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Abstract

In this paper we study Weyl’s theorem, a-Weyl’s theorem, and prop-
erty (w) for bounded linear operators on Banach spaces. These theo-
rems are treated in the framework of local spectral theory and in par-
ticular we shall relate these theorems to the single-valued extension
property at a point. Weyl’s theorem is also described by means some
special parts of the spectrum originating from Kato theory.
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Resumen

En este art́ıculo estudiamos el teorema de Weyl, el teorema a-Weyl
y la propiedad (w) para operadores lineales acotados sobre espacios de
Banach. Estos teoremas se tratan en el contexto de la teoŕıa espec-
tral local y en particular relacionamos estos teoremas con la propiedad
de extensin univaluada en un punto. El teorema de Weyl se describe
también mediante algunas partes especiales el espectro derivados de la
teoŕıa de Kato.
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1 Introduction and definitions

In 1909 H. Weyl [39] studied the spectra of all compact perturbations T +K of
a hermitian operator T acting on a Hilbert space and showed that λ ∈ C be-
longs to the spectrum σ(T +K) for every compact operator K precisely when
λ is not an isolated point of finite multiplicity in σ(T ). Today this classical
result may be stated by saying that the spectral points of a hermitian operator
T which do not belong to the Weyl spectrum are precisely the eigenvalues hav-
ing finite multiplicity which are isolated point of the spectrum. More recently
Weyl’s theorem, and some of its variant, a-Weyl’s theorem and property (w),
has been extended to several classes of operators acting in Banach spaces by
several authors. In this expository article Weyl’s theorem, a-Weyl’s theorem
will be related to an important property which has a leading role on local
spectral theory: the single-valued extension theory. Other characterizations
of Weyl’s theorem and a-Weyl’s theorem are given by using special parts of
the spectrum defined in the context of Kato decomposition theory. In the last
part we shall characterize property (w), recently studied in [12].

We begin with some standard notations on Fredholm theory. Throughout
this note by L(X) we will denote the algebra of all bounded linear opera-
tors acting on an infinite dimensional complex Banach space X. For every
T ∈ L(X) we shall denote by α(T ) and β(T ) the dimension of the kernel ker T
and the codimension of the range T (X), respectively. Let

Φ+(X) := {T ∈ L(X) : α(T ) < ∞ and T (X) is closed}
denote the class of all upper semi-Fredholm operators, and let

Φ−(X) := {T ∈ L(X) : β(T ) < ∞}
denote the class of all lower semi-Fredholm operators. The class of all semi-
Fredholm operators is defined by Φ±(X) := Φ+(X) ∪Φ−(X), while the class
of all Fredholm operators is defined by Φ(X) := Φ+(X) ∩ Φ−(X). The index
of a semi-Fredholm operator is defined by ind T := α(T ) − β(T ). Recall
that the ascent p := p(T ) of a linear operator T is the smallest non-negative
integer p such that ker T p = ker T p+1. If such integer does not exist we put
p(T ) = ∞. Analogously, the descent q := q(T ) of an operator T is the smallest
non-negative integer q such that T q(X) = T q+1(X), and if such integer does
not exist we put q(T ) = ∞. It is well-known that if p(T ) and q(T ) are both
finite then p(T ) = q(T ), see [30, Proposition 38.3]. Other important classes of
operators in Fredholm theory are the class of all upper semi-Browder operators

B+(X) := {T ∈ Φ+(X) : p(T ) < ∞},
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and the class of all lower semi-Browder operators

B−(X) := {T ∈ Φ−(X) : q(T ) < ∞}.

The two classes B+(X) and B−(X) have been introduced in [28] and studied
by several other authors, for instance [37]. The class of all Browder opera-
tors (known in the literature also as Riesz-Schauder operators) is defined by
B(X) := B+(X) ∩ B−(X). Recall that a bounded operator T ∈ L(X) is said
to be a Weyl operator if T ∈ Φ(X) and ind T = 0. Clearly, if T is Browder
then T is Weyl, since the finiteness of p(T ) and q(T ) implies, for a Fredholm
operator, that T has index 0, see Heuser [30, Proposition 38.5].

The classes of operators defined above motivate the definition of several
spectra. The upper semi-Browder spectrum of T ∈ L(X) is defined by

σub(T ) := {λ ∈ C : λI − T /∈ B+(X)},

the lower semi-Browder spectrum of T ∈ L(X) is defined by

σlb(T ) := {λ ∈ C : λI − T /∈ B−(X)},

while the Browder spectrum of T ∈ L(X) by

σb(T ) := {λ ∈ C : λI − T /∈ B(X)}.

The Weyl spectrum of T ∈ L(X) is defined by

σw(T ) := {λ ∈ C : λI − T is not Weyl}.

We have that σw(T ) = σw(T ∗), while

σub(T ) = σlb(T ∗), σlb(T ) = σub(T ∗).

Evidently,
σw(T ) ⊆ σb(T ) = σw(T ) ∪ acc σ(T ),

where we write acc K for the accumulation points of K ⊆ C, see [1, Chapter
3].
For a bounded operator T ∈ L(X) let us denote by

p00(T ) := σ(T ) \ σb(T ) = {λ ∈ σ(T ) : λI − T is Browder}.

and, if we write iso K for the set of all isolated points of K ⊆ C, then

π00(T ) := {λ ∈ iso σ(T ) : 0 < α(λI − T ) < ∞}
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will denote the set of isolated eigenvalues of finite multiplicities. Obviously,

p00(T ) ⊆ π00(T ) for every T ∈ L(X). (1)

Following Coburn [17], we say that Weyl’s theorem holds for T ∈ L(X) if

∆(T ) := σ(T ) \ σw(T ) = π00(T ), (2)

while we say that T satisfies Browder’s theorem if

σ(T ) \ σw(T ) = p00(T ),

or equivalently, σw(T ) = σb(T ). Note that

Weyl’s theorem ⇒ Browder’s theorem,

see, for instance [1, p. 166].
The classical result of Weyl shows that for a normal operator T on a

Hilbert space then the equality (2) holds. Weyl’s theorem has, successively,
extended to several classes of operators, see [3] and the classes of operators
(a)-(i) mentioned after Theorem 2.2.

The single valued extension property dates back to the early days of local
spectral theory and was introduced by Dunford [23], [24]. This property has
a basic role in local spectral theory, see the recent monograph of Laursen and
Neumann [31] or Aiena [1]. In this article we shall consider a local version
of this property, which has been studied in recent papers by several authors
[10], [6], [11], and previously by Finch [25], and Mbekhta [32].

Let X be a complex Banach space and T ∈ L(X). The operator T is said
to have the single valued extension property at λ0 ∈ C (abbreviated SVEP
at λ0), if for every open disc U of λ0, the only analytic function f : U → X
which satisfies the equation (λI − T )f(λ) = 0 for all λ ∈ U is the function
f ≡ 0.
An operator T ∈ L(X) is said to have the SVEP if T has the SVEP at every
point λ ∈ C.

Evidently, an operator T ∈ L(X) has the SVEP at every point of the
resolvent ρ(T ) := C\σ(T ). The identity theorem for analytic function ensures
that every T ∈ L(X) has the SVEP at the points of the boundary ∂σ(T ) of the
spectrum σ(T ). In particular, every operator has the SVEP at every isolated
point of the spectrum.

The quasi-nilpotent part of T is defined by

H0(T ) := {x ∈ X : lim
n→∞

‖Tnx‖ 1
n = 0}.
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It is easily seen that ker (Tm) ⊆ H0(T ) for every m ∈ N and T is quasi-
nilpotent if and only if H0(T ) = X, see [38, Theorem 1.5].

The analytic core of T is the set K(T ) of all x ∈ X such that there exists
a sequence (un) ⊂ X and δ > 0 for which x = u0, and Tun+1 = un and
‖un‖ ≤ δn‖x‖ for every n ∈ N. It easily follows, from the definition, that
K(T ) is a linear subspace of X and that T (K(T )) = K(T ). Recall that
T ∈ L(X) is said bounded below if T is injective and has closed range. Let
σa(T ) denote the classical approximate point spectrum of T , i.e. the set

σa(T ) := {λ ∈ C : λI − T is not bounded below},
and let

σs(T ) := {λ ∈ C : λI − T is not surjective}
denote the surjectivity spectrum of T .

Theorem 1.1. For a bounded operator T ∈ L(X), X a Banach space, and
λ0 ∈ C the following implications hold:

(i) H0(λ0I − T ) closed ⇒ T has SVEP at λ0 [6].
(ii) If σa(T ) does not cluster at λ0 then T has SVEP at λ0, [11].
(iii) If σs(T ) does not cluster at λ0 then T ∗ has SVEP at λ0, [11].
(iv) If p(λ0I − T ) < ∞ then T has SVEP at λ0 [10];
(v) If q(λ0I − T ) < ∞ then T ∗ has SVEP at λ0 [10].

Definition 1.2. An operator T ∈ L(X), X a Banach space, is said to be
semi-regular if T (X) is closed and ker T ⊆ T∞(X), where

T∞(X) :=
⋂

n∈N
Tn(X)

denotes the hyper-range of T . An operator T ∈ L(X) is said to admit a
generalized Kato decomposition at λ, abbreviated a GKD at λ, if there exists
a pair of T -invariant closed subspaces (M, N) such that X = M ⊕ N , the
restriction λI − T |M is semi-regular and λI − T |N is quasi-nilpotent.

A relevant case is obtained if we assume in the definition above that λI −
T |N is nilpotent. In this case T is said to be of Kato type at λ, see for details
[1]. Recall that every semi-Fredholm operator is of Kato type at 0, by the
classical result of Kato, see [1, Theorem 1.62]. Note that a semi-Fredholm
operator need not to be semi-regular. A semi-Fredholm operator T is semi-
regular precisely when its jump j(T ) is equal to zero, see [1, Theorem 1.58].
The following characterizations of SVEP for operators of Kato type have been
proved in [6] and [11].
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Theorem 1.3. [1, Chapter 3] If T ∈ L(X) is of Kato type at λ0 then the
following statements are equivalent:

(i) T has SVEP at λ0;

(ii) p(λ0I − T ) < ∞;

(iii) σa(T ) does not cluster at λ0;

(iv) H0(λ0I − T ) is closed.

If λ0I − T ∈ Φ±(X) then the assertions (i)–(iv) are equivalent to the
following statement:

(v)H0(λ0I − T ) is finite-dimensional.

If λ0I−T is semi-regular then the assertions (i)–(iv) are equivalent to the
following statement:

(vi) λ0I − T is injective.

Dually, we have:

Theorem 1.4. [1, Chapter 3] If T ∈ L(X) is of Kato type at λ0 then the
following statements are equivalent:

(i) T ∗ has SVEP at λ0;

(ii) q(λ0I − T ) < ∞;

(iii) σs(T ) does not cluster at λ0;

If λ0I − T ∈ Φ±(X) then the assertions (i)–(iii) are equivalent to the
following statement:

(iv) K(λ0I − T ) is finite-codimensional.

If λ0I−T is semi-regular then the assertions (i)–(iv) are equivalent to the
following statement:

(vi) λ0I − T is surjective.

2 Weyl’s theorem

In this section we shall see that the classes of operators satisfying Weyl’s
theorem is rather large. First we give a precise description of operators which
satisfy Weyl’s theorem by means of the localized SVEP.

Theorem 2.1. ([2] [4] [22]) If T ∈ L(X) then the following assertions are
equivalent:

(i) Weyl’s theorem holds for T ;

Divulgaciones Matemáticas Vol. 15 No. 2(2007), pp. 123–142



Weyl’s theorems and Kato spectrum 129

(ii) T satisfies Browder’s theorem and π00(T ) = p00(T );

(iii) T has SVEP at every point λ /∈ σw(T ) and π00(T ) = p00(T );

(iv) T satisfies Browder’s theorem and is of Kato type at all λ ∈ π00(T ).

The conditions p00(T ) = π00(T ) is equivalent to several other conditions,
see [1, Theorem 3.84]. Let P0(X), X a Banach space, denote the class of all
operators T ∈ L(X) such that there exists p := p(λ) ∈ N for which

H0(λI − T ) = ker (λI − T )p for all λ ∈ π00(T ). (3)

The condition (3), and in general the properties of the quasi-nilpotent part
H0(λI − T ) as λ ranges in certain subsets of C, seems to have a crucial role
for Weyl’s theorem, see [3]. In fact, we have the following result.

Theorem 2.2. T ∈ P0(X) if and only if p00(T ) = π00(T ). In particular, if
T has SVEP then Weyl’s theorem holds for T if and only if T ∈ P0(X).

Theorem 2.2 is very useful in order to show whenever Weyl’s theorem
holds. In fact, as we see now, a large number of the commonly considered
operators on Banach spaces and Hilbert spaces have SVEP and belong to the
class P0(X).

(a) A bounded operator T ∈ L(X) on a Banach space X is said to be
paranormal if ‖Tx‖2 ≤ ‖T 2x‖‖x‖ for all x ∈ X. T ∈ L(X) is called totally
paranormal if λI−T is paranormal for all λ ∈ C. For every totally paranormal
operator it is easy to see that

H0(λI − T ) = ker (λI − T ) for all λ ∈ C. (4)

The condition (4) entails SVEP by (i) of Theorem 1.1 and, obviously
T ∈ P0(X), so Weyl’s theorem holds for totally paranormal operators. Weyl’s
theorem holds also for paranormal operators on Hilbert spaces, since these
operators satisfies property (3) and have SVEP, see [2]. Note that the class
of totally paranormal operators includes all hyponormal operators on Hilbert
spaces H. In the sequel denote by T ′ the Hilbert adjoint of T ∈ L(H). The
operator T ∈ L(H) is said to be hyponormal if

‖T ′x‖ ≤ ‖Tx‖ for all x ∈ X.

A bounded operator T ∈ L(H) is said to be quasi-hyponormal if

(T ′T )2 ≤ T ′2T 2
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. Quasi-normal operators are paranormal, since these operators are hyponor-
mal, see Conway [18].

An operator T ∈ L(H) is said to be *-paranormal if

‖T ′x‖2 ≤ ‖T 2x‖
holds for all unit vectors x ∈ H. T ∈ L(H) is said to be totally *-paranormal
if λI − T is *-paranormal for all λ ∈ C. Every totally ∗-paranormal operator
T satisfies property (4), see [29], and hence it satisfies Weyl’s theorem.

(b) The condition (4) is also satisfied by every injective p-hyponormal
operator, see [13], where an operator T ∈ L(H) on a Hilbert space H is said
to be p-hyponormal, with 0 < p ≤ 1, if (T ′T )p ≥ (TT ′)p, [13].

(c) An operator T ∈ L(H) is said to be log-hyponormal if T is invertible
and satisfies log (T ′T ) ≥ log (TT ′). Every log-hyponormal operator satisfies
the condition (4), see [13].

(d) A bounded operator T ∈ L(X) is said to be transaloid if the spectral
radius r(λI − T ) is equal to ‖λI − T‖ for every λ ∈ C. Every transaloid
operator satisfies the condition (4), see [19].

(e) Given a Banach algebra A, a map T : A → A is said to be a multiplier
if (Tx)y = x(Ty) holds for all x, y ∈ A. For a commutative semi-simple
Banach algebra A, let M(A) denote the commutative Banach algebra of all
multipliers, [31]. If T ∈ M(A), A a commutative semi-simple Banach algebra,
then T ∈ L(A) and the condition (4) is satisfied, see [6]. In particular, this
condition holds for every convolution operator on the group algebra L1(G),
where G is a locally compact Abelian group.

(f) An operator T ∈ L(X), X a Banach space, is said to be generalized
scalar if there exists a continuous algebra homomorphism Ψ : C∞(C) → L(X)
such that

Ψ(1) = I and Ψ(Z) = T,

where C∞(C) denote the Fréchet algebra of all infinitely differentiable complex-
valued functions on C, and Z denotes the identity function on C. An operator
similar to the restriction of a generalized scalar operator to one of its closed
invariant subspaces is called subscalar. The interested reader can find a well
organized study of these operators in [31]. Every subscalar operator satisfies
the following property H(p):

H0(λI − T ) = ker (λI − T )p for all λ ∈ C. (5)

for some p = p(λ) ∈ N, see [34]. The condition (5) implies SVEP, by Theo-
rem 1.1, and by Theorem 2.2 is is obvious that Weyl’s theorem holds for T
whenever (5) is satisfied.
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(g) An operator T ∈ L(H) on a Hilbert space H is said to be M -hyponormal
if there is M > 0 for which TT ′ ≤ MT ′T . M -hyponormal operators, p-
hyponormal operators, log-hyponormal operators, and algebraically hyponor-
mal operators are subscalar, so they satisfy the condition (5), see [34]. Also
w-hyponormal operators on Hilbert spaces are subscalar, see for definition and
details [16].

(h) An operator T ∈ L(X) for which there exists a complex non constant
polynomial h such that h(T ) is paranormal is said to be algebraically paranor-
mal. If T ∈ L(H) is algebraically paranormal then T satisfies the condition
(3), see [2], but in general the condition (5) is not satisfied by paranormal
operators, (for an example see [8, Example 2.3]). Since every paranormal op-
erator satisfies SVEP then, by Theorem 2.40 of [1], every algebraically para-
normal operator has SVEP, so that Weyl’s theorem holds for all algebraically
paranormal operators, see also [27].

(i) An operator T ∈ L(X) is said to be hereditarily normaloid if every re-
striction T |M to a closed subspace of X is normaloid, i.e. the spectral radius
of T |M coincides with the norm ‖T |M‖. If, additionally, every invertible part
of T is also normaloid then T is said to be totally hereditarily normaloid.

Let CHN denote the class of operators such that either T is totally hered-
itarily normaloid or λI − T is hereditarily normaloid for every λ ∈ C. The
class CHN is very large; it contains p-hyponormal operators, M-hyponormal
operators, paranormal operators and w-hyponormal operators, see [26]. Also
every totally ∗-paranormal operator belongs to the class CHN . Note that
every operator T ∈ CHN satisfies the condition (3) with p(λ) = 1 for all
λ ∈ π00(T ), see [21], so that T ∈ P0(X). Therefore, if T ∈ CHN has SVEP
then Weyl’s theorem holds for T .

(l) Tensor products Z = T1

⊗
T2 and multiplications Z = LT1RT2 do not

inherit Weyl’s theorem from Weyl’s theorem for T1 and T2 (here we assume
that the tensor product X1

⊗
X2 of the Banach spaces X1 and X2 is complete

with respect to a “reasonable uniform crossnorm”). Also, Weyl’s theorem
does not transfer from Z to Z∗. We prove that if Ti, i = 1, 2, satisfies
Browder’s theorem, or equivalently Ti has SVEP at points λ /∈ σw(Ti), and if
the operators Ti are Kato type at the isolated points of σ(Ti), then both Z
and Z∗ satisfy Weyl’s theorem ([7].

Weyl’s theorem and Browder’s theorem may be characterized by means
of certain parts of the spectrum originating from Kato decomposition theory.
To see this, let us denote by σk(T ) the Kato spectrum of T ∈ L(X) defined
by

σk(T ) := {λ ∈ C : λI − T is not semi-regular}.
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Note that σk(T ) is a non-empty compact set of C containing the topological
boundary of σ(T ), see [1, Theorem 1.5]. A bounded operator T ∈ L(X) is
said to admit a generalized inverse S ∈ L(X) if TST=T. It is well known that
T admits a generalized inverse if and only if both the subspaces kerT and
T (X) are complemented in X. Every Fredholm operator admits a generalized
inverse, see Theorem 7.3 of [1]. A ”complemented” version of semi-regular
operators is given by the Saphar operators: T ∈ L(X) is said to be Saphar if
T is semi-regular and admits a generalized inverse. The Saphar spectrum is
defined by

σsa(T ) := {λ ∈ C : λI − T is not Saphar}.
Clearly, σk(T ) ⊆ σsa(T ), so σsa(T ) is non-empty compact subset of C; for
other properties on Saphar operators we refer to Müller [33, Chapter II, §13].

Theorem 2.3. [4] For a bounded operator T ∈ L(X) the following statements
are equivalent:

(i) Browder’s theorem holds for T ;
(ii) ∆(T ) ⊆ σk(T );
(iii) ∆(T ) ⊆ isoσk(T );
(iv) ∆(T ) ⊆ σsa(T );
(v) ∆(T ) ⊆ isoσsa(T ).

Denote by σ0(T ) the set of all λ ∈ C for which 0 < α(λI − T ) < ∞ and
such that there exists a punctured open disc D(λ) centered at λ such that
µI − T ∈ W (X) and

ker (µI − T ) ⊆ (µI − T )∞(X) for all µ ∈ D(λ). (6)

Since (µI−T )(X) is closed then the condition (6) is equivalent to saying that
µI − T ∈ W (X) is semi-regular in punctured open disc D(λ). Hence

λ ∈ σ0(T ) ⇒ λ /∈ acc (σk(T ) ∩ σw(T )).

Every invertible operator is semi-regular and Weyl. From this we obtain

p00(T ) ⊆ π00(T ) ⊆ σ0(T ) for all T ∈ L(X). (7)

Indeed, if λ ∈ π00(T ), then 0 < α(λI − T ) = β(λI − T ) < ∞ and λ is an
isolated point of σ(T ), so µI − T is invertible and hence semi-regular near λ,
and hence the inclusion (6) is satisfied.

The following result has been proved in [14, Theorem 1.5]. We shall give
a different proof by using SVEP.
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Theorem 2.4. For a bounded operator T ∈ L(X) Weyl’s theorem holds if
and only if σ0(T ) = p00(T ).

Proof. Assume that T satisfies Weyl’s theorem. From the inclusion (7),
in order to show the equality σ0(T ) = p00(T ), it suffices only to prove the
inclusion σ0(T ) ⊆ p00(T ). By Theorem 2.1 we know that π00(T ) = p00(T ).

Suppose that λ /∈ p00(T ). Clearly, if λ /∈ σ(T ) then λ /∈ σ0(T ).
Consider the second case λ ∈ σ(T ). Assume that λ ∈ σ0(T ). By definition

of σ0(T ) there exists ε > 0 such that µI − T is Browder and ker (µI − T ) ⊆
(µI − T )∞(X) for all µ ∈ D(λ) for all 0 < |µ − λ| < ε. Since µI − T is
semi-regular and the condition p(µI − T ) < ∞ entails SVEP en µ then, by
Theorem 1.3, µI − T is injective and therefore, since α(µI − T ) = β(µI − T ),
it follows that µI − T is invertible. Hence λ is an isolated point of σ(T ).
But λ ∈ σ0(T ), so that 0 < α(λI − T ) < ∞, hence λ ∈ π00(T ) = p00(T ), a
contradiction. Hence, even in the second case we have λ /∈ σ0(T ). Therefore
σ0(T ) ⊆ p00(T ).

Conversely, assume that σ0(T ) = p00(T ). From (7) we have

π00(T ) ⊆ σ0(T ) = p00(T ) ⊆ π00(T ),

so that π00(T ) = p00(T ). To show that T satisfies Weyl’s theorem it suffices,
by Theorem 2.1 only to prove that T satisfies Browder’s theorem, or equiva-
lently, by Theorem 2.3, that ∆(T ) ⊆ σk(T ). Let λ ∈ ∆(T ) = σ(T ) \ σw(T )
and assume that λ /∈ σk(T ). Then λI − T is Weyl and

0 < α(λI − T ) = β(λI − T ) < ∞.

Furthermore, since W (X) is a open subset of L(X), there exists ε > 0 such
that µI − T ∈ W (X) for all |λ− µ| < ε. On the other hand, λI − T is semi-
regular and hence by Theorem 1.31 of [1] we can choice ε such that µI − T
is semi-regular for all |λ − µ| < ε. Therefore, λ ∈ σ0(T ) = p00(T ), so that
λI − T is Browder. The condition p(λI − T ) < ∞ entails that T has SVEP
at λ and hence α(λI − T ) = 0; a contradiction. Therefore, ∆(T ) ⊆ σk(T ), as
desired.

Set

σ1(T ) := σw(T ) ∪ σk(T ),

and denote by

π0f (T ) := {λ ∈ C : 0 < α(λI − T ) < ∞},
the set of all eigenvalues of finite multiplicity.
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Theorem 2.5. [15] For a bounded operator T ∈ L(X) Weyl’s theorem holds
if and only if

π0f (T ) ∩ isoσ1(T ) = σ(T ) \ σw(T ). (8)

Proof. Suppose that Weyl’s theorem holds for T , i.e. ∆(T ) = σ(T )\σw(T ) =
π00(T ). From Theorem 2.1 and Theorem 2.3 we then have

σ(T ) = σw(T ) ∪∆(T ) ⊆ σw(T ) ∪ σk(T ) = σ1(T ),

so that σ(T ) = σ1(T ). Therefore,

isoσ1(T ) ∩ π0f (T ) = iso σ(T ) ∩ π0f (T ) = π00(T ) = ∆(T ).

Conversely, assume that the equality (8) holds. We have

π00(T ) ⊆ isoσ1(T ) ∩ π0f (T ) = ∆(T ).

To prove the opposite inclusion, let λ0 ∈ ∆(T ) = σ(T ) \ σw(T ). Then
there exists ε > 0 such that λ /∈ σ1(T ) for all |λ − λ1| < ε. We prove now
that λ /∈ σ(T ) for all 0 < |λ − λ1| < ε. In fact, if there exists λ1 such that
0 < |λ1 − λ0| < ε and λ1 ∈ σ(T ), then

λ1 ∈ σ(T ) \ σw(T ) = ∆(T ) = iso σ1(T ) ∩ π0f (T ).

Hence, λ1 ∈ σ1(T ); a contradiction. Therefore, λ0 ∈ isoσ(T ) and conse-
quently λ0 ∈ π00(T ). This shows that ∆(T ) = π00(T ), i.e. Weyl’s theorem
holds for T .

In general the spectral mapping theorem is liable to fail for σ1(T ). There
is only the inclusion σ1(f(T )) ⊆ f(σ1(T )) for every f ∈ H(σ(T )) [15, Lemma
2.5]. However, the spectral mapping theorem holds for σ1(T ) whenever T or
T ∗ has SVEP, see [15, Theorem 2.6]. In fact, if T ha SVEP (respectively, T ∗

has SVEP), λI−T ∈ Φ(X) then ind(λI−T ) ≤ 0 (respectively, ind(λI−T ) ≥
0), see [1, Corollary 3.19], so that the condition of [15, Theorem 2.6] are
satisfied.

3 a-Weyl’s theorem

For a bounded operator T ∈ L(X) on a Banach space X let us denote

πa
00(T ) := {λ ∈ isoσa(T ) : 0 < α(λI − T ) < ∞},
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and

pa
00(T ) := σa(T ) \ σub(T ) = {λ ∈ iso σa(T ) : λI − T ∈ B+(X)}.

We have
pa
00(T ) ⊆ πa

00(T ) for every T ∈ L(X).

In fact, if λ ∈ pa
00(T ) then λI−T ∈ Φ+(X) and p(λI−T ) < ∞. By Theorem

1.3 then λ is isolated in σa(T ). Furthermore, 0 < α(λI − T ) < ∞ since
(λI − T )(X) is closed and λ ∈ iso σa(T ).

The Weyl (or essential) approximate point spectrum σwa(T ) of a bounded
operator T ∈ L(X) is the complement of those λ ∈ C for which λI − T ∈
Φ+(X) and ind (λI − T ) ≤ 0. Note that σwa(T ) is the intersection of all
approximate point spectra σa(T + K) of compact perturbations K of T , see
[36]. Analogously, Weyl surjectivity spectrum σws(T ) of a bounded operator
T ∈ L(X) is the complement of those λ ∈ C for which λI − T ∈ Φ−(X)
and ind (λI − T ) ≥ 0. Note that σws(T ) is the intersection of all surjectivity
spectra σs(T + K) of compact perturbations K of T , see [36].

Following Rakočević [36], we shall say that a-Weyl’s theorem holds for
T ∈ L(X) if

∆a(T ) := σa(T ) \ σwa(T ) = πa
00(T ),

while, T satisfies a-Browder’s theorem if

σwa(T ) = σub(T ).

We have, see for instance [1, Chap.3],

a-Weyl’s theorem ⇒ Weyl’s theorem,

and
a-Browder’s theorem ⇒ Browder’s theorem.

The next theorem shows that also a-Browder’s theorem may be character-
ized by means of the Kato spectrum.

Theorem 3.1. For a bounded operator T ∈ L(X) the following statements
are equivalent:

(i) a-Browder’s theorem holds for T ;
(ii) ∆a(T ) ⊆ σk(T );
(ii) ∆a(T ) ⊆ isoσk(T );
(iii) ∆a(T ) ⊆ σsa(T );
(v) ∆a(T ) ⊆ isoσsa(T ).
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Proof. The equivalences (i) ⇔ (ii) ⇔ (iii) have been proved in [5, Theorem
2.7]. The proof of the equivalences (i) ⇔ (iii) ⇔ (iv) is analogous to the proof
of [4, Theorem 2.13].

The following result is analogous to the result stated in Theorem 2.1.

Theorem 3.2. ([2], [5]) Let T ∈ L(X). Then the following statements are
equivalent:

(i) T satisfies a-Weyl’s theorem;
(ii) T satisfies a-Browder’s theorem and pa

00(T ) = πa
00(T );

(iii) T has SVEP at every point λ /∈ σwa(T ) and pa
00(T ) = πa

00(T );
(iv) T satisfies a-Browder’s theorem and is of Kato type at all λ ∈ πa

00(T ).

We give now an example of operator T ∈ L(X) which has SVEP, satisfies
Weyl’s theorem but does not satisfy a-Weyl’s theorem.

Example 3.3. Let T be the hyponormal operator T given by the direct sum
of the 1-dimensional zero operator and the unilateral right shift R on `2(N).
Then 0 is an isolated point of σa(T ) and 0 ∈ πa

00(T ), while 0 /∈ pa
00(T ), since

p(T ) = p(R) = ∞. Hence, T does not satisfy a-Weyl’s theorem.

Denote by H(σ(T )) the set of all analytic functions defined on a neigh-
borhood of σ(T ), let f(T ) be defined by means of the classical functional
calculus.

Theorem 3.4. [2] If T ∈ L(X) has property (Hp). Then a-Weyl’s holds
for f(T ∗) for every f ∈ H(σ(T )). Analogously, if T ∗ has property (Hp) then
a-Weyl’s holds for f(T ) for every f ∈ H(σ(T )).

An analogous result holds for paranormal operators on Hilbert spaces. By
T ′ we shall denote the Hilbert adjoint of T ∈ L(H).

Theorem 3.5. [2] Suppose that H is a Hilbert space. If T ∈ L(H) is alge-
braically paranormal then a-Weyl’s holds for f(T ′) for every f ∈ H(σ(T )).
Analogously, if T ′ has property (Hp) then a-Weyl’s holds for f(T ) for every
f ∈ H(σ(T )).

The results of Theorem 3.4 applies to the classes listed in (a)-(i).

Define by σ2(T ) the set of all λ ∈ C for which 0 < α(λI−T ) < ∞ and there
exists a punctured open disc D(λ) centered at λ such that µI − T ∈ W+(X)
and

ker (µI − T ) ⊆ (µI − T )∞(X) for all µ ∈ D(λ).
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The following characterization of a-Weyl’s theorem is analogous to that
established for Weyl’s theorem in Theorem 2.4.

Theorem 3.6. [14] Let T ∈ L(X) be a bounded linear operator. Then a-
Weyl’s theorem holds for T if and only if σ2(T ) = pa

00(T ).

Proof. The proof is similar to that of Theorem 2.4. Use the result of Theorem
3.1.

Define
σ3(T ) := σwa(T ) ∪ σk(T ).

The proof of the following result is similar to that of Theorem 2.5.

Theorem 3.7. [15] For a bounded operator T ∈ L(X) a-Weyl’s theorem holds
if and only if

π0f (T ) ∩ isoσ3(T ) = ∆a(T ). (9)

In general the spectral mapping theorem is liable to fail also for σ3(T ).
There is only the inclusion σ3(f(T )) ⊆ f(σ3(T )) for every f ∈ H(σ(T ))
[15, Lemma 3.4]. Also here, the spectral mapping theorem holds for σ3(T )
whenever T or T ∗ has SVEP, see [15, Theorem 3.6].

4 Property (w)

The following variant of Weyl’s theorem has been introduced by Rakočević
[35] and studied in [12].

Definition 4.1. A bounded operator T ∈ L(X) is said to satisfy property (w)
if

∆a(T ) = σa(T ) \ σwa(T ) = π00(T ).

Note that

property (w) for T ⇒ a-Browder’s theorem for T,

and precisely we have.

Theorem 4.2. [12] If T ∈ L(X) the following statements are equivalent:

(i) T satisfies property (w);

(ii) a-Browder’s theorem holds for T and pa
00(T ) = π00(T ).
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Define
Λ(T ) := {λ ∈ ∆a(T ) : ind (λI − T ) < 0}.

Clearly,

∆a(T ) = ∆(T ) ∪ Λ(T ) and Λ(T ) ∩∆(T ) = ∅. (10)

Property (w), despite of the study of it in literature has been neglected,
seems to be of interest. Infact, exactly like a-Weyl’s theorem, property (w)
implies Weyl’s theorem. The next result relates Weyl’s theorem and property
(w).

Theorem 4.3. [12] If T ∈ L(X) satisfies property (w) then Λ(T ) = ∅. More-
over, the following statements are equivalent:

(i) T satisfies property (w);
(ii) T satisfies Weyl’s theorem and Λ(T ) = ∅;
(iii) T satisfies Weyl’s theorem and ∆a(T ) ⊆ isoσ(T );
(iv) T satisfies Weyl’s theorem and ∆a(T ) ⊆ ∂σ(T ), ∂σ(T ) the topological

boundary of σ(T );

We give now two sufficient conditions for which a-Weyl’s theorem for T
(respectively, for T ∗) implies property (w) for T (respectively, for T ∗). Ob-
serve that these conditions are a bit stronger than the assumption that T
satisfies a-Browder’s theorem, see [5].

Theorem 4.4. [12] If T ∈ L(X) the following statements hold:
(i) If T ∗ has SVEP at every λ /∈ σwa(T ) and T satisfies a-Weyl’s theorem

then property (w) holds for T .
(ii) If T has SVEP at every λ /∈ σws(T ) and T ∗ satisfies a-Weyl’s theorem

then property (w) holds for T ∗.

Theorem 4.5. If T ∈ L(X) is generalized scalar then property (w) holds for
both T and T ∗. In particular, property (w) holds for every spectral operator
of finite type.

Remark 4.6. Property (w) is not intermediate between Weyl’s theorem and
a-Weyl’s theorem. For instance, if T is a hyponormal operator T given by the
direct sum of the 1-dimensional zero operator and the unilateral right shift R
on `2(N), then T does not satisfy a-Weyl’s theorem, while property (w) holds
for T , see [12] for details. If R ∈ `2(N) denote the unilateral right shift and

U(x1, x2, . . . ) := (0, x2, x3, · · · ) for all (xn) ∈ `2(N),
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then T := R ⊕ U does not satisfy property (w), while T satisfies a-Weyl’s
theorem ([12]).

However, Weyl’s theorem, a-Weyl’s theorem and property (w) coincide in
some special cases:

Theorem 4.7. [12] Let T ∈ L(X). Then the following equivalences hold:
(i) If T ∗ has SVEP, the property (w) holds for T if and only if Weyl’s

theorem holds for T , and this is the case if and only if a-Weyl’s theorem holds
for T .

(ii) If T has SVEP, the property (w) holds for T ∗ if and only if Weyl’s
theorem holds for T ∗, and this is the case if and only if a-Weyl’s theorem
holds for T ∗.

Theorem 4.8. [12] Suppose that T ∈ L(H), H a Hilbert space. If T ′ has
property H(p) then property (w) holds for f(T ) for all f ∈ H(σ(T )). In
particular, if T ′ is generalized scalar then property (w) holds for f(T ) for all
f ∈ H(σ(T )).

From Theorem 4.8 it then follows that if T ′ belongs to each one of the
classes of operators of examples (a)-(h) then property (w) holds for f(T ).

An operator T ∈ L(X) is said to be polaroid if every isolated point of σ(T )
is a pole of the resolvent operator (λI−T )−1, or equivalently 0 < p(λI−T ) =
q(λI − T ) < ∞, see [30, Proposition 50.2]. An operator T ∈ L(X) is said
to be a-polaroid if every isolated point of σa(T ) is a pole of the resolvent
operator (λI−T )−1, or equivalently 0 < p(λI−T ) = q(λI−T ) < ∞, see [30,
Proposition 50.2]. Clearly,

T a-polaroid ⇒ T polaroid.

and the opposite implication is not generally true. a-Weyl’s theorem and
property (w) are equivalent for a-polaroid operators. Note that an a-polaroid
operator may be fail SVEP, so Theorem 4.7 does not apply.

Theorem 4.9. [12] Suppose that T is a-polaroid. Then a-Weyl’s theorem
holds for T if and only if T satisfies property (w).
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