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Abstract

Let p = 1 (mod 4) be a prime number and let ¢ = e*™/? be a
primitive root of unity. Then there exists a unique biquadratic extension
field Q(y)/Q that is a subfield of Q(¢). The aim of this work is to
construct an algorithm for finding such y explicitly. Finally we state a
general conjecture about the y we found.
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Resumen

Sea p = 1 (mod 4) un primo y sea { = e®™/? yna raiz primitiva
de la unidad. Entonces existe una tinica extension bicuadratica Q(y)/Q
que es un subcuerpo de Q(¢). El proposito de este trabajo es construir
un algoritmo para hallar y explicitamente. Finalmente se enuncia una
conjetura general acerca del y hallado.
Palabras y frases clave: cuerpo bicuadratico, cuerpo ciclotémico,
teoria de Galois, algoritmo.

Introduction

It is known that if p = 1 (mod 4) then Q(,/p) is the unique quadratic exten-
sion field of Q contained in Q(¢), where { = e2/? (see §1 for references).
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Also, there exists a unique quadratic extension field Q(y) of Q(,/p), and
therefore a biquadratic extension field of @, contained in Q(¢). Moreover
if |Gal(Q(¢)/Q)| = 2Fn with (2,n) = 1 then there exists a unique tower of
fields:

Q=FyCE C...CE,CQ)

where [E; : Ej_1] =2forall j =1,...,k and [Q(() : Ex] = n. It is known
that E;/Q is a simple extension i.e., for all j there is an y; € C such that
E; = Q(y;). We consider this preliminaries in §1. Actually, our algorithm
is for calculating such y;s explicitly (see §2). The other major result in this
work is the conjecture in §3, it states an explicit algebraic expresion for ys
depending on p and a unique positive odd integer b such that p = a? + b? for
some integer a.

1 Preliminary results

The aim of this section is to show some results that will allow us to construct
the algorithm in §2.

1.1 Existence of a unique tower of p-th cyclotomic fields

Definition 1.1.1. Let m > 1 and ¢ = ¢*™/™. We say that a number field
K is a m-th cyclotomic field if K is an intermediate field of Q(¢)/Q i.e.,

QC K Q).
This is a somewhat variant of Lang’s definition in [4], p. 71.

Lemma 1.1.2. Let G be a cyclic group of order m and generator g. If d
divides m then <gm/d> C G is its unique subgroup of order d.

Proof. See Lemma 41 in [7], p. 38. O
For basic definitions in the following theorem see [7], pp. 35,43,47.

Theorem 1.1.3 (Fundamental Theorem of Galois Theory). Let E/F be a
Galois extension with Galois group G = Gal(E/F). Let H C G be a subgroup,
and B its fived field, and let K be an intermediate field of E/F. Then

(1) The application H — EH  is an order reversing biyection with inverse
K — Gal(E/K).

(2) EGUE/K) = K and Gal(E/EY) = H.
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(3) [K:F)=[G:Gal(E/K)] and |G : H] = [E® : F).

(4) K/F is a Galois extension if and only if Gal(E/K) is a normal subgroup
of G.

Proof. See Theorem 63 in [7], pp. 49-50. O

Theorem 1.1.4. Let m > 1 be an integer and let { = 2™/™, Then, Q(¢)/Q
is a Galois extension with Galois group isomorphic to Z),, whose order is

p(m), where v is Euler’s phi function.

Proof. See [3], pp. 193-195. O

Corollary 1.1.5. Let p be a prime number, let { = €*™/?, and let E =
Q(¢). Then, for every divisor d of p — 1 there exists a unique subgroup H C
Gal(Q(¢)/Q) of order d. Moreover, its fized field E* is a Galois extension of
Q.

Proof. Follows from Lemma 1.1.2 and Theorem 1.1.3 because Theorem 1.1.4
implies that Gal(Q(¢)/Q) is a cyclic group. O

Corollary 1.1.6. With the same hypothesis of the above corollary, if |Gal(Q(¢)/Q)| =
2kn with k > 1, (2,n) = 1 then there exists a unique tower of fields

Q=FEy,CE C...CE,CE=Q()

where [Ej : Ej_1] = 2 for all j = 1,...,k and [Q(¢) : Ex] = n. Hence,
[E;: Q] =27 for all j.

Proof. Because of Lemma 1.1.2 and Theorem 1.1.4, there is a unique sequence
of cyclic groups

Gal(Q(¢)/Q)=Hy > Hy D ... D> Hr D {0}

where H; is the unique subgroup of G with order 2¥=in. Let E; = E*li be the
fixed field of Hj, then the corollary follows from the Fundamental Theorem
of Galois Theory and from the following basic fact: If [F : F] is finite and K
is an intermediate field, then [F : F] = [E : K][K : F] (see, e.g., Lemma 31
and Exercise 75 in [7], pp. 30-31). O
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1.2 Cyclotomic fields are simple extensions

With the same notation of the previous subsection, we will prove that there
exists y; € C such that E; = Q(y;) forall j =1,... k.

Lemma 1.2.1 (Theorem of the Primitive Element). Every Galois extension
E/F is simple, i.e. there exists a y in E such that E = F(y).

Proof. See [7], p. 51. O
From this lemma, Theorem 1.1.4 and Theorem 1.1.3, the next follows.
Corollary 1.2.2. Every Ej; is a simple exstension of Q.

Now the question is how to find an y; € C such that E; = Q(y;). Theorem
1.2.5 below addresses this question.

Remark 1.2.3. Let p be a prime and let g be a generator of Z;, let E'= Q(()
where ¢ = e2™/P, Tt is easy to see that the application

¢:Zy; — Gal(E/Q) g~

with 70(¢) = ¢9, is a group isomorphism. Based on this fact and Lemma 1.1.2

the only subgroup of Gal(E/Q) of order d is ¢((gP~1/4)) = <vép71)/d> where

'y(()p_l)/d(C) = Cg(pfwd. Moreover, this implies that ¢ is an automorphism of

Q(¢) if and only if o(¢) = (™ for some 1 < m < p—1 (from Theorem 1.1.3(3)
we have [E : Q] = [Gal(E/Q) : Gal(E/E)] = |Gal(E/Q)| =p — 1).

Lemma 1.2.4. Let p be a prime and ( = e*™/?, and let 1 <m < p—1 be an
integer. If

m m
Zék-" =ZC€7} where 1 <k; <p—-1, 1</l; <p-—1,
j=1 j=1

then the two sets of indices {kj : j = 1...,m} and {{; : j = 1...,m} are
equal.

Proof. Let S={0,1,...,p—1}\{¢; : 5 =1,...,m} then
S 4> ¢ =o.
j=1 Les

Hence

ngj +Z<e —0.
j=1

Les
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Let h(x) = Z;’L:l a*i + 3, cq ' € Z[x], then h has degree deg(h) <p—1
and ( is one of its roots. Let f(z) = 1+z+2?+...+ 2P~ ! be the irreducible
polynomial of {. Since, by definition, the irreducible polynomial has minimal
degree we have deg(h) > deg(f), thus deg(h) = deg(f).

It is well known that {g(z) € Q[z] : g(a) = 0} is the principal ideal
generated over Q[x] by the irreducible polynomial of «. From this fact and
the last assertion of the above paragraph, we have h(z) = cf(z) for some

ce Q.
Now, if some k; € S then h(z) # cf(x) for all ¢ € Q. Therefore both sets
of indices are equal. O

The following theorem summarizes what we have done so far and gives
us an explicit expression for y; in terms of the group H;. This is an impor-
tant tool in the construction of algorithm in §2. We assume the notation of
Corollary 1.1.6 as well as that of its proof.

Theorem 1.2.5. Letp = 250 4+ 1 be a prime with k > 2, (2,n) = 1, and let
¢ = €%>™/P, Then there exists a unique tower of p-th cyclotomic fields

Q=Q(yo) CQy1) C--- CQyx) CQ(C)
where

(1) [Q(y;) : Qy;-1)] = 2 for all j and [Q(C) : Q(yx)] = n

(2) y; = Z—yer v(¢), where H; C Gal(Q(¢)/Q) is the subgroup of order
2k=ip, v

(3) Moreover, if g is a generator of Z) and a = g®=V/4 s an element of
order d = |Hj| (actually a = aj and d = d;), then

d
=y ¢
(=1

S0 =3¢ (1.1)

YEH; =1
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Then, because of Corollaries 1.1.6 and 1.2.2 we only need to prove that
E; = Q(y;). By definition we have E; = Efi. As well, it is clear that y; €
Efi | therefore Q(y;) C Ej. On the other hand, we know that Gal(Q(y;)/Q)
is a cyclic subgroup (by Theorem 1.1.4), hence and from Theorem 1.1.3,
(4) Q(y;)/Q is a Galois extension. Then, from Theorem 1.1.3, (2) we have
Q(y;) = EGUE/QW:))  Thus Q(y;) = E; if and only if Gal(E/Q(y;)) = H;.

It is clear that H; C Gal(E/Q(y;)). Let 0 € Gal(E/Q(y;)), then o(y;) =

Y4, and this implies
> ()= > Q)

YEH; YEH;

From this equality, equation (1.1) and Remark 1.2.3 we have two sums of |H;|
powers of (, then from Lemma 1.2.4 follows that the two sets of exponents of
these powers are equal i.e., 0 H; = Hj, thus o € H;. This completes the proof
of Gal(E/Q(y;)) = Hj;. =

1.3 A known case: Q(,/p) C Q(C)

In this subsection p > 3 is prime and ¢ = €*™/P a primitive root of unity.

p—1 .
18’

Lemma 1.3.1. The subgroup of Z of order

e ()

where (a) is the Legendre symbol. (R is the subgroup of quadratic residues
p
mod p).

Proof. By Lemma 1.1.2 we know that there is an unique subgroup of each
order d that divides p — 1. For a proof of the rest of the lemma see, e.g.,
Corollaries 1 and 2 in [3], p. 51. O

p—1
Proposition 1.3.2. Let G = Z <a> ¢* (a Gauss sum), then
p
a=1

(1) G=1+2 Z ¢* with R as in the previous lemma.
a€ER

(2) If p=1 (mod 4) then G = /p.
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p—1 p—1
Proof. (1): G = Z (Z) ¢+ (1 + ZCG> =1+23 ,cp¢"
a=1 a=1
(2): From (1) and Lemma 1.3.1 we have G = Y-"_} ¢**. For a proof of
Eg;é @ = VP if p=1 (mod 4) see, e.g., 2], pp. 13-16. O

Corollary 1.3.3. Suppose p =1 (mod 4) and let y =), (" Then:

(1) Q(y) is the quadratic p-th cyclotomic field, i.e. it is the quadratic inter-
mediate field of Q(¢)/Q.

(2) Qy) = Q(vp).

Remark 1.3.4. Let K/Q be an extension field such that K = Q(a + ba) with
a,b € Q and « € C. Then it is easy to see that K = Q(«).

Proof. We know that there is only one quadratic subfield of Q(¢) (see Corol-
lary 1.1.6 aforementioned). From Proposition 1.3.2 it follows that /p =

1+ 2y € Q(¢), thus Q(\/p) € Q(¢). By Remark 1.3.4 Q(1 + 2y) = Q(y),
hence Q(y) = Q(y/p)- O

2 Algorithm and Results

In this section we will use the same notation as in the previous section. Let
us make two more remarks:

Remark 2.0.5. Recall that [Q(y;) : Q] = 27, i.e. Q(y;) is a vector space over
Q of dimension 27.

Definition 2.0.6 (Vectors of Variables). Let p = 2¥n + 1 be a prime, with
(2,n) = 1. Let V5 = (1) be a vector in C and, for 0 < j < k, V41 =
(Vi yj+1V;) € C¥ | where y;41V} is the standard scalar product of the scalar
yj+1 € C and the vector Vj.

Ezample 2.0.7. V1 = (1,41),
‘/2 - (1aylvy2ayly2)7
Va = (1,91, Y2, Y192, Y3, Y13, Y23, Yy1Y2Y3)-

Lemma 2.0.8. Let m = 27 and V; = (vij,...,0m;) as before. Then

Qy;) =Q™-V; ={c-V; = >/1, covgj, withce Q™}.
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Proof. If j = 1 then Q(y1) = {a +by1 = (a,b) - V4 with a,b € Q}. The lemma
follows by induction on j because of Q(y;+1) = Q(y;)(yj+1)) = {A+ By,
A,B € Q(y;)}. Therefore, by the inductive hypothesis A = ¢1 - V; and
B = Co - V} with Ci € QQJ, thus A + Byj = (Cl,Cz) . (‘/},yj+1‘/}) =C- ij-H
with ¢ = (e1,¢2) € Q%*™. But 2m = 2911, O

Corollary 2.0.9. If j > 1, then y; is a root of some equation:
2 _
where ¢ € Q™ with m = 27,

Proof. We have that a+ by, —&—y? = 0 for some a,b € Q(yj—1). By the previous
lemma a + by; € Q™ - Vj. O

2.1 Main algorithm

We use Mathematica for running our algorithms. For details about the com-
mands used see [9].

For running the main algorithm we need another algorithm for calculating
a generator of Z). See Table 1 for its description. Table 3 has the generators
for the first forty prime numbers p = 1 (mod 4).

The algorithm for calculating the y; is described in Table 2, and Table 4 has
the results for y» and y3 and for the first forty prime numbers p =1 (mod 4).

Table 1: Generator

Mathematica code

p = *input prime number value™;

d =Complement[Divisors[p — 1], {1,p — 1}];
I =DivisorSigma[0,p — 1] — 2;

Forla = 2,a < p,

b =Table[PowerMod|a, d[[4]], ], {4, 1}];
c=0;

DofIEbl[j]] == 1, == 0,¢ = ¢+ 1], {j, 1}
IF[c == 1, g = a;Print[g];Break]| ||;a + +]
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Table 2: Main Algorithm

Mathematica Code

p = (*Input a Prime*);

g = (*Input a Generator*);

¢ =p—1; F =FactorInteger|q); k =F[[1]][[2]}; n = ¢/2%;
P =Sum[¢"~Y, {i, p}]

(*Variables*)

V[0] = {1}; Do[V[i] =Union[V[i — 1], V[i — 1] * yei], {i, k}};
(*Intermediate Field 0 < ne < k*)
ne = (*Number “57 *) ; o[ne] = 2F="¢n; nv = 2n¢;

(*Galois Group* )
H{ne] :Table[PowerMod[g,j x q/o[nel, p|, {j, o[ne] — 1}];
Yne =Sum[¢ I, {5, o[ne]}]; Vinel;
Do[v[i] PolynomlalRemamder[Expand[V[ elllé]]], P, <], {i, nv};
v[nv + 1] =PolynomialRemainder[Expand[ye[ne]?], P, (]; v[ne + 2] = P;
vuf =Table[Coefficient[v[i], ¢, j — 1], {7, nv + 2}, {4, p}];
vve =Transpose[vv fl; coef = NullSpace[vucl;
(*Radicals expression for yp.*)
Ve[0] = {1}; Do[Ve[i] =Union[Ve[i — 1], Ve[i — 1] x y;], {4, k}];
Ec[ne] =Sum|coe f[[1]][[i]] * Ve[ne][[i]], {i, nv}] + coef [[1]][[nv + 1]] * yz.

Yne—1 =(*Input Previous Result*); Solve[Ec[ne] == 0, yp.]

2.2 Meaning of Results on Table 4

The results for yo are of the following form, with the §’s given by Table 4.

-1

1
2= (—1 +p+ 4/ (=1)2p+ 25\/13) where r = pT

All the results for y3, with p =1 (mod 8) have a much more complicated

form: The ¢, ¢, are given in Table 4 and r’ = £ 1.

Let p1 = /p and p2 = \/(—=1)"2p + 23,/p, then

1 !
v =g (4yz + \/(—1)T 4p + 4depy +2¢pa + 20”p1p2) .
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Table 3: Primes p = 2"n + 1 with (n,2) = 1 & Generator g of Z,

p |k|n|yg p |k|ln|yg

5 (2] 12 257 [8] 1] 3
13 23 |2 281 3|35 3
17 |41 |3 313 |3]39]10
20 | 2| 7 |2 337 |4]21|10
37 | 2] 9 |2 401 |4]25]| 3
41 | 3| 5 |6 409 | 3|51 21
53 | 2|13 |2 433 |4 |27 5
61 | 2|15 |2 449 |6 | 7 | 3
73 3] 9 |5 457 | 3|57 |13
89 | 3|11 |3 521 |3]65]| 3
97 | 5| 3 |5 577 |69 | 5
101 | 2]25|2] 593 |4 |37 3
109 | 2(27/61 601 3|75 7
113 | 4| 7 |3 641 | 7] 5 | 3
137 | 3173 673 |5 (21| 5
149 | 2|37 12| 769 | 8| 3 | 11
157 | 239 |5 81 |4 |55 3
193 |6| 3 |51 929 |5[29]| 3
23313203 977 | 4|61 | 3
241 | 4 |15 |7 1153 | 7| 9 | 5
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Table 4: Results for y2 and y3

D 3 c J o’ P B c P ’
5 -1 257 -1 15 15 1
13 3 281 | -5 | -9 9 | -1
17 | -1 3 B3 -1 ) 313 | -13 ] 5 5 | -1
29 | -5 337 | -9 7 7 1
37 -1 401 -1 3 -3 | -1
41 | -5 | -3 | -3 | -1 || 409 3 11 | 11 | 1
53 7 433 | -17 | 19 | -19 | -1
61 | -5 449 72121 | -1
73 3 1 -1 1 457 | -21 | 13 13 | -1
89 | -5 9 9|1 521 | 11 | -3 | -3 | -1
97 | -9 | -5 5 | -1 577 | -1 | -17 | -17 | 1
101 | -1 593 | 23 | -9 | 9 | 1
109 | 3 601 | -5 | -23| 23 | 1
113 7 -9 -9 1 641 | -25 | -21 | 21 | -1
137 | 11 3 3 1 673 | 23 | -10 | 10 | -1
149 7 769 | -25 | 11 | -11 | -1
157 | 11 81 [-25| -9 | -9 | 1
193 7 11 | -11 | -1 929 23 27 | 27 | -1
233 | -13 | -15 | 15 | 1 977 | 31 3 -3 -1
241 | 15 | -13 | 13 | -1 1153 | -33 | -1 -1 1
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Lemma 2.2.1. Let p =1 (mod 4) be a prime. Then there is a unique pair of
positive integers a,b with b odd (and hence a even) such that p = a? + b2,

Proof. For existence of integers a,b sucht that p = a? + b? see, e.g., [§], p.
156, or [1], pp. 17-22. It is clear that only one of them is odd.

Uniqueness: Let R = Z[i] the ring of gaussian integers. We will use the
following three known facts: (a) R is a unique factorization domain, (b) if the
for norm of o € R is a rational prime, then « is irreducible in R, and (c) the
units of Z[i] are £1, . Hence if « = a+ib, 3 = c+id and p = a®>+b* = ?+d?,
then p = a@ = 38 with the bar indicating complex conjugation. Therefore o
and [ are associates, i.e., there exists a unit u € R such that § = ua. [

With the notations as in Table 4 and previous Lemma, we can rewrite the
constants in this table as follows.

Remark 2.2.2. Let p <1153, p=1 (mod 4) be a prime. Then we have:

b
(1) B =(—1)"b where ¢ = and b as in Lemma 2.2.1.

(2) For such primes with p = 1 (mod 8) we have: ¢ = (—=1)"*%¢,, ¢ =

(=1)"**¢, and ¢ = (—=1)" =+ with ¢, s,t obtained from Table 4.

3 Conjecture statement

Now we can state the following:

Conjecture 3.0.3. Let p = a® +b> = 1 (mod 4) be a prime where b is odd,
and let K be the biquadratic p-th cyclotomic field. Then K = Q(y4+) = Q(y-)
where

v =1 (-1+ v Comg)
withr=(p—1)/4 and £ = (b+1)/2.

We can verify this conjecture in the following case:

Ezample 3.0.4. For p =5 we have

yi:i(—l—k\/giim)

and it is easy to see by direct calculation that y+ are roots of a* + 2% 4 2° 4
x+1=0ie., ys are conjugates of ¢ = ¢*™/5. Then Q(¢) = Q(y+) because
of the next
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Proposition 3.0.5. Let p be a prime and ¢ = €>™/?, then Q(¢) = Q(¢?) for all
d=1,...,p—1.

Proof. Tt is clear that Q(¢%) C Q(¢). Since d < p we have (d,p) = 1; this
implies that there are integers k, ¢ such that 1 = kd + ¢p. Hence ¢ = (¢%)*,
then Q(¢) C Q(¢?) follows. O

Remark 3.0.6. Conjecture 3.0.3 implies that our algorithm can be used for
finding integers a,b such that p = a? + b?. In a forthcoming paper [6] we
consider another approach to study all the quadratic field extensions FE/F
such that Q C F € E C Q(¢). This is a natural extension of the present
paper, in a more general setting.
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