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Abstract

The main goal of this paper is to show extensions of the well known
cellular automata characterization given by Hedlund in one of his clas-
sic articles. We first extend that result to discrete dynamical systems
over the space of d-dimesional sequences with values on a finite alpha-
bet and defined by means of a finite number of local rules. In addition,
using the barrier concept provided by the Set Theory, we extend the
notion of local rule with values in any discrete topological space, then
we generalize the extended result in this context.
Key words and phrases: Shift mapping, Local rule, Cellular au-
tomata, Barriers.

Resumen

El principal objetivo de este art́ıculo es mostrar extensiones de la
conocida caracterización de los autómatas celulares dada por Hedlund
en uno de sus clásicos art́ıculos. Primero extendemos este resultado a
la clase de sistemas dinámicos discretos sobre el espacio de sucesiones
d-dimensionales con valores en un alfabeto finito y definido a partir de
un número finito de reglas locales. Seguidamente, usando el concepto
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de barrera proveido por la Teoŕıa de Conjuntos, extendemos la noción
de regla local con valores en cualquier espacio topológico discreto, luego
generalizamos el resultado extendido en este contexto.
Palabras y frases clave: aplicación shift, regla local, autómata celu-
lar, barreras.

1 Introduction

Cellular Automata (CA) are discrete dynamical systems acting on the con-
figuration space AZd

of all d-dimensional sequence x : Zd → A, where A
is a finite alphabet, Zd is the d-dimensional integer lattice, and the global
transition maps defining CA are given by the action of a local rule which de-
termines the evolution of each cell x(n) (n ∈ Zd) of the configuration x ∈ AZd

depending on the values of cells on a uniform neighborhood. More explicitly,
F : AZd → AZd

is a cellular automaton if and only if there are: a finite and
nonempty set V and a local rule f : AV → A, where AV is the set of all
functions from V to A, such that for all x ∈ AZd

and n ∈ Zd:

F (x)(n) = f(x|V+n), (1)

where x|V+n : V→ A is given by x|V+n(k) = x(n + k) for all k ∈ V. In other
words, the value of cell n in the configuration F (x) depends of the values of
the cells n + k, k ∈ V, in the configuration x.

CA have been used to model a huge number of discrete dynamical systems
of relevant significance, in fact CA have at present spread to a wide spectrum
of disciplines including physics, chemistry, biochemistry, biology, economy
and even sociology. The apparent simplicity of CA does not imply trivial
asymptotic behavior of its orbits; actually, a global description of the temporal
(and spatial) evolution of cells can be extremely difficult.

On the configuration space AZd

we consider the product topology, that is
the finest topology so that, for each n ∈ Zd, the projection πn : AZd → A,
πn(x) = x(n), is a continuous map. It is well known, that even if A is any
discrete topological space, the family of cylinders C(U, h) = {x ∈ AZd

: x|U =
h}, where U is a finite and nonempty subset of Zd and h is a function from
U into A, is a clopen (closed and open set) basis for that topology. It is well
know that for any topological space A, the function D : AZd×AZd → [0,+∞)
given by D(x, y) = 2−i where i = inf{‖n‖ : n ∈ Zd, x(n) 6= y(n)} and

‖n‖ = max{|ni| : 1 ≤ i ≤ d} if n = (n1, · · · , nd),
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define a metric compatible with the product topology on AZd

. In the particu-
lar case when the alphabet A is finite, this metric is called Cantor metric and
AZd

is a Cantor set; that means compact, perfect and totally disconnected.
Recently other topological structures on AZd

have been considered, for
example the Besicovitch and Weyl topologies have been used to explain chaotic
behavior of CA, see for example [2], [3], [5] and references therein. We do not
consider these topological structures in this work.

For instance, consider A any discrete topological space which we assume
finite. It is obvious that any local rule is a continuous function and CA are
continuous transformations of the configuration space AZd

. Also it is simple to
verify that CA commute with each shift map σj : AZd → AZd

(j = 1, · · · , d)
which is defined, for each x ∈ AZd

and n ∈ Zd, as σj(x)(n) = x(n + ej)
where ej is the j-th canonical vector of Zd. Notice that shift maps are cellular
automata. As homeomorphisms on AZd

the shift maps have an important
impact in the developing of the dynamical systems theory. In a classical work,
Hedlund [6] gave them remarkable treatment and produced very important
results. One of them, see Theorem 3.4 in [6], characterized CA in terms of shift
maps, in fact: every continuous transformation of AZd

is a cellular automaton
if and only if it commutes with every shift map on AZd

.

Recently, see [7], Hedlund’s theorem (also called Curtis-Hedlund-Lyndon
Theorem) have been extended to continuous transformation ofAZd

withA any
discrete topological space. This extension maintains the topological structure
on AZd

and uses the concept of barriers of the Set Theory to generalize the
notion of local rule in the definition of cellular automata.

In this work, instead of considering CA, we deal with discrete dynamical
systems on AZd

where the global transition map depends on a finite number of
local rules acting on possibly different neighborhoods. This kind of dynamical
systems are called place-dependent cellular automata; this notion extends the
classical definition of CA, see [1]. The main goal here is to show a version
of Theorem 3.4 in [6] for place-dependent cellular automata; in addition, we
also prove the corresponding extension when the alphabet A is any discrete
topological space.

This paper is organized as follows. In section 2 we explicitly introduce
the concept of place-dependent cellular automata and show the version of
Hedlund’s theorem for this kind of transformation on AZd

with A finite; the
last section is devoted to extend, using the notion of barriers provided by
Set Theory, the concept of place-dependent cellular automata when A is any
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discrete topological space; next we prove the corresponding version of the
extension of Hedlund’s theorem in this case.

2 Place-dependent cellular automata and
Hedlund’s Theorem. Case A finite.

Consider a finite alphabet A = {0, · · · , N − 1} and a positive integer n. Let
Vi be a finite and nonempty subset of Zd and fi : AVi → A the local rule
acting on Vi (i = 1, · · · , n). By means of these local rules we will define
global transition maps on AZd

; in order to do it we need a new set of d-
dimensional indexes. That set is related with the number of parallelepipeds
with d-volume equal to n and sides of integer length. Observe that if d = 2,
that number is Φ2(n): the number of divisors of n. When d = 3 the number
of parallelepipeds of 3-volume equal to n and sides with integer length is given
by Φ3(n) =

∑
`|n Φ2(`), where `|n means that the integer ` is a divisor of n.

In general, and employing a recursive argument, for any d ≥ 3, the number
of d-parallelepipeds with sides of integer length whose product is equal to n
is given by:

Φd(n) =
∑

`|n
Φd−1(`). (2)

In this way, (2) describes the number of forms in which a d-dimensional index
can be arrange according to the local rules fi : AVi → A (i = 1, · · · , n).

Take positive integers n1, · · · , nd such that n =
∏d

i=1 ni. Observe that
this decomposition may not be of prime factors. Now we use the set of d-
dimensional indexes

I(n1, · · · , nd) = {(r1, · · · , rd) ∈ Zd : 0 ≤ rj ≤ nj − 1, 1 ≤ j ≤ d};
to arrange (in some way) the local rules; clearly the cardinal of I(n1, · · · , nd)
is equal to n.

Definition 2.1. Given local rules fr : AVr → A with r ∈ I(n1, · · · , nd), the
(n1, · · · , nd)-cellular automaton generated by them, also called (n1, · · · , nd)-
place dependent cellular automaton, is the transformation F : AZd → AZd

defined, for each x ∈ AZd

and m = (m1, · · · ,md) ∈ Zd, by

F (x)(m) = fr

(
x
∣∣
Vr+

∑d
j=1 qjnjej

)
, (3)

whenever mj = qjnj + rj with qj ∈ Z, j = 1, · · · , d, and r = (r1, · · · , rd).
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Observe that for any (n1, · · · , nd)-cellular automaton the temporal evolu-
tion of each cell x(m) of the configuration x ∈ AZd

depends on a particular
local rule which is given by the location of m in Zd. Clearly every CA on AZd

is a (1, · · · , 1)-cellular automaton.

Example 2.1. Consider the alphabet A = {0, 1} and local rules:

f0 : AV0 → A, f1 : AV1 → A with V0 = {−1, 0, 1} and V1 = {0, 1, 2},
given, for all h ∈ AV0 and g ∈ AV1 , by:

f0(h) = h(−1) + h(1) (mod 2) and f1(g) = g(2).

Then the place-dependent cellular automaton defined by these local rules is
given, for every x ∈ {0, 1}Z and k ∈ Z, by:

F (x)(k) =

{
x(2n− 1) + x(2n + 1) (mod 2) if k = 2n

x(2n + 2), if k = 2n + 1
.

Observe that if σ : {0, 1}Z → {0, 1}Z is the shift map, then

(σF )(x)(k) = F (x)(k+1) =

{
x(2n + 2), if k = 2n

x(2n + 1) + x(2n + 3) (mod 2), if k = 2n + 1

and

(Fσ)(x)(k) =

{
x(2n) + x(2n + 2) (mod 2), if k = 2n

x(2n + 3), if k = 2n + 1
.

Notice that in general (σF )(x) 6= (Fσ)(x), so from the Hedlund’s theorem
(cf. Theorem 3.4, [6]) it follows that F is not a cellular automaton.

We show now, see figure below, the temporal evolution of a particular
configuration. Let x = {x(n)}n∈Z be the configuration in {0, 1}Z given by:
x(n) = 0 for every n ∈ Z \ {0} and x(0) = 1. It is easy to see that for each
n ≥ 1 and k ≥ 1, F k(x)(n) = 0. So the figure below shows part of this
evolution for non positive cells of that configuration. In the grill of the figure
we arrange the temporal evolution of x and F k(x) for k = 0, 1, · · · , 15, in
the following way: each square of the grill is colored: white or black; white
means that the state of this cell is 0, otherwise black; on the k-th row on the
grill (0 ≤ k ≤ 15) each square represents the cell of F k(x). Thus, the state
of the cell F k(x)(`) (−15 ≤ ` ≤ 0) is located in the |`|-th square (from the
left to the right) on the k-th row. Observe that by means of this process the
positive orbit between times 0 and 15 describes a geometric shape known as
a Sierpinski triangle.
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Figure 1: Sierpinski triangle obtained from the partial temporal evolution of
x by the place-dependent cellular automaton of example 2.1.

Proposition 2.1. If F : AZd → AZd

is the (n1, · · · , nd)-cellular automaton
generated by the local rules fr : AVr → A with r ∈ I(n1, · · · , nd), then

(i) F is continuous; and

(ii) Fσ
nj

j = σ
nj

j F for every 1 ≤ j ≤ d.

Proof. Clearly any local rule is a continuous map. Take ε > 0 and ` ≥ 1 such
that 2−` < ε. Let m be the positive integer such that, for every n ∈ Zd with
‖n‖ ≤ ` and r ∈ I(n1, · · · , nd), n+Vr ⊂ {n ∈ Zd : ‖n‖ ≤ m}. Thus, for every
x, y ∈ AZd

with D(x, y) < 2−m it follows that x
∣∣
Vr+n

= y
∣∣
Vr+n

for all ‖n‖ ≤ `.
Since F (x)(n) = F (y)(n) for any ‖n‖ ≤ `, then D(F (x), F (y)) < 2−` < ε;
this proves item (i).

On the other hand, take x = {x(m)}m∈Zd ∈ AZd

. If m = (m1, · · · ,md) ∈
Zd satisfies mj = qjnj + rj with qj ∈ Z and 0 ≤ rj < nj for all j = 1, · · · , d,
then for any ` ∈ Vr, with r = (r1, · · · , rd), it holds:

σ
nj

j (x)
∣∣
Vr+

∑d
i=1 qiniei

(`) = σ
nj

j (x)(` +
d∑

i=1

qiniei)

= x


` +

∑

i 6=j

qiniei + (qj + 1)njej




= x
∣∣
Vr+

∑
i 6=j qiniei+(qj+1)njej

(`),
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for every j = 1, · · · , d. Clearly this implies (ii).

An important property of any transformation F of AZd

commuting with
power of the shift maps is the following. Suppose that positive integers
n1, · · · , nd are given and Fσ

nj

j = σ
nj

j F for 1 ≤ j ≤ d. Now consider the

partial functions of F ; that is, for every m ∈ Zd define Fm : AZd → A by
Fm(x) = F (x)(m), for all x ∈ AZd

. Thus one can write F = {Fm}m∈Zd . From
the commuting property of F it is easy to verify that for every m ∈ Zd it holds
Fmσ

nj

j = Fm+njej . Using this relationship between the partial functions of F
and σn1

1 , · · · , σnd

d , it follows that

Fm = Frσ
q1n1
1 · · ·σqdnd

d , (4)

for all m = (m1, · · · ,md) where mj = qjnj + rj with qj ∈ Z, 0 ≤ rj < nj ,
1 ≤ j ≤ d and r = (r1, · · · , rd). Therefore, we only need the partial functions
Fr, with r ∈ I(r1, · · · , rd), to express any other partial function of F .

Theorem 2.1 (Hedlund’s Theorem Extension). Every continuous transfor-
mation F : AZd → AZd

commuting with σ
nj

j for some integer nj ≥ 1 and each
1 ≤ j ≤ d, is a (n1, · · · , nd)-cellular automaton.

Proof. Given r ∈ I(n1, · · · , nd), let Fr be the r-th partial function of F . Con-
sider ` = max{n1, · · · , nd}. Since F is uniformly continuous (AZd

is compact),
there exists k ≥ 1 such that D(F (x), F (y)) < 2−` whenever D(x, y) < 2−k.
In particular, this implies that for all r ∈ I(n1, · · · , nd), Fr(x) = Fr(y) for
all x, y ∈ AZd

with x(n) = y(n) for every ‖n‖ ≤ k. In other words, if
V = {n ∈ Zd : ‖n‖ ≤ k}, then for every h : V→ A, the partial function Fr is
constant on the cylinder C(V, h) for all r ∈ I(n1, · · · , nd).

Take r ∈ I(n1, · · · , nd) and define fr : AV → A as fr(h) = Fr(x) for every
x ∈ C(V, h). Observe that fr is well defined. On the other hand, from (4)
it follows that for every x ∈ AZd

and m = (q1n1, · · · , qdnd) + r with qj ∈ Z
(j = 1, · · · , d):

F (x)(m) = Fm(x) = Frσ
q1n1
1 · · ·σqdnd

d (x).

But the value of σq1n1
1 · · ·σqdnd

d (x) on ` ∈ V is just x(` +
∑d

j=1 qjnjej); this

implies that F (x)(m) = fr

(
x
∣∣
Vr+

∑d
j=1 qjnjej

)
and hence F is a (n1, · · · , nd)-

cellular automaton.

Remark 2.1. Consider positive integers n1, · · · , nd and local rules fr : AVr →
A with r ∈ I(n1, · · · , nd). Let F : AZd → AZd

be the transformation given
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by:
F (x)(m) = fr

(
x
∣∣
Vr+m

)
, (5)

for all x ∈ AZd

, m = (q1n1, · · · , qdnd)+ r with qj ∈ Z for all j = 1, · · · , d, and
r ∈ I(n1, · · · , nd). It is easy to see that Fσ

nj

j = σ
nj

j F for all j = 1, · · · , d. So,
theorem 2.1 it follows that F is a (n1, · · · , nd)-cellular automaton; that is, for
each r ∈ I(n1, · · · , nd) there exists a local rule gr : AUr → A such that, for
every x ∈ AZd

and m =
∑d

j=1 qjnjej + r, it holds

F (x)(m) = gr

(
x
∣∣
Ur+

∑d
j=1 qjnjej

)
. (6)

On the other hand, take the (n1, · · · , nd)-cellular automaton given by (6).
For each r ∈ I(n1, · · · , nd) define Vr = Ur − r = {u − r : u ∈ Ur} and the
local rule fr : AVr → A by fr(h) = gr(h̃), where h̃ : Ur → A is defined
as h̃(u) = h(u − r) for all u ∈ Ur. Since x

∣∣
Ur+

∑d
j=1 qjnjej

= x
∣∣
Vr+m

for all

m =
∑d

j=1 qjnjej + r, then F is also expressed as in (5).

3 Place-dependent cellular automata and
Hedlund’s Theorem. Case A discrete.

Let A be any discrete topological space; consider on AZd

the product topol-
ogy. With the same tools of [7] we will extend the concept of place-dependent
cellular automata; that is, we will use the notion of barriers to define: general-
ized local rules and generalized place-dependent extended cellular automata.
The barriers were used in [4] to obtain a canonical form for continuous func-
tions φ : [N]∞ → [N]∞ commuting with the shift S(A) = A \ {min A}, where
[N]∞ denotes the set of all infinite subsets of N.

Now we recall the notion of barrier and extend the concept of local rule.
Next we will provide an example of a transformation F : NZ → NZ commuting
with a nontrivial power of the shift such that F cannot be expressed in terms
of a finite number of local rules, as defined in the previous section; see remark
above.

Let F(Zd,A) be the family of all functions from V to A, where V is any
finite and nonempty subset of Zd. This family is partially ordered by the
relation:

f @ g if and only if dom(f) ⊂ dom(g) and g
∣∣
dom(f)

= f, (7)
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where dom(f) denotes the domain of f and g
∣∣
dom(f)

is the restriction of g to
dom(f).

Definition 3.1. An antichain of F(Zd,A) is any collection in F(Zd,A) of
non-comparable elements respect to @. A collection B ⊂ F(Zd,A) is a barrier
in AZd

if B is an antichain of F(Zd,A), and for every x ∈ AZd

there exists a
unique f ∈ B such that x

∣∣
dom(f)

= f . Denote this function by fx.

Since any function f ∈ F(Zd,A) is identified with a unique cylinder
C(V, f), the concept of barriers can be expressed in terms of cylinders. Ob-
serve that if V is a finite and nonempty subset of Zd, then AV is a barrier.
This kind of barriers is called uniform.

Definition 3.2. A generalized local rule of AZd

is any function φ : B → A,
where B is a barrier of F(Zd,A).

Obviously any local rule of the previous section is a generalized local rule,
its domain is a uniform barrier.

Example 3.1. Let A = N endowed with the discrete topology. Consider, for
each a ∈ N \ {0} and j ∈ {1, 2, · · · , a}, the set

Ba
j =



f ∈ N[−j,j] : f(0) = j and

∑

|m|≤j

f(m) = a



 ,

where [−j, j] = {−j, · · · , j}. Let B0 =
⋃

a∈N\{0}
1≤j≤a

Ba
j ∪ {f0}, and f0 : {0} → N

given by f0(0) = 0. For every pair of different functions f : [−j, j] → N and g :
[−`, `] → N in B0, the corresponding cylinders C([−j, j], f) and C([−`, `], g)
are disjoint, this implies that B0 is an antichain. Given a configuration x ∈ NZ
with x(0) = j, it follows that fx : [−j, j] → N, with fx(m) = x(m) for every
m ∈ [−j, j], is the only function in B0 satisfying x|dom(fx) = fx; therefore B0

is a barrier of NZ. In particular, the function φ0 : B0 → N defined, for each
f ∈ B0, as

φ0(f) =
∑

|m|≤f(0)

f(m)

is a generalized local rule. Now consider the barrier B1 = NV1 with V1 = {1},
and the generalized local rule (actually a local rule) given by φ1(g) = g(1) for
all g ∈ B1.
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Let F = {Fn}n∈Z be the transformation of NZ defined as follow:

F (x)(n) = Fn(x) =





∑

|m|≤x(2q)

x(2q + m), if n = 2q

x(2q + 1), if n = 2q + 1,

.

It is easy to verify that F is continuous and Fσ2 = σ2F , where σ is the shift
on NZ. In fact, F can be expressed, for all x ∈ NZ, by means of

Fn(x) =

{
F0σ

2q(x), if n = 2q

F1σ
2q(x), if n = 2q + 1

,

where F0(x) =
∑
|j|≤x(0) x(j) and F1(x) = x(1). That is, F (x)(n) = φr(fr

x,2q),
whenever n = 2q + r with r ∈ {0, 1} and fr

x,2q is the function in Br associated
to the configuration σ2q(x); that is, σ2q(x)

∣∣
dom(fr

x,2q)
= fr

x,2q.
Observe that the temporal evolution of the cells depends on different num-

ber of values of the cells in nonuniform neighborhoods; therefore F is not a
place-dependent cellular automaton.

Definition 3.3. Given positive integers n1, · · · , nd, F from AZd

into itself is
a (n1, · · · , nd)-generalized cellular automaton, if for every r ∈ I(n1, · · · , nd)
there exists a generalized local rules φr : Br → A such that for all x ∈ AZd

it
holds:

F (x)(m) = φr(fr
x,q1,··· ,qd

), (8)

whenever m =
∑d

j=1 qj nj + r with r ∈ I(n1, · · · , nd), and

(σq1n1
1 · · ·σqdnd

d )(x)
∣∣
dom(fr

x,q1,··· ,qd
)
= fr

x,q1,··· ,qd
. (9)

Clearly the transformation of the preceding example is a 2-generalized
cellular automaton on NZ.

Theorem 3.1 (Extension of Hedlund’s Theorem). Let A be a discrete topo-
logical space. Then

(i) Every (n1, · · · , nd)-generalized cellular automaton F on AZd

is contin-
uous and Fσ

nj

j = σ
nj

j F for every j = 1, · · · , d.

(ii) Given positive integers n1, · · · , nd, every continuous transformation F

on AZd

commuting with σ
nj

j , j = 1, · · · , d, is a (n1, · · · , nd)-generalized
cellular automaton.
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Proof. (i) Let F be the (n1, · · · , nd)-generalized cellular automaton on AZd

given by the generalized local rules φr : Br → A, with r ∈ I(n1, · · · , nd); see
(8) and (9). Take x in AZd

and a cylinder C(U, h) containing F (x). Thus, for
every u ∈ C(U, h) with u =

∑d
j=1 ujnjej + r and r ∈ I(n1, · · · , nd), it follows

that h(u) = φr(fr
x,u1,··· ,ud

). Let Cx be the set of all y ∈ AZd

such that for
each u ∈ U it holds

x
∣∣
dom(fr

x,u1,··· ,ud
)+

∑d
j=1 ujnjej

= y
∣∣
dom(fr

x,u1,··· ,ud
)+

∑d
j=1 ujnjej

.

Clearly Cx is a cylinder containing x. It is easy to verify that for every y ∈ Cx,
F (y) ∈ C(U, h). Thus, F is continuous.

Now take m =
∑d

i=1 qiniei + r with r ∈ I(n1, · · · , nd), and j ∈ {1, · · · , d}.
As

m + njej =
∑

i6=j

qiniei + (qj + 1)njej + r, and

σq1n1
1 · · ·σqdnd

d (σnj

j (x)) = σq1n1
1 · · ·σqj−1nj−1

j−1 σ
(qj+1)nj

j σ
qj+1nj+1
j+1 · · ·σqdnd

d (x),

then from (8) and (9) it follows that

fr
σ

nj
j (x),q1,··· ,qd

= fr
x,q1,··· ,qj−1,qj+1,qj+1,··· ,qd

;

this clearly implies Fσ
nj

j = σ
nj

j F .

(ii) Let n1, · · · , nd be positive integers and F : AZd → AZd

a continu-
ous transformation commuting with σ

nj

j for each 1 ≤ j ≤ d. For every

r ∈ I(n1, · · · , nd) let Fr be the function from AZd

into A such that for any
m = (q1n1, · · · , qdnd) + r in Zd it holds Fm = Frσ

q1n1
1 · · ·σqdnd

d . Since F is
continuous, for each a ∈ A and every r ∈ I(n1, · · · , nd), F−1

r ({a}) is a disjoint
union of cylinders of AZd

. Denote by Ba
r the collection of functions f : U→ A

(U a finite and nonempty subset of Zd) such that C(U, f) is a cylinder of the
disjoint union determined by F−1

r ({a}). Clearly Fr(C(U, f)) = {a} for all
f ∈ Ba

r ; moreover, if f, g ∈ Ba
r with f 6= g, then f and g are not comparable

in the partial orden @ defined by (7), and for every x ∈ AZd

with Fr(x) = a,
there exists a unique function fx ∈ Ba

r such that x
∣∣
dom(fx)

= fx. In this way,

for each r ∈ I(n1, · · · , nd), Br =
⋃

a∈A Ba
r defines a barrier of AZd

. Now,
for each r ∈ I(n1, · · · , nd) consider the function φr : Br → A defined by
φr(f) = a whenever f belongs to Ba

r .
Finally, take x ∈ AZ

d

and m = (q1n1, · · · , qdnd)+r with r ∈ I(n1, · · · , nd).
Making a = F (x)(m) = Fm(x) = Fr (σq1n1

1 · · ·σqdnd

d ) (x), we consider the
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unique fr
x,q1,··· ,qn

∈ Ba
r such that

σq1n1
1 · · ·σqdnd

d (x)
∣∣
dom(fr

x,q1,··· ,qn
)
= fr

x,q1,··· ,qn
,

then it follows that F (x)(m) = φr(fr
x,q1,··· ,qn

). The proof is completed.
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