13 2 433 4 27 5
61 2 15 2 449 6 7 3
73 3 9 5 457 3 57 13
89 3 11 3 521 3 65 3
97 5 3 5 577 6 9 5
101 2 25 2 593 4 37 3
109 2 27 6 601 3 75 7
113 4 7 3 641 7 5 3
137 3 17 3 673 5 21 5
149 2 37 2 769 8 3 11
157 2 39 5 881 4 55 3
193 6 3 5 929 5 29 3
233 3 29 3 977 4 61 3
241 4 15 7 1153 7 9 5
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Table 4: Results for y2 and y3

p β c c′ c′′ p β c c′ c′′

5 -1 257 -1 15 15 1
13 3 281 -5 -9 9 -1
17 -1 3 -3 -1 313 -13 5 5 -1
29 -5 337 -9 7 7 1
37 -1 401 -1 3 -3 -1
41 -5 -3 -3 -1 409 3 11 11 1
53 7 433 -17 19 -19 -1
61 -5 449 7 -21 21 -1
73 3 1 -1 1 457 -21 13 13 -1
89 -5 9 -9 1 521 11 -3 -3 -1
97 -9 -5 5 -1 577 -1 -17 -17 1
101 -1 593 23 -9 -9 1
109 3 601 -5 -23 23 1
113 7 -9 -9 1 641 -25 -21 21 -1
137 11 3 3 1 673 23 -10 10 -1
149 7 769 -25 11 -11 -1
157 11 881 -25 -9 -9 1
193 7 11 -11 -1 929 23 27 -27 -1
233 -13 -15 15 1 977 31 3 -3 -1
241 15 -13 13 -1 1153 -33 -1 -1 1
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Lemma 2.2.1. Let p ≡ 1 (mod 4) be a prime. Then there is a unique pair of
positive integers a, b with b odd (and hence a even) such that p = a2 + b2.

Proof. For existence of integers a, b sucht that p = a2 + b2 see, e.g., [8], p.
156, or [1], pp. 17-22. It is clear that only one of them is odd.

Uniqueness: Let R = Z[i] the ring of gaussian integers. We will use the
following three known facts: (a) R is a unique factorization domain, (b) if the
for norm of α ∈ R is a rational prime, then α is irreducible in R, and (c) the
units of Z[i] are±1,±i. Hence if α = a+ib, β = c+id and p = a2+b2 = c2+d2,
then p = αᾱ = ββ̄ with the bar indicating complex conjugation. Therefore α
and β are associates, i.e., there exists a unit u ∈ R such that β = uα.

With the notations as in Table 4 and previous Lemma, we can rewrite the
constants in this table as follows.
Remark 2.2.2. Let p ≤ 1153, p ≡ 1 (mod 4) be a prime. Then we have:

(1) β = (−1)`b where ` =
b + 1

2
and b as in Lemma 2.2.1.

(2) For such primes with p ≡ 1 (mod 8) we have: c = (−1)r′+scp, c′ =
(−1)r′+tcp and c′′ = (−1)r′−(s+t), with cp, s, t obtained from Table 4.

3 Conjecture statement
Now we can state the following:

Conjecture 3.0.3. Let p = a2 + b2 ≡ 1 (mod 4) be a prime where b is odd,
and let K be the biquadratic p-th cyclotomic �eld. Then K = Q(y+) = Q(y−)
where

y± =
1
4

(
−1 +

√
p±

√
(−1)r2p + (−1)`2b

√
p

)

with r = (p− 1)/4 and ` = (b + 1)/2.

We can verify this conjecture in the following case:
Example 3.0.4. For p = 5 we have

y± =
1
4

(
−1 +

√
5± i

√
10 + 2

√
5
)

and it is easy to see by direct calculation that y± are roots of x4 + x3 + x2 +
x + 1 = 0 i.e., y± are conjugates of ζ = e2πi/5. Then Q(ζ) = Q(y±) because
of the next
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Proposition 3.0.5. Let p be a prime and ζ = e2πi/p, then Q(ζ) = Q(ζd) for all
d = 1, . . . , p− 1.

Proof. It is clear that Q(ζd) ⊂ Q(ζ). Since d < p we have (d, p) = 1; this
implies that there are integers k, ` such that 1 = kd + `p. Hence ζ = (ζd)k,
then Q(ζ) ⊂ Q(ζd) follows.

Remark 3.0.6. Conjecture 3.0.3 implies that our algorithm can be used for
�nding integers a, b such that p = a2 + b2. In a forthcoming paper [6] we
consider another approach to study all the quadratic �eld extensions E/F
such that Q ⊂ F ⊂ E ⊂ Q(ζ). This is a natural extension of the present
paper, in a more general setting.
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