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Dpto. de Matemáticas. Facultad de Ciencias.
Universidad Central de Venezuela.

Apartado Postal 47159. Caracas 1041-A, Venezuela

Abstract

An introduction to generalized interpolation problems is given.
Nehari’s theorem and Sarason’s commutation theorem are ob-
tained. The proofs are simple and they are obtained using a
generalization of the cosine of an angle.
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Resumen

Se da una introducción a problemas de interpolación genera-
lizada. Se obtienen el teorema de Nehari y el teorema de conmu-
tación de Sarason. Las pruebas son simples y se obtienen usando
una generalización del coseno del ángulo.
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1 Introduction

Several classical questions concerning moment problems, Toeplitz and Han-
kel operators, weighted inequalities for the Hilbert transform and prediction
theory are closely related. And the theory of analytic functions in the circle
gives the natural environment for these problems.

In this paper the coefficient of a matricial measure is introduced, as a
generalization of the cosine of an angle. This coefficient is used to give a char-
acterization of the bounded Hankel operators, and to compute the distance
of a function f in L∞ to H∞. As a consequence a representation theorem of
operators commuting with special contractions is obtained.

Much function theory in the circle T ≈ [0, 2π] is considered to depend on
group properties of the circle and its dual Z. The results given in this note
can be extended: T can be replaced by the bidimensional torus and the usual
order in Z can be replaced by the lexicographic order (although some changes
must be done). Details will be given in [4].

2 The coefficient of a matricial measure

Let dx be the Lebesgue measure in T. For 1 ≤ p ≤ ∞ let Lp(T) be the
Lebesgue space and let ‖ . ‖p be the norm in Lp(T).

For n ∈ Z set en(x) = einx and for f ∈ L1(T) consider the Fourier
coefficients: f̂(n). The trigonometric polynomials are functions f : T → C,
such that suppf̂ is finite and

f(x) =
∑
n∈Z

f̂(n) en(x).

Let P be the space of trigonometric polynomials.
Consider the following sets:

P1 =
{
f ∈ P : suppf̂ ⊆ {n ∈ Z : n ≥ 0}

}
,

P2 =
{
f ∈ P : suppf̂ ⊆ {n ∈ Z : n < 0}

}
.

If µ = (µαβ )α,β=1,2 is a 2 × 2 matrix of complex finite Borel measures
defined on T, then it is said that µ is a complex finite Borel matricial measure
on T.

In this paper all the matricial measures considered are hermitian complex
finite Borel on T, and they will simply be called matricial measures.
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Let µ be a matricial measure on T. We shall say that µ ∈ D if µ is her-
mitian, µ11 = µ22 and µ11 is absolutely continuous with respect to Lebesgue
measure.

Definition 1. The coefficient of a matricial measure µ ∈ D is

ρ(µ) = sup |
∫
T

f1f2dµ12 |,

where the supremum is taken over all f1 ∈ P1, f2 ∈ P2 such that ‖f1‖w11 =
‖f2‖w11 = 1 and dµ11(x) = dµ22(x) = w11(x)dx (‖ . ‖w11 is the norm in
L2(T, w11dx)).

Observe that if µ11 = µ12 then ρ(µ) is the cosine of the angle between P1
and P2 in L2(T, µ11dx).

Let C(T) be the Banach space of complex continuous functions on T with
the ‖ . ‖∞ norm.

Let µ ∈ D and consider the following form Bµ:

Bµ(f1, f2) =
2∑

α,β=1

∫
T

fαfβdµαβ ,

for f1, f2 ∈ C(T).
Let Hp be the set of functions f ∈ Lp(T) such that f̂(n) = 0 for all n < 0

(1 ≤ p ≤ ∞). These are the usual Hardy spaces Hp.
An easy calculation establishes the following result:

Proposition 1. Let µ and ν be two matricial measures on T. Then Bµ(f1, f2)
= Bν(f1, f2) for every (f1, f2) ∈ P1 × P2 if and only if there is h ∈ H1 such
that ν11 = µ11, ν22 = µ22 and ν12 = µ12 + hdx.

If r ∈ (0, 1], h ∈ H1 and µ is a matricial measure on T, define µ(r, h) as
the matricial measure given by µ(r, h)11 = rµ11, µ(r, h)22 = rµ22, µ(r, h)12 =
µ12 + hdx and µ(r, h)21 = µ21 + hdx.

Proposition 2. Let r ∈ (0, 1] and µ ∈ D. Then:
Bµ(r,0)(f1, f2) ≥ 0 for every (f1, f2) ∈ P1 × P2 if and only if ρ(µ) ≤ r.

The proof follows from a simple calculation.

Definition 2. A matricial measure µ is said to be positive when for every
Borel set ∆ on T the numerical matrix µ(∆) = (µαβ(∆))α,β=1,2 is definite
positive.



126 Marisela Domı́nguez

Proposition 3. Let µ be a matricial measure on T. Then the following con-
ditions are equivalent:
(a) µ is a positive matricial measure.
(b) Bµ(f1, f2) ≥ 0 for every f1, f2 ∈ C(T).
(c) Bµ(f1, f2) ≥ 0 for every f1, f2 ∈ P.

Proof. We first show that (a) implies (b). Let µ be a positive matricial mea-
sure. Given f1, f2 ∈ C(T), there are two sequences of simple functions {g1n}n
and {g1n}n such that for α = 1, 2:

fα(t) = limn→∞gαn(t).

For each n let {Ani}i and {Bnk}k be the sets which occur in the canonical
representations of {g1n}n and {g2n}n. Let An0 and Bn0 be the sets where g1n
and g2n are zero. Then the sets {∆nj}j obtained by taking all the intersections
Ani ∩Bnk form a finite disjoint collection of measurable sets, and for α = 1, 2
we may write

gαn =
Nn∑
j=1

fα(xnj)1∆nj .

Thus,

Bµ(f1, f2) =
2∑

α,β=1

∫
T

fαfβdµαβ

=
2∑

α,β=1

limn→∞

∫
T

Nn∑
j=1

fα(xnj )fβ(xnj )1∆njdµαβ

= limn→∞

Nn∑
j=1

2∑
α,β=1

fα(xnj )fβ(xnj )µαβ(∆nj ) ≥ 0.

That (b) implies (c) is immediate.
Suppose (c) holds. Given a Borel set ∆ ⊂ T and λ1, λ2 ∈ C let’s consider

the functions h1, h2 ∈ L1(T) given by h1 = λ11∆, h2 = λ21∆. We have that
h1 and h2 can be approximated by continuous functions and these can be
approximated by trigonometric polynomials. Therefore

2∑
α,β=1

λαλβµαβ(∆) = Bµ(h1, h2) ≥ 0.
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Theorem 1. Let r ∈ (0, 1] and µ ∈ D. Then the following conditions are
equivalent:
(a) ρ(µ) ≤ r.
(b) µ12 is absolutely continuous with respect to the Lebesgue measure and there
exists h ∈ H1 such that

| w12(x) + h(x) |≤ rw11(x) a.e.,

where dµαβ(x) = wαβ(x)dx, for α, β = 1, 2.

Proof. If ρ(µ) ≤ r, then Bµ(r,0)(f1, f2) ≥ 0 for every (f1, f2) ∈ P1×P2. From
the lifting property (see [3]), there exists h ∈ H1 such that Bµ(r,h)(f1, f2) ≥ 0
for every f1, f2 ∈ P . Then µ(r, h) is positive. Therefore

| µ12(∆) +
∫
∆

h(x)dx |≤ rµ11(∆).

If |∆ |= 0 then µ11(∆) = 0, thus µ12(∆) = 0. So if we set dµαβ(x) = wαβ(x)dx
for α, β = 1, 2 then

| w12(x) + h(x) |≤ rw11(x) a.e.

3 The theorem of Nehari

The shift is the operator S in L2(T) given by (Sf)(x) = eixf(x) for all
f ∈ L2(T).

Let H2− be the set of functions f ∈ L2(T) such that f̂(n) = 0 for all
n ≥ 0 and let P− be the orthogonal projection in L2(T) with range H2−.

Definition 3. A linear operator Γ : H2 → H2− such that P−SΓ = ΓS |H2 is
called a Hankel operator.

Proposition 4. Let Γ : H2 → H2− be a bounded linear operator. Then the
following conditions are equivalent:

(a) Γ is a Hankel operator.

(b) There is a sequence {An}n∈Z such that 〈Γek, e−j〉 = Ak+j for every
k ≥ 0, j > 0.
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Proof. Suppose that (a) holds. Given k ≥ 0, j > 0, consider n = j − 1. Then
n ≥ 0 and

〈Γek, e−j〉 = 〈Γek, e−n−1〉 = 〈Γek, S−ne−1〉 = 〈SnΓek, e−1〉
= 〈P−SnΓek, e−1〉 = 〈ΓSnek, e−1〉 = 〈Γek+n, e−1〉
= 〈Γek+j−1, e−1〉.

Define An = 〈Γen−1, e−1〉.
Suppose on the other hand that (b) holds. For k ≥ 0 and j > 0 we have

〈P−SΓek, e−j〉 = 〈SΓek, e−j〉 = 〈Γek, S−1e−j〉 = 〈Γek, e−j−1〉
= Ak+j+1 = 〈Γek+1, e−j〉 = 〈ΓSek, e−j〉.

Thus P−SΓ = ΓS |H2 .

If γ ∈ L2(T) let Mγ be the multiplication operator given by Mγf = γf
for all f ∈ L2(T).

Proposition 5. Let Γ : H2 → H2− be a bounded Hankel operator.
Then there exists γ0 ∈ L2(T) such that Γ = P−Mγ0 .

Proof. Let γ0 = Γe0. Then γ0 ∈ L2(T) and

P−Mγ0en = P−Snγ0 = P−SnΓe0 = ΓSne0 = Γen.

Therefore Γ = P−Mγ0 .

Proposition 6. For γ ∈ L2(T) let Γ : H2 → H2− be defined by Γ = P−Mγ

Then Γ is a Hankel operator. Even more 〈Γek, e−j〉 = γ̂(−k − j), for every
k ≥ 0 and j > 0.

Proof. Let k ≥ 0, j > 0

〈P−SΓek, e−j〉 = 〈SΓek, e−j〉 = 〈Γek, S−1e−j〉 = 〈Γek, e−j−1〉
= 〈P−γek, e−j−1〉 = 〈γek, e−j−1〉 = 〈e1γek, e−j〉
= 〈Mγek+1, e−j〉 = 〈P−Mγek+1, e−j〉 = 〈Γek+1, e−j〉
= 〈ΓSek, e−j〉

Thus P−SΓ = ΓS |H2 . And

〈Γek, e−j〉 = 〈P−Mγek, e−j〉 = 〈Mγek, e−j〉 = 〈Skγ, e−j〉
= 〈γ, S−ke−j〉 = 〈γ, e−k−j〉 = γ̂(−k − j).

The proof is complete.
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Remark. For γ ∈ L∞(T) we can consider Γ : H2 → H2− as the operator
defined by Γ = P−Mγ . Then

‖Γ‖ = ‖P−Mγ‖ ≤ ‖Mγ‖ = ‖γ‖∞.

Nehari’s theorem (see [5], [1]) says that:

Theorem 2. Let Γ : H2 → H2− be a Hankel operator. If Γ is bounded then
there exists γ ∈ L∞(T) such that
(a) γ̂(−k − j) = 〈Γek, e−j〉 for every k ≥ 0, j > 0
(b) Γ = P−Mγ

(c) ‖Γ‖ = inf{‖γ − ξ‖∞ : ξ ∈ H∞} = ‖γ‖∞.

Proof. (a) If Γ = 0 the result is obvious. By homogeneity we may assume
that ‖Γ‖ = 1.

Let γ0 = Γe0 then Γ = P−Mγ0 .
Consider the matricial measures µ11 = µ22 = dx and µ12 = µ21 = −γ0dx.

Then ρ(µ) = ‖Γ‖.
From Theorem 1 it follows that there exists h ∈ H1 such that

| γ0(x) + h(x) |≤ 1 a.e.

Define γ = γ0 + h. Thus γ ∈ L∞(T) and then γ̂(−n) = γ̂0(−n) for every
n ≥ 0. Therefore for every k ≥ 0, j > 0:

γ̂(−k − j) = γ̂0(−k − j) = 〈Γek, e−j〉.

It is clear that Γ = P−Mγ0 = P−Mγ0+h = P−Mγ and

inf{‖γ − ξ‖∞ : ξ ∈ H∞} ≤ ‖γ‖∞ = ‖γ0 + h‖∞ ≤ 1 = ‖Γ‖.

On the other hand if ξ ∈ H∞ then

‖Γ‖ = ‖P−Mγ‖ = ‖P−Mγε−ξ‖ ≤ ‖Mγ−ξ‖ = ‖γ − ξ‖∞.

Therefore

‖Γ‖ ≤ inf{‖γ − ξ‖∞ : ξ ∈ H∞}.
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4 Generalized interpolation in H∞

For every closed subspace K of H2 let PK be the orthogonal projection in
L2(T) with range K.

Definition 4. ψ is said to be an inner function if ψ ∈ H∞ and | ψ |= 1 a. e.

Let 	 stand for orthogonal difference.

Proposition 7. Let ψ be a non constant inner function and let K be the
closed manifold of H2 given by K = H2	ψH2. Given φ ∈ H∞ we define the
operator X = PKMφ. Then X commutes with PKS |K .

The converse of the last proposition is given by the celebrated interpola-
tion theorem of Sarason (see [6], [1], [2]), which says that:

Theorem 3. Given a nonconstant inner function ψ let K be the closed sub-
space of H2 given by K = H2 	 ψH2. If X is a bounded linear operator on
K such that X commutes with PKS |K then there is a function φ ∈ H∞ such
that X = PKMφ and ‖X‖ = ‖φ‖∞ .

Proof. Let f ∈ L2(T). First we prove that PKf = ψP−ψf . In order to do
that, let h ∈ K. Since K = H2 	 ψH2 ⊂ (ψH2)⊥ = ψH2−, we have that
h ∈ ψH2−. Thus ψh ∈ H2−. Using this we obtain that

〈h, ψP−ψf〉 = 〈ψh, P−ψf〉 = 〈ψh, ψf〉 = 〈h, f〉.

So PKf = ψP−ψf . Let Γ : H2 → H2− be the operator defined by Γ =
ψXPK . Then

‖Γ‖ = ‖XPK‖ = ‖X‖.

Let f ∈ H2; since ψPKf = P−ψf and X commutes with PKS |K it follows
that

ΓSf = ψXPKSf = ψPKSXPKf = P−ψSXPKf = P−SψXPKf = P−SΓf.

Thus P−SΓ = ΓS |H2 . From Nehari’s theorem it follows that there exists
γ ∈ L∞(T) such that:
(a) γ̂(−k − j) = 〈Γek, e−j〉 for every k ≥ 0, j > 0
(b) Γ = P−Mγ

(c) ‖Γ‖ = inf{‖γ − ξ‖∞ : ξ ∈ H∞} = ‖γ‖∞.
Since

P−γψ = P−Mγψ = Γψ = ψXPKψ = ψXψP−ψψ = ψXψP− | ψ |2= 0
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we have that γψ ∈ H∞. Set φ = γψ. From ‖X‖ = ‖Γ‖ and ‖γ‖∞ = ‖γψ‖∞ =
‖φ‖∞ it is clear that ‖X‖ = ‖φ‖∞. Let g ∈ K. Then

Xg = XPKg = ψΓg = ψP−Mγg = ψP−γg = ψP−ψψγεg

= PKψγg = PKφg = PKMφg.
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of modified Toeplitz kernels, Proc. Symp. Pure Math. AMS., 35-I(1979),
383–407.

[4] Domı́nguez, M. Lexicographic lifting and applications to prediction and
interpolation problems. Preprint.

[5] Nehari, Z. On bounded bilinear forms, Annals of Mathematics, 65-
1(1957), 153–162.

[6] Sarason, D. Generalized interpolation in H∞, Trans. Amer. Math. Soc.,
127(1967), 179–203.


