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Abstract

In this article we study the fractional Integral and the fractional
Derivative for Jacobi expansion. In order to do that we obtain an anal-
ogous of P. A. Meyer’s Multipliers Theorem for Jacobi expansions. We
also obtain a version of Calderón’s reproduction formula for the Jacobi
measure. Finally, as an application of the fractional differentiation, we
get a characterization for Potential Spaces associated to the Jacobi mea-
sure.
Key words and phrases: Fractional Integration, Fractional Differen-
tiation, Jacobi expansions, Multipliers, Potential Spaces.

Resumen

En este trabajo estudiamos la integración y diferenciación fraccio-
naria para el caso de los desarrollos de Jacobi. Para ello obtenemos
un teorema análogo al teorema de multiplicadores de P.A. Meyer para
desarrollos de Jacobi. También obtenemos una versión de la fórmula de
reproducción de Calderón para la medida de Jacobi. Finalmente, como
una aplicacción de la diferenciación fraccionaria, obtenemos una carac-
terización de los Espacios Potenciales asociados a la medida de Jacobi.
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1 Introduction.

Let us consider (normalized) Jacobi measure

µα,β(dx) =
1

2α+β+1B(α + 1, β + 1)
(1− x)α(1 + x)βdx, (1)

for x ∈ [−1, 1], where α, β > −1. This normalization gives a probability
measure and it is not usually considered in classical orthogonal polynomial
theory.

The one dimensional Jacobi operator is given by

Lα,β = (1− x2)
d2

dx2
+ (β − α− (α + β + 2)x)

d

dx
. (2)

It is easy to see that this is a symmetric operator on L2([−1, 1], µα,β).
Let pα,β

n be the normalized Jacobi polynomials of degree n ∈ N. Then the
family {pα,β

n } is an orthonormal Hilbert basis of L2([−1, 1], µα,β), that can
be obtained by the Gram–Schmidt orthogonalization process with respect to
the measure µα,β , applied to the monomials. It is well known that Jacobi
polynomials are eigenfunctions of the Jacobi operator Lα,β with eigenvalue
−λn = −n(n + α + β + 1), that is,

Lα,βpα,β
n = −n(n + α + β + 1)pα,β

n . (3)

Since {pα,β
n } is an orthonormal basis of L2([−1, 1], µα,β), we have the or-

thogonal decomposition

L2([−1, 1], µα,β) =
∞⊕

n=0

Cα,β
n , (4)

where, for each n, Cα,β
n is the closed subspace generated by pα,β

n . This is
called the Wiener–Jacobi chaos decomposition of L2([−1, 1], µα,β).

Let Jα,β
n be the orthogonal projection of L2([−1, 1], µα,β) onto Cα,β

n . Then,
for f ∈ L2([−1, 1], µα,β) we have

f =
∞∑

n=0

Jα,β
n f, (5)

where Jα,β
n f = f̂(n)pα,β

n with

f̂(n) =
∫ 1

−1

f(x)pα,β
n (x)µα,β(dx)
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the nth-Jacobi–Fourier coefficient of f .
Let us now consider {Tα,β

t }t≥0 the Jacobi semigroup. This is the Markov
operator semigroup associated to the Markov probability kernel semigroup
(see [2],[4])

Pt(x, dy) =
∞∑

n=0

e−λntpα,β
n (x)pα,β

n (y)µα,β(dy) = pα,β(t, x, y)µα,β(dy),

that is

Tα,β
t f(x) =

∫ 1

−1

f(y)Pt(x, dy) =
∫ 1

−1

f(y)pα,β(t, x, y)µα,β(dy).

Unfortunately, there is not a reasonable explicit representation for the kernel
pα,β(t, x, y).

The Jacobi semigroup {Tα,β
t }t≥0 is a diffusion semigroup, conservative,

symmetric, strongly continuous on Lp([−1, 1], µα,β) of positive contractions
on Lp, with infinitesimal generator Lα,β .

Moreover, for α, β > − 1
2 it can be proved that {Tα,β

t }t≥0 is also hypercon-
tractive, that is to say that Tα,β

t is not only a contraction on Lp([−1, 1], µα,β),
but also for any initial condition 1 < q(0) < ∞ there exists an increasing func-
tion q : R+ → [q(0),∞), such that for every f and all t ≥ 0,

‖Tα,β
t f‖q(t) ≤ ‖f‖q(0).

The proof that we know of this fact is an indirect one, obtained by D. Bakry
in [3], that is based in proving that the Jacobi operator, for the parameters
α, β > −1/2, satisfies a Sobolev inequality, by checking that it satisfies a
curvature-dimension inequality, and therefore a logarithmic Sobolev inequality
and then use the well known equivalency due to L. Gross [8]. A detailed proof
of this can be found in [2], see also [1]. From now on we will consider the
Jacobi semigroup for the parameters α, β > − 1

2 .
On the other hand, for 0 < δ < 1 we define the generalized Poisson–Jacobi

semigroup of order δ, {Pα,β,δ
t }, as

Pα,β,δ
t f(x) =

∫ ∞

0

Tα,β
s f(x)µδ

t (ds).

where {µδ
t} are the stable measures on [0,∞) of order δ (∗) . The generalized

(∗)The stable measures on [0,∞) of order δ are Borel measures on [0,∞) such that its

Laplace transform verify
∫∞
0 e−λsµδ

t (ds) = e−λδt. For δ fixed, {µδ
t} form a semigroup with

respect to the convolution operation in the parameter δ > 0.
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Poisson–Jacobi semigroup of order δ is a strongly continuous semigroup on
Lp([−1, 1], µα,β) with infinitesimal generator (−Lα,β)δ.

In the case δ = 1/2, we have the Poisson–Jacobi semigroup, that will be
denoted as Pα,β

t = P
α,β,1/2
t . In this case we can explicitly compute µ

1/2
t ,

µ
1/2
t (ds) =

t

2
√

π
e−t2/4ss−3/2ds

and by Bochner’s formula we have

Pα,β
t f(x) =

1√
π

∫ ∞

0

e−u

√
u

Tα,β
t2/4uf(x)du. (6)

Then by (3),

Tα,β
t pα,β

n = e−λntpα,β
n ,

Pα,β,δ
t pα,β

n = e−λγ
ntpα,β

n .

Giving a function Φ : N → R the multiplier operator associated to Φ is
defined as

TΦf =
∞∑

k=0

Φ(k)Jα,β
k f,

for f =
∑∞

k=0 Jα,β
k f, a polynomial.

If Φ is a bounded function, then by Parseval’s identity, TΦ is bounded on
L2([−1, 1], µα,β). In the case of Hermite expansions, the P.A. Meyer’s Multi-
plier Theorem [10] gives conditions over Φ so that the multiplier TΦ can be
extended to a continuous operator on Lp for p 6= 2. In the next section we
will prove an analogous result for the Jacobi expansions.

In section 3 we are going to define the Fractional Integration and Differen-
tiation for Jacobi expansions, as well as Bessel Potentials associated to Jacobi
measure. Using Meyer’s multipliers Theorem we will see the Lp continuity of
the Fractional Integration and of the Bessel Potentials and we give a charac-
terization of the Potential Spaces. We also study the asymptotic behavior of
the Poisson-Jacobi semigroup and we give a version of Calderon’s reproducing
formula.

2 P.A. Meyer’s Multiplier Theorem for Jacobi
expansions.

In order to establish the P.A. Meyer’s Multiplier Theorem for Jacobi expan-
sions we need some previous results. First, let us see that the orthogonal

Divulgaciones Matemáticas Vol. 15 No. 2(2007), pp. 93–113



Fractional Integration and Fractional Differentiation. 97

projections Jα,β
n can be extended to a continuous function on Lp([−1, 1], µα,β).

Lemma 1. If 1 < p < ∞ then for every n ∈ N, Jα,β
n can be extended to

a continuous operator to Lp([−1, 1], µα,β), that will also be denoted as Jα,β
n ,

that is, there exists Cn,p ∈ R+ such that

‖Jα,β
n f‖p ≤ Cn,p‖f‖p,

for f ∈ Lp([−1, 1], µα,β).

Proof. Let us consider p > 2 and for the initial condition q(0) = 2, let
t0 be a positive number such that q(t0) = p. Taking g = Jα,β

n f, by the
hypercontractive property, Parseval identity and Hölder inequality we obtain,

‖Tα,β
t0 g‖p = ‖Tα,β

t0 Jα,β
n f‖p ≤ ‖Jα,β

n f‖2 ≤ ‖f‖2 ≤ ‖f‖p.

Now, as Tt0J
α,β
n f = e−t0λnJnf we get

‖Jα,β
n f‖p ≤ Cn,p‖f‖p,

with Cn,p = et0λn . For 1 < p < 2 the result follows by duality. ¤
We also need the following technical result,

Lemma 2. Let 1 < p < ∞. Then, for each m ∈ N there exists a constant Cm

such that

‖Tα,β
t (I − Jα,β

0 − Jα,β
1 − · · · − Jα,β

m−1)f‖p ≤ Cme−tm‖f‖p.

Proof. Let p > 2 and for the initial condition q(0) = 2, let t0 be a positive
number such that q(t0) = p.

If t ≤ t0, since Tα,β
t is a contraction, by the Lp- continuity of the projec-

tions

‖Tα,β
t (I − Jα,β

0 − · · · − Jα,β
m−1)f‖p ≤ ‖(I − Jα,β

0 − · · · − Jα,β
m−1)f‖p

≤ ‖f‖p +
m−1∑

k=0

‖Jα,β
k f‖p

≤ (1 +
m−1∑

k=0

et0λk)‖f‖p.
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But since et0λk ≤ et0λm for all 0 ≤ k ≤ m − 1 and λm ≥ m for all m > 1,
therefore

‖Tα,β
t (I − Jα,β

0 − · · · − Jα,β
m−1)f‖p ≤ (1 + met0λm)‖f‖p = Cme−t0λm‖f‖p

≤ Cme−tm‖f‖p,

with Cm = (1 + met0λm)et0m.

Now suppose t > t0. For f =
∑∞

k=0 Jα,β
k f , by the hypercontractive property,

‖T α,β
t0

T α,β
t (I − Jα,β

0 − · · · Jα,β
m−1)f‖2p ≤ ‖T α,β

t (I − Jα,β
0 − · · · Jα,β

m−1)f‖22

= ‖T α,β
t (

∞∑

k=m

Jα,β
k f)‖22

= ‖
∞∑

k=m

e−tλkJα,β
k f‖22

=

∞∑

k=m

e−2tλk‖Jα,β
k f‖22

≤
∞∑

k=m

e−2tk‖Jα,β
k f‖22,

as λm ≥ m for all m ≥ 1. Then
∞∑

k=m

e−2tk‖Jα,β
k f‖22 ≤ e−2tm

∞∑

k=0

‖Jα,β
k+m‖22 ≤ e−2tm

∞∑

k=0

‖Jα,β
k ‖22

= e−2tm‖f‖22 ≤ e−2tm‖f‖2p.
Thus

‖Tα,β
t0 Tα,β

t (I − Jα,β
0 − Jα,β

1 − · · · − Jα,β
m−1)f‖p ≤ e−tm‖f‖p.

In particular,

‖Tα,β
t (I−Jα,β

0 −· · ·−Jα,β
m−1)f‖p = ‖Tα,β

t0 Tα,β
t−t0(I−Jα,β

0 −· · ·−Jα,β
m−1)f‖p

≤ e−(t−t0)m‖f‖p = Cme−tm‖f‖p,

with Cm = et0m. For 1 < p < 2 the result follows by duality. ¤
Now, by the Minkowski integral inequality, we have an analogous result

for the generalized Poisson–Jacobi semigroup.

Lemma 3. Let 1 < p < ∞. Then for each m ∈ N, there exists Cm such that

‖Pα,β,γ
t (I − Jα,β

0 − Jα,β
1 − · · · − Jα,β

m−1)f‖p ≤ Cme−tmγ‖f‖p.

Divulgaciones Matemáticas Vol. 15 No. 2(2007), pp. 93–113



Fractional Integration and Fractional Differentiation. 99

From the generalized Poisson–Jacobi semigroup let us define a new family
of operators {Pα,β

k,γ,m}k∈N by the formula

Pα,β
k,γ,mf =

1
(k − 1)!

∫ ∞

0

tk−1Pα,β,γ
t (I − Jα,β

0 − Jα,β
1 − · · · − Jα,β

m−1)fdt.

By the preceding lemma and the Minkowski integral inequality we have,

Proposition 4. If 1 < p < ∞, then for every m ∈ N there is a constant Cm

such that

‖Pα,β
k,γ,mf‖p ≤ Cm

mγk
‖f‖p.

Observe that in particular if f = pα,β
n , n ≥ m

Pα,β
k,γ,mpα,β

n =
1

λγk
n

pα,β
n . (7)

Now we are ready to present P.A. Meyer’s Multipliers Theorem for Jacobi
expansions.

Theorem 5. If for some n0 ∈ N and 0 < γ < 1

Φ(k) = h

(
1
λγ

k

)
, k ≥ n0,

with h an analytic function in a neighborhood of zero, then TΦ, the multiplier
operator associated to Φ, admits a continuous extension to Lp([−1, 1], µα,β).

Proof. Let

TΦf = T 1
φf + T 2

Φf =
n0−1∑

k=0

Φ(k)Jα,β
k f +

∞∑

k=n0

Φ(k)Jα,β
k f.

By the lemma 1 we have that

‖T 1
Φf‖p ≤

n0−1∑

k=0

|Φ(k)|‖Jα,β
k f‖p ≤

(
n0−1∑

k=0

|Φ(k)|Ck

)
‖f‖p,

that is, T 1
Φ is Lp continuous. It remains to be seen that T 2

Φ is also Lp

continuous.
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By the hypothesis let us assume that h can be written as h(x) =∑∞
n=0 anxn, for x in a neighborhood of zero, then

T 2
Φf =

∞∑

k=n0

Φ(k)Jα,β
k f =

∞∑

k=n0

h

(
1
λγ

k

)
Jα,β

k f =
∞∑

k=n0

∞∑
n=0

an
1

λγn
k

Jα,β
k f,

but since (7), for k ≥ n0,
1

λγn
k

Jα,β
k f = Pα,β

n,γ,n0
Jα,β

k f , we have

T 2
Φf =

∞∑

k=n0

∞∑
n=0

anPα,β
n,γ,n0

Jα,β
k f =

∞∑
n=0

an

∞∑

k=0

Pα,β
n,γ,n0

Jα,β
k f

=
∞∑

n=0

anPα,β
n,γ,n0

∞∑

k=0

Jα,β
k f =

∞∑
n=0

anPα,β
n,γ,n0

f.

Since Pα,β
n,γ,n0

is Lp continuous, by proposition 4, we obtain,

‖T 2
Φf‖p ≤

∞∑
n=0

|an|‖Pα,β
n,γ,n0

f‖p

≤
( ∞∑

n=0

|an|Cn0

1
nγn

0

)
‖f‖p = Cn0

( ∞∑
n=0

|an| 1
nγn

0

)
‖f‖p.

Therefore, TΦ is continuous in Lp([−1, 1], µα,β). ¤

3 Fractional Integration and Differentiation.

As in the classical case, for γ > 0 we define the Fractional Integral of order γ,
Iα,β
γ , with respect to Jacobi measure, as

Iα,β
γ = (−Lα,β)−γ/2. (8)

Iα,β
γ is also called Riesz Potential of order γ.

Observe that, since zero is an eigenvalue of Lα,β , then Iα,β
γ is not de-

fined over all L2([−1, 1], µα,β). Let Π0 = I − Jα,β
0 and denote also by Iα,β

γ

the operator (−Lα,β)−γ/2Π0. Then, this operator is well defined over all
L2([−1, 1], µα,β). In particular, for Jacobi polynomials we have

Iα,β
γ pα,β

k =
1

λ
γ/2
k

pα,β
k . (9)
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Thus, for f a polynomial in L2([−1, 1], µα,β) with Jacobi expansion∑∞
k=0 Jα,β

k f, we have

Iα,β
γ f =

∞∑

k=1

1

λ
γ/2
k

Jα,β
k f.

For the Fractional Integral of order γ > 0 we have the following integral
representation,

Iα,β
γ f =

1
Γ(γ)

∫ ∞

0

tγ−1Pα,β
t fdt, (10)

for f polynomial, where Pα,β
t is the Poisson–Jacobi semigroup. In order to

prove that observe that for the Jacobi polynomials, we have, by the change
of variables s = λ

1/2
k t,

1
Γ(γ)

∫ ∞

0

tγ−1Pα,β
t pα,β

k dt =
1

Γ(γ)

∫ ∞

0

tγ−1e−λ
1/2
k t dt pα,β

k

=
1

Γ(γ)
1

λ
γ/2
k

∫ ∞

0

sγ−1e−s ds pα,β
k =

1

λ
γ/2
k

pα,β
k .

The Meyer’s multiplier theorem allows us to extend Iα,β
γ as a bounded

operator on Lp([−1, 1], µα,β), as next theorem shows.

Theorem 6. The the Fractional Integral of order γ, Iα,β
γ admits a continuous

extension, that it will also be denoted as denote Iα,β
γ , to Lp([−1, 1], µα,β).

Proof. If γ/2 < 1, then Iα,β
γ is a multiplier with associated function

Φ(k) =
1

λ
γ/2
k

= h

(
1

λ
γ/2
k

)

where h(z) = z, which is analytic in a neighborhood of zero. Then the results
follows immediately by Meyer’s theorem.

Now, if γ/2 ≥ 1, let us consider β ∈ R, 0 < β < 1 and δ = γ
2β . Then

δβ = γ
2 . Let h(z) = zδ, which is analytic in a neighborhood of zero. Then we

have

h

(
1

λβ
k

)
=

1

λδβ
k

=
1

λ
γ/2
k

= Φ(k).
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Again the results follows applying Meyer’s theorem. ¤
Now the Bessel Potential of order γ > 0, J α,β

γ , associated to the Jacobi
measure is defined as

J α,β
γ = (I − Lα,β)−γ/2. (11)

Observe that for the Jacobi polynomials we have

J α,β
γ pα,β

k =
1

(1 + λk)γ/2
pα,β

k ,

and, therefore if f ∈ L2([−1, 1], µα,β) polynomial with expansion
∑∞

k=0 Jα,β
k f

J α,β
γ f =

∞∑

k=0

1
(1 + λk)γ/2

Jα,β
k f. (12)

Again Meyer’s theorem allows us to extend Bessel Potentials to a
continuous operator on Lp([−1, 1], µα,β),

Theorem 7. The operator J α,β
γ admits a continuous extension, that it will

also be denoted as J α,β
γ , to Lp([−1, 1], µα,β).

Proof. Bessel Potential of order γ is a multiplier associated to the function

Φ(k) =
(

1
1+λk

)γ/2

. Let β ∈ R, β > 1 and h(z) =
(

zβ

zβ+1

)γ/2

. Then h is an
analytic function on a neighborhood of zero and

h

(
1

λ
1/β
k

)
=

(
1

1 + λk

)γ/2

= Φ(k).

The results follows applying Meyer’s theorem. ¤
Finally as in the classical case, we define the Fractional Derivative of order

γ > 0, Dα,β
γ , with respect to Jacobi measure as

Dα,β
γ = (−Lα,β)γ/2. (13)

Observe that, for the Jacobi polynomials we have,

Dα,β
γ pα,β

k = λ
γ/2
k pα,β

k , (14)

and therefore, by the density of the polynomials in Lp([−1, 1], µα,β), 1 < p <
∞, Dα,β

γ can be extended to Lp([−1, 1], µα,β).
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For the Fractional Derivative of order 0 < γ < 1 we also have a integral
representation,

Dα,β
γ f =

1
cγ

∫ ∞

0

t−γ−1(Pα,β
t f − f)dt, (15)

for f polynomial, where cγ =
∫∞
0

s−γ−1(e−s − 1)ds, since, for the Jacobi
polynomials, we have, by the change of variables s = λ

1/2
k t,

∫ ∞

0

t−γ−1(Pα,β
t pα,β

k − pα,β
k ) dt =

∫ ∞

0

t−γ−1(e−λ
1/2
k t − 1) dt pα,β

k

= λ
γ/2
k

∫ ∞

0

s−γ−1(e−s − 1) ds pα,β
k

= λ
γ/2
k cγ pα,β

k .

Now, if f is a polynomial, by (9) and (14) we have,

Iα,β
γ (Dα,β

γ f) = Dα,β
γ (Iα,β

γ f) = Π0f. (16)

In [5] H. Bavinck has defined Fractional Integration and Differentiation for
Jacobi expansions. Nevertheless the motivation, the methods and techniques
use in his paper are totally different from ours.

Now we are going to give an alternative representation of Dα,β
γ and Iα,β

γ

that are very useful in what follows. Before that, we need the following
technical result of the asymptotic behavior of {Pα,β

t }t≥0 at infinity.

Lemma 8. If
∫ 1

−1
f(y)µα,β(dy) = 0 and f has continuos derivatives up to the

second order, then
∣∣∣∣
∂

∂t
Pα,β

t f(x)
∣∣∣∣ ≤ Cf,α,β(1 + |x|)e−(α+β+2)1/2t. (17)

As a consequence we have that the Poisson-Jacobi semigroup {Pα,β
t }t≥0, has

exponential decay on (Cα,β
0 )⊥ =

⊕∞
n=1 Cα,β

n . More precisely, if we have∫ 1

−1
f(y)µα,β(dy) = 0,

|Pα,β
t f(x)| ≤ Cf,α,β(1 + |x|)e−(α+β+2)1/2t. (18)
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Proof. First, let us prove that
∣∣∣ ∂
∂tT

α,β
t f(x)

∣∣∣ ≤ Cf,α,β(1 + |x|)e−(α+β+2)t.

Since ∂
∂tT

α,β
t f = Lα,βTα,β

t f and

∂

∂x
Tα,β

t f = e−(α+β+2)tTα+1,β+1
t

(
∂f

∂x

)

∂2

∂x2
Tα,β

t f = e−2(α+β+3)tTα+2,β+2
t

(
∂2f

∂x2

)

we have,
∣∣∣∣
∂

∂t
T α,β

t f(x)

∣∣∣∣ ≤ |1− x2|e−2(α+β+3)tT α+2,β+2
t

(∣∣∣∣
∂2f

∂x2

∣∣∣∣
)

(x) +

+ (|β − α + 1|+ (α + β + 2)|x|)e−(α+β+2)tT α+1,β+1
t

(∣∣∣∣
∂f

∂x

∣∣∣∣
)

(x).

Also

e−2(α+β+3)t ≤ e−(α+β+2)t, |1−x2| ≤ 1+|x|, |β−α+1|+(α+β+2)|x| ≤ Cα,β(1+|x|)
and as f has continue derivatives up to the second order, there exist a constant
Cf such that

∣∣∣∂f
∂x

∣∣∣ ≤ Cf and
∣∣∣∂2f
∂x2

∣∣∣ ≤ Cf , therefore,

∣∣∣Lα,βTα,β
t f(x)

∣∣∣ =
∣∣∣∣
∂

∂t
Tα,β

t f(x)
∣∣∣∣ ≤ Cf,α,β(1 + |x|)e−(α+β+2)t.

Now,
∂

∂t
Pα,β

t f =
1√
π

∫ ∞

0

e−u

√
u

t

2u
Lα,βTα,β

t2/4ufdu

hence, by the change of variables u = (α + β + 2)s we have
∣∣∣∣
∂

∂t
Pα,β

t f(x)
∣∣∣∣ ≤ Cf,α,β

(1 + |x|)
2
√

π

∫ ∞

0

e−uu−3/2te−(α+β+2)t2/4udu

= Cf,α,β(1 + |x|)
∫ ∞

0

e−(α+β+2)s t

2
√

π
s−3/2e−t2/4sds

= Cf,α,β(1 + |x|)
∫ ∞

0

e−(α+β+2)sµ
1/2
t (ds)

= Cf,α,β(1 + |x|)e−(α+β+2)1/2t.

By hypothesis, since we are assuming that
∫ 1

−1
f(y)µα,β(dy) = 0,

lim
t→∞

Pα,β
t f(x) = 0. (19)
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Then
∣∣∣Pα,β

t f(x)
∣∣∣ ≤

∫ ∞

t

∣∣∣∣
∂

∂s
Pα,β

s f(x)
∣∣∣∣ ds ≤ Cf,α,β

∫ ∞

t

(1 + |x|)e−(α+β+2)1/2sds

= Cf,α,β(1 + |x|)e−(α+β+2)1/2t.

¤
Remember that, since {Pα,β

t }t≥0 is an strongly continuos semigroup, we
have

lim
t→0+

Pα,β
t f(x) = f(x) (20)

Now we are ready to give the alternate representation of Dα,β
γ and Iα,β

γ ,

Proposition 9. Suppose f ∈ C2([−1, 1]) such that
∫ 1

−1
f(y)µα,β(dy) = 0,

then
Dα,β

γ f =
1

γcγ

∫ ∞

0

t−γ ∂

∂t
Pα,β

t fdt, 0 < γ < 1, (21)

Iα,β
γ f = − 1

γΓ(γ)

∫ ∞

0

tγ
∂

∂t
Pα,β

t fdt, γ > 0. (22)

Proof. Let us start proving (21). Integrating by parts in (15) we get

Dα,β
γ f(x) =

1
cγ

lim
a→0+

b→∞

∫ b

a

t−γ−1
(
Pα,β

t f(x)− f(x)
)

dt

=
1
cγ

lim
a→0+

b→∞

{
t−γ

−γ

(
Pα,β

t f(x)− f(x)
)∣∣b

a
+

1
γ

∫ b

a

t−γ ∂

∂t
Pα,β

t f(x)dt

}

=
1

γcγ

∫ ∞

0

t−γ ∂

∂t
Pα,β

t f(x)dt

since, by (19), (20) and the previous lemma, we have

lim
b→∞

(
Pα,β

b f(x)− f(x)
bγ

)
= 0

and

lim
a→0+

∣∣∣∣
Pα,β

a f(x)− f(x)
aγ

∣∣∣∣ ≤ lim
a→0+

1
aγ

∫ a

0

∣∣∣∣
∂

∂s
Pα,β

s f(x)
∣∣∣∣ ds

≤ Cf,α,β(1 + |x|) lim
a→0+

1− e−(α+β+2)1/2a

aγ
= 0.
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Let us prove now (22). Again, by integrating by parts, we have

Iα,β
γ f(x) =

1
Γ(γ)

lim
a→0+

b→∞

∫ b

a

tγ−1Pα,β
t f(x)dt

=
1

Γ(γ)
lim

a→0+

b→∞

{
tγ

γ
Pα,β

t f(x)
∣∣b
a
− 1

γ

∫ b

a

tγ
∂

∂t
Pα,β

t f(x)dt

}

= − 1
γΓ(γ)

∫ ∞

0

tγ
∂

∂t
Pα,β

t f(x)dt,

since, by the previous result

lim
b→∞

∣∣∣Pα,β
b f(x)bγ

∣∣∣ ≤ Cd,f (1 + |x|) lim
b→∞

bγe−(α+β+2)−1/2b = 0

and
lim

a→0+

∣∣Pα,β
a f(x)aγ

∣∣ = 0.

¤
Observe that the previous proposition is also true for the Jacobi polyno-

mials of order n > 0, and therefore is true for any nonconstant polynomial f

such that
∫ 1

−1
f(y)µα,β(dy) = 0.

Now let us write

Pα,β
t f(x) =

∫ ∞

0

Tα,β
s f(x)µ1/2

t (ds)

=
∫ 1

−1

[
∫ ∞

0

pα,β(s, x, y)µ1/2
t (ds)]f(y)µα,β(dy)

=
∫ 1

−1

kα,β(t, x, y)f(y)µα,β(dy),

where
kα,β(t, x, y) =

∫ ∞

0

pα,β(s, x, y)µ1/2
t (ds) (23)

and define the operator Qα,β
t as

Qα,β
t f(x) = −t

∂

∂t
Pα,β

t f(x) =
∫ 1

−1

qα,β(t, x, y)f(y)µα,β(dy), (24)

with qα,β(t, x, y) = −t ∂
∂tk

α,β(t, x, y).
Following [6] we get immediately from (21) and (22), the following formulas
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Corollary 10. Suppose f differentiable with continuos derivatives up to the
second order such that

∫ 1

−1
f(y)µα,β(dy) = 0, then we have

−γDα,β
γ f =

1
cγ

∫ ∞

0

t−γ−1Qα,β
t fdt, 0 < γ < 1, (25)

γIα,β
γ f =

1
Γ(γ)

∫ ∞

0

tγ−1Qα,β
t fdt, γ > 0. (26)

An interesting use of the family {Qα,β
t } is that it allows to give a version

of Calderón’s reproduction formula for the Jacobi measure,

Theorem 11. i) Suppose f ∈ L1([−1, 1], µα,β) such that
∫ 1

−1
f(y)µα,β(dy) =

0, then we have

f =
∫ ∞

0

Qα,β
t f

dt

t
. (27)

ii) Suppose f a polynomial such that
∫ 1

−1
f(y)µα,β(dy) = 0, then we have

f = Cγ

∫ ∞

0

∫ ∞

0

t−γsγQα,β
t

(
Qα,β

s f
) ds

s

dt

t
, 0 < γ < 1. (28)

Also, ∫ ∞

0

∫ ∞

0

t−γsγQα,β
t

(
Qα,β

s f
) ds

s

dt

t
=

∫ ∞

0

u
∂2

∂u2
Pα,β

u fdu. (29)

Formula (28) is the version of Calderón’s reproduction formula for the
Jacobi measure.

Proof. i) Using (20) and (19) we have,
∫ ∞

0

Qα,β
t f

dt

t
= lim

a→0+

b→∞
(−

∫ b

a

∂

∂t
Pα,β

t fdt) = lim
a→0+

b→∞
(−Pα,β

t f)
∣∣b
a

= f.

Let us prove (28), given f a polynomial such that
∫ 1

−1
f(y)µα,β(dy) = 0, by

Corollary 10, we have

Dα,β
γ

(
Iα,β
γ f

)
= − 1

γcγ

∫ ∞

0

t−γ−1Qα,β
t

(
Iα,β
γ f

)
dt. (30)

Now, by (26) and the linearity of Qα,β
t , we have

Qα,β
t

(
Iα,β
γ f

)
=

1
γΓ(γ)

∫ ∞

0

sγ−1Qα,β
t (Qα,β

s f)(y)ds.
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Substituting in (30)

f = Dα,β
γ

(
Iα,β
γ f

)
= Cγ

∫ ∞

0

∫ ∞

0

t−γ−1sγ−1Qα,β
t

(
Qα,β

s f
)
dsdt,

with Cγ = − 1
γ2cγΓ(γ) .

To show (29), let us integrate by parts, and by Lemma 8 we have

∫ ∞

0

u
∂2

∂u2
Pα,β

u f(x)du = u
∂

∂u
Pα,β

u f(x)
∣∣∣∣
∞

0

−
∫ ∞

0

∂

∂u
Pα,β

u f(x)du

= −
∫ ∞

0

∂

∂u
Pα,β

u f(x)du = −Pα,β
u f(x)

∣∣∞
0

= Pα,β
0 f(x) = f(x).

¤
Now let us consider the Jacobi Potential Spaces. The Jacobi Potential

space of order γ > 0, Lp
γ([−1, 1], µα,β), for 1 < p < ∞, is defined as the

completion of the polynomials with respect to the norm

‖f‖p,γ := ‖(I − Lα,β)γ/2f‖p.

That is to say f ∈ Lp
γ([−1, 1], µα,β) if, and only if, there is a sequence of

polynomials {fn} such that limn→∞ ‖fn − f‖p,γ = 0.
As in the classical case, the Jacobi Potential space Lp

γ([−1, 1], µα,β) can
also be defined as the image of Lp([−1, 1], µα,β) under the Bessel Potential
J α,β

γ , that is,

Lp
γ([−1, 1], µα,β) = J α,β

γ Lp([−1, 1], µα,β).

For the details of the proof of this equivalence, we refer to [2].
Now, let us consider some inclusion properties among Jacobi Potential

Spaces,

Proposition 12. i) If p < q, then Lq
γ([−1, 1], µα,β) ⊆ Lp

γ([−1, 1], µα,β)
for each γ > 0.

ii) If 0 < γ < δ, then Lp
δ([−1, 1], µα,β) ⊆ Lp

γ([−1, 1], µα,β) for each 0 < p <
∞.

Proof. i) For γ fixed, it follows immediately by Hölder’s inequality.
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ii) Let f be a polynomial and consider

φ = (I − Lα,β)δ/2f =
∞∑

k=0

(1 + λk)δ/2Jα,β
k f,

which is also a polynomial. Then φ ∈ Lp
δ([−1, 1], µα,β), ‖φ‖p = ‖f‖p,δ and

J α,β
(γ−δ)φ = (I−Lα,β)(γ−δ)/2φ = (I−Lα,β)γ/2f. By the Lp continuity of Bessel

Potentials,

‖f‖p,γ = ‖(I − Lα,β)γ/2f‖p = ‖J(γ−δ)φ‖p ≤ Cp‖f‖p,δ.

Now let f ∈ Lp
δ([−1, 1], µα,β). Then there exists g ∈ Lp([−1, 1], µα,β) such

that f = J α,β
δ g and a sequence of polynomials {gn} in Lp([−1, 1], µα,β) such

that limn→∞ ‖gn − g‖p = 0. Set fn = J α,β
δ gn. Then limn→∞ ‖fn − f‖p,δ = 0,

and

‖fn − f‖p,γ = ‖(I − Lα,β)γ/2(fn − f)‖p = ‖(I − Lα,β)γ/2(I − Lα,β)−δ/2(gn − g)‖p

= ‖(I − Lα,β)(γ−δ)/2(gn − g)‖p = ‖J(γ−δ)(gn − g)‖p.

By the Lp continuity of Bessel Potentials limn→∞ ‖fn − f‖p,γ = 0.
Therefore,

‖f‖p,γ ≤ ‖fn − f‖p,γ + ‖fn‖p,γ

≤ ‖fn − f‖p,γ + ‖fn‖p,δ,

taking limit as n goes to infinity, we obtain the result. ¤
Let us consider the space

Lγ([−1, 1], µα,β) =
⋃
p>1

Lp
γ([−1, 1], µα,β).

Lγ([−1, 1], µα,β) is the natural domain of Dα,β
γ . We define it in this space as

follows.
Let f ∈ Lγ([−1, 1], µα,β), then there is p > 1 such that f ∈

Lp
γ([−1, 1], µα,β) and a sequence {fn} polynomials such that limn→∞ fn = f

in Lp
γ([−1, 1], µα,β). We define for f ∈ Lγ([−1, 1], µα,β)

Dα,β
γ f = lim

n→∞
Dα,β

γ fn

in Lp([−1, 1], µα,β). The next theorem shows that Dα,β
γ is well defined and

also inequality (31) gives us a characterization of the Potential Spaces,
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Theorem 13. Let γ > 0 and 1 < p, q < ∞.

i) If {fn} is a sequence of polynomials such that limn→∞ fn = f in
Lp

γ([−1, 1], µα,β), then limn→∞Dα,β
γ fn ∈ Lp([−1, 1], µα,β) and the limit

does not depend on the choice of the sequence {fn}.
If f ∈ Lp

γ([−1, 1], µα,β)
⋂

Lq
γ([−1, 1], µα,β), then the limit does not de-

pend on the choice of p or q.

Thus Dα,β
γ is well defined on Lγ([−1, 1], µα,β).

ii) f ∈ Lp
γ([−1, 1], µα,β) if, and only if, Dα,β

γ f ∈ Lp([−1, 1], µα,β). More-
over, there exists positive constants Ap,γ and Bp,γ such that

Bp,γ‖f‖p,γ ≤ ‖Dα,β
γ f‖p ≤ Ap,γ‖f‖p,γ . (31)

Proof.
ii) First, let us note that for p =

∑∞
n=0 Jα,β

n p polynomial,

Dα,β
γ J α,β

γ p =
∞∑

n=0

(
λn

1 + λn

)γ/2

Jα,β
n p,

that is, the operator Dα,β
γ J α,β

γ is a multiplier with associated function

Φ(n) =
(

λn

1+λn

)γ/2

= h( 1
λn

) where h(z) =
(

1
z+1

)γ/2

, and therefore by
Meyer’s theorem it is Lp-continuos.

Let f be a polynomial and let φ be a polynomial such that f = J α,β
γ φ.

We have that ‖f‖p,γ = ‖φ‖p and by the continuity of the operator Dα,β
γ J α,β

γ

‖Dα,β
γ f‖p = ‖Dα,β

γ J α,β
γ φ‖p ≤ Ap,γ‖φ‖p = Ap,γ‖f‖p,γ .

To prove the converse, let us suppose that f polynomial, then Dα,β
γ f is

also a polynomial, and therefore Dα,β
γ f ∈ Lp([−1, 1], µα,β). Consider

φ = (I − Lα,β)γ/2f =
∞∑

k=0

(1 + λk)γ/2Jα,β
k f =

∞∑

k=0

(
1 + λk

λk

)γ/2

Jα,β
k (Dα,β

γ f).

The mapping

g =
∞∑

k=0

Jα,β
k g 7→

∞∑

k=0

(
1 + λk

λk

)γ/2

Jα,β
k g
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is a multiplier with associated function Φ(k) =
(

1+λk

λk

)γ/2

= h( 1
λk

) where

h(z) = (z + 1)γ/2, so by Meyer’s theorem, taking g = Dα,β
γ f we have

‖f‖p,γ = ‖φ‖p ≤ Bp,γ‖Dα,β
γ f‖p.

Thus we get (31) for polynomials. For the general case consider f ∈
Lp

γ([−1, 1], µα,β), then there exists g ∈ Lp([−1, 1], µα,β) such that f = J α,β
γ g

and a sequence {gn} of polynomials such that limn→∞ ‖gn − g‖p = 0. Let
fn = J α,β

γ gn, then limn→∞ ‖fn − f‖p,γ = 0. Then, by the continuity of the
operator Dα,β

γ J α,β
γ and as limn→∞ ‖gn − g‖p = 0,

lim
n→∞

‖Dα,β
γ (fn − f)‖p = lim

n→∞
‖Dα,β

γ J α,β
γ (gn − g)‖p = 0.

Then, as
Bp,γ‖fn‖p,γ ≤ ‖Dα,β

γ fn‖p ≤ Ap,γ‖fn‖p,γ ,

the results follows by taking the limit as n goes to infinity in this inequality.
i) Let {fn} be a sequence of polynomials such that limn→∞ fn = f in

Lp
γ([−1, 1], µα,β). Then, by (31)

lim
n→∞

‖Dα,β
γ fn‖p ≤ Bp,γ lim

n→∞
‖fn‖p,γ = Bp,γ‖f‖p,γ ,

hence, limn→∞Dα,β
γ fn ∈ Lp([−1, 1], µα,β).

Now suppose that {qn} is another sequence of polynomials such that
limn→∞ qn = f in Lp

γ([−1, 1], µα,β). By (31)

Bp,γ‖fn‖p,γ ≤ ‖Dα,β
γ fn‖p ≤ Ap,γ‖fn‖p,γ

and
Bp,γ‖qn‖p,γ ≤ ‖Dα,β

γ qn‖p ≤ Ap,γ‖qn‖p,γ .

Taking the limit as n goes to infinity

Bp,γ‖f‖p,γ ≤ lim
n→∞

‖Dα,β
γ fn‖p ≤ Ap,γ‖f‖p,γ

Bp,γ‖f‖p,γ ≤ lim
n→∞

‖Dα,β
γ qn‖p ≤ Ap,γ‖f‖p,γ ,

therefore limn→∞Dα,β
γ fn = limn→∞Dα,β

γ qn in Lp([−1, 1], µα,β) and the limit
does not depends on the choice of the sequence.

Finally, let us suppose that f ∈ Lp
γ([−1, 1], µα,β)

⋂
Lq

γ([−1, 1], µα,β)
and, without loss of generality, that p ≤ q. By Proposition 12, i),
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Lq
γ([−1, 1], µα,β) ⊆ Lp

γ([−1, 1], µα,β) and therefore f ∈ Lq
γ([−1, 1], µα,β).

Then, if {fn} is a sequence of polynomials such that limn→∞ fn = f in
Lq

γ([−1, 1], µα,β) (hence in Lp
γ([−1, 1], µα,β)), we have

lim
n→∞

Dα,β
γ fn ∈ Lq([−1, 1], µα,β) = Lp([−1, 1], µα,β)

⋂
Lq([−1, 1], µα,β).

Therefore the limit does not depends on the choice of p or q. ¤
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Divulgaciones Matemáticas Vol. 15 No. 2(2007), pp. 93–113



Fractional Integration and Fractional Differentiation. 113

[10] Meyer, P. A. Transformations de Riesz pour les lois Gaussiennes. Lec-
tures Notes in Math 1059, 1984 Springer-Verlag. 179–193.
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