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Abstract

The main goal of this paper is to prove that the global atractor of
the equation ẋ(t) = −kx(t)+β tanh(x(t−r)) is an equilibrium point for
any β such that |β| < k. Furthermore, we exhibit numerical evidences
that the trivial solution is global asymptotically stable in all the region
of the parameters where the equilibrium is local asymptotically stable.
Key words and phrases: Global attractor, Hopf bifurcation, delay
equation.

Resumen

El objetivo central de este trabajo es probar que el atractor global
de la ecuación ẋ(t) = −kx(t) + β tanh(x(t − r)) se reduce a un punto
para cualquier valor de β tal que |β| < k. Además, se dan evidencias
numéricas que el punto de equilibrio de la ecuación diferencial es global
asintóticamente en toda la región de los parámetros donde el punto de
equilibrio es local asintóticamente estable.
Palabras y frases clave: Atractor global, bifurcación de Hopf, ecua-
ción con retardo.
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1 Introduction
In this paper we are going to deal with the following delay di�erential equation

ẋ(t) = −kx(t) + β tanh(x(t− r)), (1)

where k > 0 and β 6= 0. The equation (1) arises in many applications. For
instance in a simpli�ed neural network in which each neuron is represented
by a linear circuit with a linear resistor and a linear capacitor. Introducing a
nonlinear feedback term, we arrive to the equation (1). Here x represents the
voltage of the neuron, k, the ratio of the capacitance to the resistance, and β
and r, the feedback strength and time delay, respectively. For the model to
make sense physically, k and r should be nonnegative, but β may take any
value di�erent of zero. See Leslie Shayer and Sue Ann Campbell [1] and the
literature cited therein for more details.

The main goal of this paper is to prove that the global atractor of the
equation (1) is an equilibrium point for any β such that |β| < k. In order to
accomplish our goal, we use the technique developed in [3], which basically
states a connection between the continuous semi-dynamical system induced
by (1) and certain discrete dynamical systems. Furthermore, we explore nu-
merically the possibility that the equilibrium point of the equation (1) remains
global asymptotically stable in all the region of the parameters where the triv-
ial solution is local asymptotically stable. This suggests that the �rst Hopf
bifurcation is supercritical.

2 Preliminaries
In this section we will show that the equation (1) admits a global atractor for
any k and β, and we will summarize some known results about the location of
the roots of certain trascendental equation. It is worth noting that the only
equilibrium point of the equation (1) for any β < k is the trivial one.

Let us �rst introduce a few notations that we will need in the sequel. For a
given σ ∈ R and any function x : [σ−r,+∞) −→ Rn, let us de�ne the function
xt : [−r, 0] −→ Rn by xt(θ) = x(t+ θ), for any θ ∈ [−r, 0] and t ≥ σ. By using
the step by step method, we obtain that for any φ ∈ C = C([−r, 0],R) the
equation (1) has a unique solution x(t, φ) de�ned for any t ≥ 0, which depends
continuously on the initial data and parameters. Let us set T (t)φ = xt(φ) for
t ≥ 0. It is well known that {T (t)}t≥0 is a semigroup of strongly continuous
operators on C.
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Let x(t, φ) be the solution of (1). Integrating this equation we obtain that

x(t, φ) = x(0, φ)e−kt +
∫ t

0

βe−k(t−s) tanh(x(s− r, φ))ds,

which implies that

|x(t, φ)| ≤ |φ(0)|e−kt +
|β|
k

[
1− e−kt

]
, t ≥ 0.

The last inequality immediately proves the dissipativeness of the equation (1).
Furthermore, a straightforward application of Arzela-Ascoli's Lemma gives us
that the operator T (t) is completely continuous for any t ≥ r. Thus, the exis-
tence of the global attractor of the equation (1) is an immediate consequence
of theorem 3.4.8, p.40, in [4].

Now, we are going to study the local stability of the trivial solution of (1).
Linearizing (1) about x = 0, we obtain the equation

ẋ(t) = −kx(t) + βx(t− r), (2)

which characteristic equation is given by

P (λ) := λ + k − βe−λr = 0. (3)

It is well known the necessary and su�cient condition in order that all roots
of the equation (3) have negative real parts; see for instance the theorem A.5,
pag. 416 in [5]. We are not going to apply directly those results. Instead of
that, by using the so called D-partition method, we will explore geometrically
the stability region of the equation (3) in the parameter plane (k, β). Hereafter,
we will assume that r > 0 is �xed.

Setting z := rλ, the equation (3) can be rewritten as follows

H(z) := ez(z + kr)− βr = 0. (4)

Let us set z = µ + iξ in (3), and splitting the equation into the real and the
imaginary parts, we obtain

µ cos ξ + kr cos ξ − ξ sin ξ − βre−ξ = 0,
ξ cos ξ + µ sin ξ + kr sin ξ = 0.

(5)

Let us remark that z = 0 is a root of (3) if and only if k = β. Setting
µ = 0 and solving (5) for k and β, we obtain the so called �neutral stability

Divulgaciones Matemáticas Vol. 16 No. 1(2008), pp. 221�229



224 C. Duque, M. Lizana, J. Uzcátegui

curves" in the parameter space (k, β) along which (4) has purely imaginary
roots z = iξ; namely

k(ξ) = −r−1ξ cot(ξ),
β(ξ) = −r−1ξ csc(ξ). (6)

As roots come in complex conjugate pairs, we will restrict the analysis to the
region ξ ≥ 0. Notice that the curve is well de�ned at ξ = 0 and (k(0), β(0)) =
(−r−1,−r−1), which coincides with the parameter values at which ξ = 0 is a
double root. For n = 0, 1, 2, · · · , let us denote by Cn, the curve described by
(6) with nπ < ξ < (n + 1)π. These curves are depicted in the �gure 1.
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Figure 1:

The following result holds. For the proof we refer the readers to Smith [6].

Proposition 1. All roots of the equation (4) have negative real parts if and
only if (k, β) ∈ Ω. Where Ω = Ω1 ∪Ω2 is the open region bounded from above
by the straightline k = β and from the bottom by the curve C0, see �gure 1.
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3 Global stability of the equilibrium point.
In this section, we will show that for −k < β < k the trivial solution of (1) is
global asymptotically stable.

In order to carry out this study we follow basically the main ideas devel-
oped in [3]. Which states a connection between the continuous semi-dynamical
system induced by (1) and certain discrete dynamical systems. More con-
cretely, we will associate to the semi-�ow generated by the solution of (1) a
map g : I −→ I, where I is an interval, which is given by g(x) = β tanh(x)/k.
Then, the global stability of the equilibrium point of (1) is obtained from the
global stability of the �xed point of g.

The function g satis�es the following properties:

1. For positive values of β (for β < 0) g is monotone increasing on the
whole real line (is monotone decreasing); and g is concave (convex) for
x ≥ 0 and convex (concave) for x ≤ 0.

2. For |β| < k, g has a unique �xed point, namely x = 0. Moreover, the
graph of the function g lies over the line y = x for x < 0, and under the
line y = x for x > 0.

This is enough to realize that x = 0 is a global attractor for the map g, for
any |β| < k.

The following theorem is the main result of this paper.

Theorem 1. If −k < β < k, then the trivial equilibrium of the equation (1)
is global asymptotically stable.

Proof. From Theorem 1, it follows that the trivial equilibrium of the
equation (1) is local asymptotically stable for any β such that −k < β < k.

Let us suppose �rst that −k < β < 0, in this case the function g is strictly
decreasing. Let φ ∈ A∗, where A∗ is the global attractor of the equation (1).
From (1), we obtain that

x(t, φ) = x(τ, φ)e−k(t−τ) + β

∫ t

τ

e−k(t−s) tanh(xs(φ)))ds

Since solutions on the global attractor are bounded and de�ned on the whole
real line, letting τ −→ −∞ in the previous formula, we get that any solution
of (1) with initial data in A∗ admits the following representation

x(t, φ) = β

∫ t

−∞
e−k(t−s) tanh(xs(φ)))ds
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Let us set

m = min
φ∈A∗

inf
t∈R
{x(t, φ)} and M = max

φ∈A∗
sup
t∈R

{x(t, φ)}.

It is obvious that 0 ∈ [m,M ].
Let us prove that there exist φ1 and t1 such that m = x(t1, φ1). Indeed,

since m = minφ∈A∗ inft∈R{x(t, φ)} and the compactness of the set A∗, there
exists a φ∗ such that m = inft∈R{x(t, φ∗)}. We may assert the existence of
a sequence {tn} such that m ≤ x(tn, φ∗) < m + 1/n, for all n ∈ N. Arises
two possibilities: the sequence {tn} is bounded from above (or below), in
that case we may claim that the same sequence tn → t∗, which implies that
m = x(t1, φ1), where t1 = t∗ and φ1 = φ∗. If tn → +∞, we obtain that
limn→∞ x(tn, φ∗) = m. Henceforth m ∈ ω(φ∗), and must exist a φ̄ ∈ A∗ such
that their orbit coincide with ω(φ∗), which in turn implies the existence of a
t̄ such that m = x(t̄, φ̄). Choosing t1 = t̄ and φ1 = φ̄, we obtain our claim.

m = x(t1, φ1) = β

∫ t1

−∞
e−k(t1−s) tanh(xs(φ1))ds

≥ β

∫ t1

−∞
e−k(t1−s) tanh(M)ds = g(M)

Analogously, to the above reasoning we can prove that there exist φ2 and t2
such that

M = x(t2, φ2) = β

∫ t2

−∞
e−k(t2−s) tanh(xs(φ2))ds

≤ β

∫ t2

−∞
e−k(t2−s) tanh(m)ds = g(m).

From the last two inequalities, we get

[m,M ] ⊂ g([m, M ]) ⊂ g2([m,M ]) ⊂ . . . ⊂ gn([m,M ]) ⊂ . . . . (7)

Let us suppose that the trivial solution of the equation (1) is not global asymp-
totically stable. Henceforth m < M and from (7), it follows that the �xed
point of the dynamical system induced by g cannot be global asymptotically
stable. Which is a contradiction. Therefore M = m.

In the case that 0 < β < k, the proof follows analogously to the former
reasoning, except obvious modi�cations. This completes the proof of our
assertion.
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4 Local Hopf Bifurcation
Finally, let us show that the trivial solution of the equation (1) undergoes
a Hopf bifurcation by crossing the curve C0 (see �gure 1), taking β as a
bifurcation parameter. Actually, it is the �rst Hopf bifurcation.

Let us �x k and r. From Theorem 1, we obtain that the equation (4) has
all the roots with negative real part if 0 < −β <

√
ξ2r−2 + k2, where ξ is the

unique root of the equation ξ = −kr tan(ξ), π/2 < ξ < π. Moreover, a pair of
pure imaginary roots arise at β0 = −

√
ξ2r−2 + k2.

Setting G(z, β) = ez(z + kr)− βr, we obtain that

G(iξ, β0) = 0 , Gz(iξ, β0) = (iξ + kr + 1)eiξ 6= 0 , Gβ(iξ, β0) = −r.

Thus, the Implicit Function Theorem implies that we can solve G(z, β) = 0
for z(β) = α(β) + iω(β) satisfying z(β0) = iξ and

dz

dβ
= − r

(iξ + kr + 1)eiξ
.

A tedious but straightforward computation gives us
dα

dβ
= − r[−ξ sin(ξ) + (kr + 1) cos(ξ)]

[−ξ sin(ξ) + kr cos(ξ) + cos(ξ)]2 + [ξ cos(ξ) + kr sin(ξ) + sin(ξ)]2
>0.

Is easy to show that the root z0 = iξ is simple and the non-resonance condi-
tion; i.e. zj 6= z0 for any root zj 6= mz0, z0 and any integer m, is satis�ed.
Thus, the equation (1) satis�es all conditions of the Hopf bifurcation theorem
1.1 p. 246 in [4]. Henceforth, the equation (1) undergoes a Hopf bifurcation
at β = β0.

5 Final Remarks
By using the numerical graphical interface XppAuto by Bard Ermentrout [2],
we performed a thorough numerical analysis of the behavior of the solutions
of the equation (1), when the parameters belong to the region Ω2. All the
numerical results suggest that the global attractor of the equation (1) is just
an equilibrium point for any β and k in the region Ω1

⋃
Ω2. Henceforth, the

Hopf bifurcation should be supercritical. Below, we are going to exhibit some
of the obtained graphics. All simulations were done by picking up the initial
condition x(t) = 0.5, −r ≤ t ≤ 0 and k = 1, r = 0.1. With these choices the
Hopf bifurcation occurs at β0 = −16.3505592. The value of the parameter β
is speci�ed in the corresponding graphic.
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