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Abstract

In this article we study the fractional Integral and the fractional
Derivative for Jacobi expansion. In order to do that we obtain an anal-
ogous of P. A. Meyer’s Multipliers Theorem for Jacobi expansions. We
also obtain a version of Calderén’s reproduction formula for the Jacobi
measure. Finally, as an application of the fractional differentiation, we
get a characterization for Potential Spaces associated to the Jacobi mea-
sure.
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Resumen

En este trabajo estudiamos la integracién y diferenciacién fraccio-
naria para el caso de los desarrollos de Jacobi. Para ello obtenemos
un teorema analogo al teorema de multiplicadores de P.A. Meyer para
desarrollos de Jacobi. También obtenemos una versién de la féormula de
reproduccién de Calderén para la medida de Jacobi. Finalmente, como
una aplicaccién de la diferenciacién fraccionaria, obtenemos una carac-
terizacion de los Espacios Potenciales asociados a la medida de Jacobi.
Palabras y frases clave: Integracién fraccionaria, Derivacién fraccio-
naria, Desarrollos de Jacobi, Multiplicadores, Espacios Potenciales.

Received 2006/03/10. Revised 2006/10/18. Accepted 2006/11/06.
MSC (2000): Primary 42C10; Secondary 26A33.



94 Cristina Balderrama, Wilfredo Urbina

1 Introduction.

Let us consider (normalized) Jacobi measure

1
apldz) = 1-
M (d2) = S Bla T LA 1)

2)°(1+ 2)da, (1)

for x € [-1,1], where «,8 > —1. This normalization gives a probability
measure and it is not usually considered in classical orthogonal polynomial

theory.
The one dimensional Jacobi operator is given by
a.f d? d
£ —(l—x)d2+(/B—a—(a+ﬁ+2)x)£. (2)

It is easy to see that this is a symmetric operator on L?([—1,1], tta 3).

Let pf, 8 be the normalized Jacobi polynomials of degree n € N. Then the
family {pn’ﬁ} is an orthonormal Hilbert basis of L?([—1,1], 1a.5), that can
be obtained by the Gram—Schmidt orthogonalization process with respect to
the measure pq g, applied to the monomials. It is well known that Jacobi
polynomials are eigenfunctions of the Jacobi operator £%# with eigenvalue
—An = —n(n+a+ B+ 1), that is,

LPp2F = —nn+a+ B+ 1)p-. (3)

Since {p®#} is an orthonormal basis of L?([—1,1], 1a ), We have the or-
thogonal decomposition

L2([=1,1], pta,3) EB cnr, (4)

where, for each n, C# is the closed subspace generated by p%?. This is
called the Wiener—Jacobi chaos decomposition of L?([—1,1], ta.5).

Let J# be the orthogonal projection of L2([—1,1], yta,5) onto C<#. Then,
for f € L*([—1,1], o, 3) we have

F=> I, (5)
n=0
where JoP f = f(n)p®? with

/ F(@)P%P () 105(d2)
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Fractional Integration and Fractional Differentiation. 95

the nth-Jacobi—Fourier coefficient of f.
Let us now consider {T7""};>¢ the Jacobi semigroup. This is the Markov

operator semigroup associated to the Markov probability kernel semigroup
(see [2],[4])

(z,dy) = Ze Antpel (2)pe () e (dy) = p™F (t, 2, y) a5 (dy),
that is
T §(z) / ()P, dy) = / F@™ (b, 1)t ().

Unfortunately, there is not a reasonable explicit representation for the kernel
pa75(t7 .’I/‘, y)'

The Jacobi semigroup {Tta’ﬂ t>o is a diffusion semigroup, conservative,
symmetric, strongly continuous on LP([—1,1], ua g) of positive contractions
on LP, with infinitesimal generator LB,

Moreover, for a,, f > —5 1t can be proved that {Ta7ﬁ}t>0 is also hypercon-
tractive, that is to say that Tt is not only a contraction on L?([—1, 1], fta.3),
but also for any initial condition 1 < ¢(0) < oo there exists an increasing func-
tion ¢ : R — [¢(0), 00), such that for every f and all ¢ > 0,

1T Fllaey < 1 llaco)-

The proof that we know of this fact is an indirect one, obtained by D. Bakry
in [3], that is based in proving that the Jacobi operator, for the parameters
a,B > —1/2, satisfies a Sobolev inequality, by checking that it satisfies a
curvature-dimension inequality, and therefore a logarithmic Sobolev inequality
and then use the well known equivalency due to L. Gross [8]. A detailed proof
of this can be found in [2], see also [1]. From now on we will consider the
Jacobi semigroup for the parameters «, 5 > f%.

On the other hand, for 0 < § < 1 we define the generalized Poisson—Jacobi
semigroup of order &, {P™"°}, as

PP () = / T8 ()l (ds).

0

where {;{} are the stable measures on [0, 00) of order § *). The generalized

(*) The stable measures on [0, 00) of order § are Borel measures on [0, o0) such that its

Laplace transform verify fooo e_’\S,uf (ds) = et For § fixed, {,uf} form a semigroup with
respect to the convolution operation in the parameter § > 0.
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Poisson—Jacobi semigroup of order § is a strongly continuous semigroup on
LP([~1,1], fter,3) With infinitesimal generator (—£#)°.
In the case 6 = 1/2, we have the Poisson—Jacobi semigroup, that will be

denoted as Pta’ﬁ = Pta’ﬁ’l/Q. In this case we can explicitly compute utl/Q,
t
1/2(d8) ﬁG*tQ/ﬁlSSfS/QdS
and by Bochner’s formula we have
P = / \FT;;’/ﬁu () du. (6)
Then by (3),
Ttaﬁpaéﬁ — e Mn tpg 57
«,3,0 o «
Pt B, pnﬁ )\ntpn ﬁ'

Giving a function ® : N — R the multiplier operator associated to ® is
defined as

Tof =Y (k)JCF,

for f =322, J,?”gf, a polynomial.

If ® is a bounded function, then by Parseval’s identity, T is bounded on
L2([-1,1], fta,5)- In the case of Hermite expansions, the P.A. Meyer’s Multi-
plier Theorem [10] gives conditions over ® so that the multiplier Ty can be
extended to a continuous operator on LP for p # 2. In the next section we
will prove an analogous result for the Jacobi expansions.

In section 3 we are going to define the Fractional Integration and Differen-
tiation for Jacobi expansions, as well as Bessel Potentials associated to Jacobi
measure. Using Meyer’s multipliers Theorem we will see the LP continuity of
the Fractional Integration and of the Bessel Potentials and we give a charac-
terization of the Potential Spaces. We also study the asymptotic behavior of
the Poisson-Jacobi semigroup and we give a version of Calderon’s reproducing
formula.

2 P.A. Meyer’s Multiplier Theorem for Jacobi
expansions.

In order to establish the P.A. Meyer’s Multiplier Theorem for Jacobi expan-
sions we need some previous results. First, let us see that the orthogonal
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projections J&# can be extended to a continuous function on LP([—1,1], tta.5)-

Lemma 1. If 1 < p < oo then for every n € N, J%8 can be estended to
a continuous operator to LP([—1,1], tia.5), that will also be denoted as J&P,
that is, there exists Cy, , € RT such that

||J5”8f“p < Crpll fllps

for f e LP([—1,1], po.B)-

Proof. Let us consider p > 2 and for the initial condition ¢(0) = 2, let
to be a positive number such that q(to) = p. Taking g = J*Pf, by the
hypercontractive property, Parseval identity and Holder inequality we obtain,

TP gl = 1TP T8l < 1788 Fllz < 11 fll2 < 11£ -

Now, as Ty, J&P f = e~toAn ], f we get

n

||J1?’ﬁf”;v < Crpll fllps

with C,, , = €. For 1 < p < 2 the result follows by duality. O
We also need the following technical result,

Lemma 2. Let 1 < p < co. Then, for each m € N there exists a constant Cp,
such that

TP (L = J57 = I = = TR fllp < Coe™ ™[I £ -

Proof. Let p > 2 and for the initial condition ¢(0) = 2, let ¢y be a positive
number such that g(tg) = p.

If t < tg, since Tta’ﬁ is a contraction, by the LP- continuity of the projec-
tions

TP (1 = Jg? = = TSPl < =T = = TP fl
m—1
< A fllp+ > 18 fll
k=0
m—1
<

L+ > )| fllp-
k=0
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But since eor < ¢torm for all 0 < k < m —1 and A\, > m for all m > 1,
therefore

TP = Jg 7 = = TR (1 +me )| fllp = Cone™ | £,

<
< Crne”™(Ifllp,

with G, = (1 + meform)elom,
Now suppose t > tg. For f = Z;’;O J,?’Bf, by the hypercontractive property,

T2 (1 = Jg? = T2 fI5

= T NI

k=m

T8 2T (L =I5 = TR f I

IN

oo

= > eI

k=m
oo

= B

=m

o0
> e TSI,

=m

ke

IN
=

as \,, > m for all m > 1. Then

o0 o0 o0
ST RR < eI IB < e ST I3
k=m k=0 k=0
= 2 f|3 < e f)12
Thus
TP TP (1 — 5P — TP = = TPl < e ™[I f ]l

In particular,
T2 (A= JG 7 == TP flly = T T (T= 5 = =I5 2 £l
< e T £l = Crne™ ™| £,

with C,, = e!o™. For 1 < p < 2 the result follows by duality. O
Now, by the Minkowski integral inequality, we have an analogous result
for the generalized Poisson—Jacobi semigroup.

Lemma 3. Let 1 < p < co. Then for each m € N, there exists C,, such that
PP = 57 = I = = TP fllp < Coe™ ™ [l
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From the generalized Poisson—Jacobi semigroup let us define a new family
of operators {Pko‘ f’m}keN by the formula

a,3 _
Pk,'y,mf -

1 o _
(k—1)! /0 PRI =I5 = I = IR fat.

By the preceding lemma and the Minkowski integral inequality we have,

Proposition 4. If 1 < p < oo, then for every m € N there is a constant C,,
such that

C
18l < <2
Observe that in particular if f = p2%, n>m

1
P/?,iyﬁ,mpg’ﬁ = ng’ﬂ' (7)
n

Now we are ready to present P.A. Meyer’s Multipliers Theorem for Jacobi
expansions.

Theorem 5. If for some ng € N and 0 <y <1

1
d)(k):h(m), k > no,
k

with h an analytic function in a neighborhood of zero, then Tg, the multiplier
operator associated to ®, admits a continuous extension to LP([—1,1], pta.3)-

Proof. Let
no—1 o)
Tof =Tjf+Taf =Y ®kR)JIOF+ > @k)J37f.
k=0 k}:’l’Lo

By the lemma 1 we have that
no—1 no—1
ITsfllp < Y 19T fllp < (Z q’(k)le) 1£1lp,
k=0 k=0

that is, T4 is LP continuous. It remains to be seen that T3 is also LP
continuous.
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By the hypothesis let us assume that h can be written as h(z) =
o2 o anx™, for z in a neighborhood of zero, then

Tir= Y eI =3 (;}) Jeiy = kZ ZO e,

but since (7), for k > ny, /\WJ Pp=pob  JoPf we have

n,7y,mno

Z ZanPﬁ)’Yﬂno‘]a Bf Zanzpﬁh’gno‘] ’ﬁf
n=0 =

k=ngo n=0
o0 oo
o, B o,
D anPiyn, D R f = E  an P, f.
n=0 k=0 n=0

Since P,‘L",Yﬁ no 18 LP continuous, by proposition 4, we obtain,

T3f

T2 f 1 <> lanl1PL 0 £l

n=0
- 1
Z |aﬂ‘Cno 'yn HfHP Cno Z ‘GH‘W ”f”P
n=0 n=0 0
Therefore, Ty is continuous in LP([—1, 1], fta.3). O

3 Fractional Integration and Differentiation.

As in the classical case, for 7 > 0 we define the Fractional Integral of order -,
L‘?"ﬁ , with respect to Jacobi measure, as

157 = (L), 5)

L‘?"@ is also called Riesz Potential of order .
Observe that, since zero is an eigenvalue of £, then I,j‘”@ is not de-
fined over all L*([—1,1], i 5). Let Ilp = I — Jél”g and denote also by I,?"B

the operator (fﬁa’ﬁ)’“’/QHO. Then, this operator is well defined over all
L3([~1,1], ta5)- In particular, for Jacobi polynomials we have

1
«, Oéﬁ o,
10 = iy (9)
k
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Thus, for f a polynomial in L?([—1,1],ta,5) with Jacobi expansion
S0 P f, we have

oo 1
B — a,B
e f_EjAWJk f.
k=1 "k

For the Fractional Integral of order v > 0 we have the following integral
representation,

1 (e e)
190 f = —/ 1P fat, 10
UV S 1o

for f polynomial, where Pta’ﬁ is the Poisson—Jacobi semigroup. In order to

prove that observe that for the Jacobi polynomials, we have, by the change
of variables s = Ai/gt,

1 /OO 1 o0 1/2
— [ 0PIt ar = —/ e depp?
L) Jo vk L'(v) Jo g
1 1 /OO I a,3 1 a,
= ——= ST e dsp, " = PP
T0) 37 Jo N TERC

The Meyer’s multiplier theorem allows us to extend Iﬁ’ﬁ as a bounded
operator on LP([—1,1], ia.8), as next theorem shows.

Theorem 6. The the Fractional Integral of order -y, [,?“6 admits a continuous

extension, that it will also be denoted as denote Ifj’ﬁ, to LP([—1,1], fta,3)-

Proof. If 7/2 < 1, then I%-F is a multiplier with associated function

1 1
dh)=—==h|—-
N (AZm)

where h(z) = z, which is analytic in a neighborhood of zero. Then the results
follows immediately by Meyer’s theorem.

Now, if v/2 > 1, let us consider § € R, 0 < 8 < 1 and 6 = % Then
68 =12. Let h(z) = z°, which is analytic in a neighborhood of zero. Then we

have
1 1 1
5
<Af ) NN
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Again the results follows applying Meyer’s theorem. O
Now the Bessel Potential of order v > 0, jf’ﬁ, associated to the Jacobi
measure is defined as

T = (1= £, (1)
Observe that for the Jacobi polynomials we have

1

a,B, a,f _ «,B
j,y P = (1+>\k)w/2pk ,

and, therefore if f € L*([—1,1], ta,3) polynomial with expansion > ;- Jz"ﬁf

«, _ - 1 o,
Ty Bf_;)mjk I (12)

Again Meyer’s theorem allows us to extend Bessel Potentials to a
continuous operator on LP([—1,1], . 3),

Theorem 7. The operator J,;’"ﬁ admits a continuous extension, that it will
also be denoted as TP, to LP([—1,1], pia,3)-

Proof. Bessel Potential of order ~ is a multiplier associated to the function

/2 /2
O(k) = (ﬁ)7 ‘Let BE€R, §>1and h(z) = (B—"H)7 . Then & is an

analytic function on a neighborhood of zero and

h (Qﬁ) - (1+1>\k)7/2 = 2(k).

The results follows applying Meyer’s theorem. ([
Finally as in the classical case, we define the Fractional Derivative of order
v >0, Df;ﬁ , with respect to Jacobi measure as

B — (_posByY/2
DSP = (=L*P)V= (13)
Observe that, for the Jacobi polynomials we have,
Df;ﬂpgﬂ — )\Z/ng7ﬁ7 (14)

and therefore, by the density of the polynomials in LP([—1,1], pag), 1 <p <
00, DIP can be extended to LP([—1,1], fta,g)-
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For the Fractional Derivative of order 0 < v < 1 we also have a integral
representation,

1 oo
Detf— - [T R - pat (15)
& Jo
for f polynomial, where ¢, = fooo 5777 Y(e™® — 1)ds, since, for the Jacobi

polynomials, we have, by the change of variables s = )\,16/ Qt,

% 1 paB B B 2 1 A2 B
; T (P = py”) dt ; 77 (em M P = 1) dtp)

= )\Z/2 /000 s e = 1) dspg’ﬁ
= )‘Z:/QC’Y pgﬁ'
Now, if f is a polynomial, by (9) and (14) we have,
I99(DSP f) = DSP(ISP f) = o f. (16)

In [5] H. Bavinck has defined Fractional Integration and Differentiation for
Jacobi expansions. Nevertheless the motivation, the methods and techniques
use in his paper are totally different from ours.

Now we are going to give an alternative representation of D;"’B and Iﬁjﬁ
that are very useful in what follows. Before that, we need the following
technical result of the asymptotic behavior of { P }e>0 at infinity.

Lemma 8. If fil F(Y)tta,p(dy) =0 and f has continuos derivatives up to the
second order, then

9
ot

e —(a 1/2
PP f(w)| < Cap(l + |a] e (HIH2 08, (17)

As a consequence we have that the Poisson-Jacobi semigroup {Pta’ﬁ}tzo, has

exponential decay on (Cg’ﬂ)l = &b, CeB. More precisely, if we have
1

Jo1 fW)pap(dy) = 0,

o —(« 1/2
PP f(2)] < Cfap(1+ [a])em HAT2E (18)
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%Ttaﬁf(x)‘ < Chap(l+ |z])e=(atB+2)t,

Since 2T;" 5, f=LoPTP f and

0 o
—Tta’ﬁf — e—(a+6+2)tTta+1,B+1 (f)

ox ox
0 ’ﬁf — o 2atp+3)tpat2, 042 027f
922 T t Ox?
we have,
a o, 3 2| —2(a+B+3)tpa+2,6+2 82f
_ < _ s o]
ST @) < e 7 211 @)+
(8= a1+ (g s (19)) ),
Also

e 2OFBENE o= (HBEDE 1122 < 14z, |B—at1|+(a+8+2)|z| < Cas(l+]|])

and as f has continue derlvatwes up to the second order, there exist a constant
C't such that ‘af’ < Cy and ’ < Cy, therefore,

dx?

< Crap(l+ |z))em (o2,

o« [0 8 (67
£ )| = | S o)

Now,
9 pap Fe" b apras
ot By = \f Vu 2u £ ﬁTtaQ/‘*“fdu

hence, by the change of variables u = (a +  + 2)s we have

0

a,B
P f(2)

(oo}
= Cf,oe,ﬁ(lg_\/fl)/ ety 3/ 24— (atB+2)E? /du g
™ Jo

o —( S t
= Crap(l+|z) / e (++2)

_ 42
s 3/2e t /4sd8

2/
= Crap(l+ W)/ 6_(a+6+2)sui/2(ds)
0
_ Cf,a,ﬁ(l + ‘x|)67(a+,8+2)1/2t.
By hypothesis, since we are assuming that f_ll F@W)pa,p(dy) =0,

Jim PP () = 0. (19)
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Then

[P f(a)

IN

o0 8 a7ﬁ
||

(1 + |z|)e @B+t

ds < nyaﬁ/ 1+ \xl)e_(”ﬁ“)”“ds
t

Cta,p

O
Remember that, since {Pta’ﬁ }i>0 is an strongly continuos semigroup, we
have

lim P77 f(z) = f(z) (20)

t—0t
Now we are ready to give the alternate representation of D?‘/’ﬁ and Iﬁvﬁ ,

Proposition 9. Suppose f € C?([-1,1]) such that f_ll FW)pa,g(dy) = 0,
then

1 e 0
DM f=— [ 7= pPPrat, 0<y<1, 21
v ’Yc'y/o o’ ! ! 2
1 < 0
[efp o L / Db s 0. 22)
K () Jo ot (

Proof. Let us start proving (21). Integrating by parts in (15) we get
1 b
DPf(z) = — lim [ 77! (Pfﬁ fla) - f(x)) dt

C'\/ a—)O+ a
b—o0

1 AT 1/ 0
= — lim {t (Pt ’ﬁf(x)ff(z))|z+;/a o ﬁf(x)dt}

gzt
1 > J _o

= — | 7 =PMPf(x)dt
YCy Jo ot

since, by (19), (20) and the previous lemma, we have

- (Pﬁfwfu) _

b—o0 by

and
Pa7ﬁ _ 1 a
lim |2 f(@) = fz) < lim —/ 2Ps‘lﬁf(x) ds
a—0+ a” a—0t a” 0 Js
1 — e (@tB+2) %
S Cpap(i+fe]) m == =0,
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Let us prove now (22). Again, by integrating by parts, we have

1 b
I9Ff(z) = —— lim 11 PP £ () dt
Y f( ) F(’)/) %_)OJr u t f( )

1 tY y 1 (% 8
= — lim {—P*f(x 77/ tWPa’ﬁfxdt}
I'(7) %:22{7 S @) Y Jo Ot! @)

1 <0
= 2 a,
ww/o T

since, by the previous result
lim ‘ngvﬁf(x)b'y‘ < Cd’f(l 4 |.’I)|) lim baye_(a+6+2)71/2b -0

and
lim [P f(z)a?| = 0.

a—0t

|
Observe that the previous proposition is also true for the Jacobi polyno-
mials of order n > 0, and therefore is true for any nonconstant polynomial f

1
such that [, f(y)ta,p(dy) = 0.
Now let us write

PP f(a) = / T f ()l (ds)

0

-/ / " 58 s,y (ds)) £ (9) 1 ()

-1

1
/ KB (t, 2, y) f () a6 (dy),

—-1
where

KOt y) = / PO (s, . y)u/ (ds) (23)
0

and define the operator Q" as

0oy — 10 pady _ [ s d 24
Q1) = g 1w = [t ) sy, (20)

1

with ¢*8(t,z,y) = —t S k>0 (t, z,y).
Following [6] we get immediately from (21) and (22), the following formulas
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Corollary 10. Suppose f differentiable with continuos derivatives up to the
second order such that f_ll F (W) ta,p(dy) = 0, then we have

1 oo
Dy = [T a0 < <1, (25)
v Jo
1 oo
a,fpr y—=1Hop
~I ff—/ QYT fdt, v > 0. 26
K L'(y) Jo ’ (26)

An interesting use of the family {Q?’g } is that it allows to give a version
of Calderén’s reproduction formula for the Jacobi measure,

Theorem 11. i) Suppose f € L*([~1,1], o 3) such that f_ll F(W)pa,p(dy) =
0, then we have

*° d
i=[ sl (27)
0

it) Suppose f a polynomial such that f_ll F@W)pa,g(dy) =0, then we have

feo [T [Tt @ S 0<a<t o)
0 0

s t’
Also,

o[ ds dt < 92
- Y OB (Ha.B — a,B
/0 /0 t7757Q¢" (Q7 f) - /0 uBUQP“ fdu. (29)

Formula (28) is the version of Calderén’s reproduction formula for the
Jacobi measure.

Proof. i) Using (20) and (19) we have,

°° dt b9 b

a,f T a,3 1 o, _

| e = = [ SRt i) = i PO, = .
b—oo b—oo

Let us prove (28), given f a polynomial such that fi1 F(Y)ta,p(dy) = 0, by
Corollary 10, we have

1 o o
D (130 g) = = [ (i) i (30

Now, by (26) and the linearity of Q. we have

QP (150 ) = 7%(7) /0 QR QP F) (y)ds.
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Substituting in (30)
f=DP(I3Pf) = / / tT QNP (QYP F) dsdt,

v Y2ey ()
To show (29), let us integrate by parts, and by Lemma 8 we have

/ =P fa)du

— / —P"“ﬁf (z)du = PP f ()]
By f(z) = f(@).

[ ums i = ()
0 a

O

Now let us consider the Jacobi Potential Spaces. The Jacobi Potential

space of order v > 0, LZ([~1,1], ta,p), for 1 < p < oo, is defined as the
completion of the polynomials with respect to the norm

[ fllpy = 111 = EOC’B)WQpr-

That is to say f € LE([~1,1], pta,s) if, and only if, there is a sequence of
polynomials {f,} such that lim, . || fn — f|lp,y = 0.

As in the classical case, the Jacobi Potential space L?([—1,1], tta,5) can
also be defined as the image of LP([—1,1], o 3) under the Bessel Potential
TP, that is,

Lg([_L 1}»/‘0(,,3) = jwa’ﬁLp([_lv 1]7/1“04,,@)'

For the details of the proof of this equivalence, we refer to [2].
Now, let us consider some inclusion properties among Jacobi Potential
Spaces,

Proposition 12. i) If p < g, then Li([-1,1], pap) € LE([-1,1]; pta,p)
for each v > 0.

i) If 0 <y <6, then L5([—1,1], pta,8) € LE([=1,1], pta,3) for each 0 < p <
0.

Proof. i) For v fixed, it follows immediately by Holder’s inequality.

Divulgaciones Matemadticas Vol. 15 No. 2(2007), pp. 93-113



Fractional Integration and Fractional Differentiation. 109

ii) Let f be a polynomial and consider

o= (I—L30)2f =3 (1+M) 2T,
k=0

which is also a polynomial. Then ¢ € LY([—1,1], ta,8), [|9llp = || fllp,s and
J((,yy"_ﬁé)(b = (I—L>P)0=9/2¢ = (I— £>P)¥/2f. By the LP continuity of Bessel
Potentials,

||f||p,7 = ||(I - ‘Caﬁ)ﬂ/pf“p = ||\7(776)¢||p < Cp”pr,cS-

Now let f € LY([—1,1], fta,3). Then there exists g € LP([—1,1], pta,3) such
that f = jéa’ﬁg and a sequence of polynomials {g,} in LP([—1,1], ta,s) such
that lim,, . ||gn — g|l, = 0. Set f,, = jéa’ﬁgn. Then limy, o0 || fr — fllp,s = 0,
and

I fn = Fllon= T = L2272 (f = Pllp = 1T = £27)72(1 = £2%)"" (g = g)lI»
= 1T = 222 (g0 = g)llp = | Ty—5)(9n — 9)llp-

By the L? continuity of Bessel Potentials lim, o || fr — fllp.y = 0.

Therefore,
1oy < Wfn = Fllpy + [ fnllpy
< o = Fllpsy + [1fnllp.ss
taking limit as n goes to infinity, we obtain the result. O

Let us consider the space

LW([_L 1], pa,p) = U Lg([_lvl]aﬂa,ﬁ)'

L ([<1,1], pta,) is the natural domain of D3#. We define it in this space as
follows.

Let f € L,([-1,1],pta,3), then there is p > 1 such that f €
LE([-1,1], ta,p) and a sequence {f,} polynomials such that lim, .. fn = f
in L2 ([~1,1], pta,p)- We define for f € L, ([~1,1], pta,p)

a,B e 1: a,3
D3P f = lim DJ"f,

n—oo

in LP([—1,1], fta,3). The next theorem shows that D7 is well defined and
also inequality (31) gives us a characterization of the Potential Spaces,
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Theorem 13. Letv >0 and 1 < p,q < .

i) If {fn} is a sequence of polynomials such that lim, .o fn = f in
LE([=1,1], pta,p), then lim, o Df;ﬁfn € LP([-1,1], pta,8) and the limit
does not depend on the choice of the sequence {f,}.

If f € LE([=1,1], pra,p) N LA([=1, 1], ptar,3), then the limit does mot de-
pend on the choice of p or q.

Thus D3P is well defined on L([=1,1], fta,3)-

ii) f € LE([=1,1], pa,p) if, and only if, D?Y"Bf € LP([-1,1], pa,3). More-
over, there exists positive constants Ay, and By,  such that

Byl fllpy < HD»?”BJCHP < Ap Al fllp- (31)
Proof.
i) First, let us note that for p =Y, J%#p polynomial,
ban (A N s
DB goBy — n a,

that is, the operator Di‘ﬁjﬁ’ﬁ is a multiplier with associated function
A v/2
o(n) = (2%
Meyer’s theorem it is LP-continuos.
Let f be a polynomial and let ¢ be a polynomial such that f = jv‘x’ﬁqb.

We have that || f||,~ = ||¢||, and by the continuity of the operator D,‘Y"ﬁ],f‘”g

v/2
= h(s-) where h(z) = (zil) , and therefore by

||D$’Bf||p = ||D3’5~7$’B¢Hp < Apslldlly = Ap |l fllp-

To prove the converse, let us suppose that f polynomial, then D?{"B fis
also a polynomial, and therefore D f € LP([=1,1], ta,5). Consider

o S wsp o (LM s e
p=(I-L ’5)7/2f2(1+)\k)7/2<]k”3f2( " ’“) TP (DO f).
k=0

The mapping

= 8 = 14+ Mg /2 8
g:ZJk’gHZ< o > Jp g
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v/2
is a multiplier with associated function ®(k) = (%) = h(/\—lk) where

h(z) = (z + 1)7/2, so by Meyer’s theorem, taking g = Dj‘/“ﬂf we have

[ fllpy = @l < Bp,’y”nyy’ﬁpr-

Thus we get (31) for polynomials. For the general case consider f €
LP([~1,1], fta,3), then there exists g € LP([—1,1], jto, ) such that f = J>Fg
and a sequence {g,} of polynomials such that lim, .« ||gn — g|l, = 0. Let
fn = Jff"ﬁgn, then limy, o || fn — fllp,y = 0. Then, by the continuity of the
operator D,‘j"ﬂj,f‘ﬁ and as limy, 0 ||gn — gllp =0,

Jim [ DSP(fr = fllp = lim [ DSPT (g — g)ll, = 0.

Then, as
Byl fallpy < ||D?f’ﬁfn||p < ApAllfallpys

the results follows by taking the limit as n goes to infinity in this inequality.
i) Let {f.} be a sequence of polynomials such that lim, . f, = f in
LE([-1,1], pta,p). Then, by (31)

nh_)n;o ||D(yx’ﬁfn||p < Bpy nll—>H;o [ fallpy = Byl fllps

hence, lim,,_ o Di;"ﬂfn € LP([-1,1), e, )-
Now suppose that {g,} is another sequence of polynomials such that

limy, o0 gn = f in LE([~1,1], pta,5)- By (31)

BPa’Y”fn

py S ||D$’Bfn||p < Apy

[ fullon

and

By llgnllpy < ||D$’ﬂ%||p < ApAllanllpy-

Taking the limit as n goes to infinity

By fllpry < nlggo ||D»Oyt’ﬁfn||p < Ap I fllpy

Byl fllpry < nlingo ||D$”8‘Jn||p < Ap Al fllps

therefore limy, oo DS f, = limy oo DS P gy, in LP([—1,1], f1q,3) and the limit
does not depends on the choice of the sequence.

Finally, let us suppose that f € LE([=1,1], pta,5) N LL([~1,1], tta,s)
and, without loss of generality, that p < ¢. By Proposition 12, ),
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L?,([—l,l],ua,ﬁ) C L’W’([—l,l],,ua’@) and therefore f € Lg([—l,l],uaﬁ).
Then, if {f,} is a sequence of polynomials such that lim, . f, = f in
Li([-1,1], pta,p) (hence in LE([~1,1], pta,5)), We have

lim D$7Bfn € L([-1, 1]»//*a,ﬁ) = L*([-1, 1];,”04,[3) nLq([_lv ”»/la,ﬁ)'

n—oo

Therefore the limit does not depends on the choice of p or g. O
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