Characterization of Dual Extensions in the Category of Banach Spaces

Caracterización de Extensiones Duales en la Categoría de Espacios de Banach
Antonio A. Pulgarín (aapulgar@unex.es)
Universidad de Extremadura
Departamento de Matemáticas
Badajoz, Spain

Abstract

The first part of this paper studies extensions in the category of Banach spaces (natural equivalence of functors). The second part proves a result which characterizes the duality of extensions. Key words and phrases: Extensions and liftings, twisted sums, quasi-linear maps.

Resumen

La primera parte de este artículo estudia las extensiones en la categoría de los espacios de Banach (equivalencia natural de funtores). La segunda parte prueba un resultado que caracteriza la dualidad de tales extensiones.
Palabras y frases clave: Extensiones y subidas, sumas torcidas, aplicaciones casi-lineales.

Introduction

A short exact sequence in the category of Banach spaces is a diagram

$$
0 \rightarrow Y \rightarrow X \rightarrow Z \rightarrow 0
$$

where the image of each arrow is the kernel of the following.

The open mapping theorem ensures that Y is a subspace of X and Z is the corresponding quotient.

Given Banach spaces Y and Z we define the extensions of Y by Z as the set

$$
\operatorname{Ext}(Y, Z)=\{[X]: 0 \rightarrow Y \rightarrow X \rightarrow Z \rightarrow 0 \text { is exact }\}
$$

where $\left[X_{1}\right]=\left[X_{2}\right] \Leftrightarrow$ there exists a bounded linear operator $T: X_{1} \rightarrow X_{2}$ such that

$$
\begin{gathered}
0 \rightarrow Y \rightarrow X_{1} \rightarrow Z \rightarrow 0 \\
\|T \downarrow \quad\| \\
0 \rightarrow Y \rightarrow X_{2} \rightarrow Z \rightarrow 0
\end{gathered}
$$

is commutative.
A map $F: Z \rightarrow Y$ is quasi-linear if it is homogeneous and there exists a constant $K>0$ such that for all $z_{1}, z_{2} \in Z$

$$
\left\|F\left(z_{1}+z_{2}\right)-\left(F z_{1}+F z_{2}\right)\right\| \leq K\left(\left\|z_{1}\right\|+\left\|z_{2}\right\|\right)
$$

Given a quasi-linear map $F: Z \rightarrow Y$, the F-twisted sum of Y and Z is defined as the quasi-Banach space

$$
Y \oplus_{F} Z=\left\{(y, z) \in Y \times Z:\|(y, z)\|_{F}=\|y-F z\|+\|z\|<+\infty\right\}
$$

Before beginning we shall define

$$
\begin{aligned}
& \operatorname{Lin}(Z, Y)=\{F: Z \rightarrow Y \text { linear }\} \\
& B(Z, Y)=\{F: Z \rightarrow Y \text { bounded }\} \\
& \mathcal{L}(Z, Y)=\{F: Z \rightarrow Y \text { bounded and linear }\} .
\end{aligned}
$$

1 Three approaches

Definition 1.1. Let Y, Z be two Banach spaces. We define

$$
\mathcal{Q}(Y, Z)=\{[F]: F: Z \rightarrow Y \text { quasi-linear }\}
$$

such that $\left[F_{1}\right]=\left[F_{2}\right] \Leftrightarrow d\left(F_{1}-F_{2}, \operatorname{Lin}(Z, Y)\right)<+\infty$.
Theorem 1.2. Let Y, Z be two Banach spaces. There exists a bijection between $\mathcal{Q}(Y, Z)$ and $\operatorname{Ext}(Y, Z)$.

Proof. If

$$
0 \rightarrow Y \xrightarrow{j} X \xrightarrow{p} Z \rightarrow 0
$$

is an extension of Y by Z then we can consider a linear selection $L \in \operatorname{Lin}(Z, X)$ and a bounded homogeneous selection $B \in B(Z, X)$ because the quotient map is open. Then $F=B-L \in \mathcal{Q}(Y, Z)$ since $p(B-L)=0, F$ is homogeneous and

$$
\begin{aligned}
\left\|F\left(z_{1}+z_{2}\right)-\left(F z_{1}+F z_{2}\right)\right\| & =\left\|B\left(z_{1}+z_{2}\right)-\left(B z_{1}+B z_{2}\right)\right\| \\
& \leq\left\|B\left(z_{1}+z_{2}\right)\right\|+\left\|B z_{1}\right\|+\left\|B z_{2}\right\| \\
& \leq\|B\|\left\|z_{1}+z_{2}\right\|+\|B\|\left(\left\|z_{1}\right\|+\left\|z_{2}\right\|\right) \\
& \leq\|B\|\left(\left\|z_{1}\right\|+\left\|z_{2}\right\|\right)+\|B\|\left(\left\|z_{1}\right\|+\left\|z_{2}\right\|\right) \\
& \leq 2\|B\|\left(\left\|z_{1}\right\|+\left\|z_{2}\right\|\right)
\end{aligned}
$$

To complete the proof let us show that

$$
\left[Y \oplus_{F_{1}} Z\right]=\left[Y \oplus_{F_{2}} Z\right] \Leftrightarrow d\left(F_{1}-F_{2}, \operatorname{Lin}(Z, Y)\right)<+\infty
$$

$\Rightarrow)$ If $\left[Y \oplus_{F_{1}} Z\right]=\left[Y \oplus_{F_{2}} Z\right]$, there exists a bounded linear operator T : $Y \oplus_{F_{1}} Z \rightarrow Y \oplus_{F_{2}} Z$ such that

$$
\begin{aligned}
& 0 \rightarrow Y \rightarrow Y \oplus_{F_{1}} Z \rightarrow Z \rightarrow 0 \\
& \|\quad T \downarrow\| \\
& 0 \rightarrow Y \rightarrow Y \oplus_{F_{2}} Z \rightarrow Z \rightarrow 0
\end{aligned}
$$

is commutative. In these conditions T must have the form $T(y, z)=(y+$ $L z, z)$, where $L \in \operatorname{Lin}(Z, Y)$. Hence

$$
\begin{aligned}
\left\|F_{1} z-F_{2} z+L z\right\| & =\left\|\left(F_{1} z+L z\right)-F_{2} z\right\| \leq\left\|\left(F_{1} z+L z, z\right)\right\|_{F_{2}} \\
& =\left\|T\left(F_{1} z, z\right)\right\|_{F_{2}} \leq\|T\|\left\|\left(F_{1} z, z\right)\right\|_{F_{1}}=\|T\|\|z\| .
\end{aligned}
$$

$\Leftarrow)$ Supposing that $F_{1}-F_{2}=B-L$ with B bounded and L linear then $T(y, z)=(y+L z-B z, z)$ is a linear operator from $Y \oplus_{F_{1}} Z$ to $Y \oplus_{F_{2}} Z$. Let us prove that T is bounded:

$$
\begin{aligned}
\|T(y, z)\|_{F_{2}} & =\|(y+L z-B z, z)\|_{F_{2}}=\left\|y+L z-B z-F_{2} z\right\|+\|z\| \\
& =\left\|y-F_{1} z\right\|+\|z\|=\|(y, z)\|_{F_{1}} .
\end{aligned}
$$

Corollary 1.3. Let Y, Z be two Banach spaces and $[F] \in \mathcal{Q}(Y, Z)$. The following relationships are equivalent:
(i) $0 \rightarrow Y \rightarrow Y \oplus_{F} Z \rightarrow Z \rightarrow 0$ splits
(ii) $\left[Y \oplus_{F} Z\right]=[Y \oplus Z]$
(iii) $d(F, \operatorname{Lin}(Z, Y))<+\infty$.

Definition 1.4. Let $0 \rightarrow Y \xrightarrow{j} X \xrightarrow{p} Z \rightarrow 0$ be a short exact sequence. A bounded linear operator h from Y to a Banach space E has an extension onto X if there is a bounded linear operator \hat{h} from X to E such that $\hat{h} j=h$.

$$
\begin{aligned}
& 0 \rightarrow Y \stackrel{j}{\rightarrow} X \\
& \\
& h \downarrow \\
& \\
& E
\end{aligned}
$$

A bounded linear operator h from a Banach space E to Z has a lifting into X if there is a bounded linear operator \hat{h} from E to X such that $p \hat{h}=h$.

$$
0 \rightarrow Y \xrightarrow{j} \underset{\hat{h}}{X} \underset{\substack{\uparrow \\ F}}{Z} \boldsymbol{T}
$$

Further information about extensions and liftings of operators can be found in [2].

Lemma 1.5. Let X be a Banach space. There exists an index set I such that
(i) $0 \rightarrow K \operatorname{Ker} p \rightarrow l_{1}(I) \xrightarrow{p} X \rightarrow 0$ is exact. (Projective representation).
(ii) $0 \rightarrow X \xrightarrow{j} l_{\infty}(I) \rightarrow l_{\infty}(I) / X \rightarrow 0$ is exact. (Injective representation).

Proof. Let I be such that $\overline{\left(x_{i}\right)_{i \in I}}=B_{X}$. Then
(i) $p(y)=\sum_{i \in I} y(i) x_{i}$ is surjective.
(ii) Let $\left(x_{i}^{*}\right)_{i \in I} \subset X^{*}$ be such that $x_{i}^{*}\left(x_{i}\right)=\left\|x_{i}\right\| \forall i \in I$ then $j(x)=$ $\left(x_{i}^{*}(x)\right)_{i \in I}$ is injective.

We shall henceforth write $K \operatorname{erp}$ as $K, l_{1}(I)$ as l_{1}, and $l_{\infty}(I)$ as l_{∞}.

Definition 1.6. Let Y, Z be two Banach spaces. We define

$$
\mathscr{E}(Y, Z)=\{[h]: h \in \mathcal{L}(K, Y)\}
$$

such that $\left[h_{1}\right]=\left[h_{2}\right]$ if and only if $h_{1}-h_{2}$ has an extension onto l_{1}, and

$$
\mathscr{L}(Y, Z)=\left\{[h]: h \in \mathcal{L}\left(Z, l_{\infty} / Y\right)\right\}
$$

such that $\left[h_{1}\right]=\left[h_{2}\right]$ if and only if $h_{1}-h_{2}$ has a lifting into l_{∞}.
The following Lemma is frequently used in homological algebra (see [1]), and here it will allow us to prove the next theorem.

Lemma 1.7. (Push-Out and Pull-Back universal properties.)
(i) Let $h_{1}: X \rightarrow X_{1}, h_{2}: X \rightarrow X_{2}$ be two operators. Then

$$
P O\left(h_{1}, h_{2}\right)=: X_{1} \times X_{2} / \overline{\left\{\left(h_{1} x, h_{2} x\right): x \in X\right\}}
$$

represents the covariant functor

$$
E \in B a n \rightsquigarrow\left\{(\alpha, \beta): X \xrightarrow{h_{1}} X_{1} \text { is commutative. }\right\}
$$

(ii) Let $h_{1}: X_{1} \rightarrow X, h_{2}: X_{2} \rightarrow X$ be two operators. Then

$$
P B\left(h_{1}, h_{2}\right)=:\left\{\left(x_{1}, x_{2}\right) \in X_{1} \times X_{2}: h_{1} x_{1}=h_{2} x_{2}\right\}
$$

represents the contravariant functor

$$
\begin{gathered}
E \in B a n \rightsquigarrow\left\{(\alpha, \beta): X_{1} \xrightarrow{h_{1}} X \text { is commutative. }\right\} \\
\alpha \uparrow \quad h_{2} \uparrow \\
E \xrightarrow{\beta} X_{2}
\end{gathered}
$$

Theorem 1.8. Let Y, Z be two Banach spaces. There exists a bijection between $\mathscr{E}(Y, Z), \mathscr{L}(Y, Z)$ and $\operatorname{Ext}(Y, Z)$.

Proof. We shall prove that there exists a bijection between $\mathscr{E}(Y, Z)$ and $\operatorname{Ext}(Y, Z)$. The other case is similar.

On the one hand, we have that $\left[l_{1}\right] \in \operatorname{Ext}(K, Z)$. Hence using Theorem 1.2 there is a quasi-linear map $F: Z \rightarrow K$ such that $\left[l_{1}\right]=\left[K \oplus_{F} Z\right]$.

Given two bounded linear operators h_{1}, h_{2} from K to Y, we define the natural quasi-linear maps $F_{1}=h_{1} F$ and $F_{2}=h_{2} F$ from Z to Y. We have to prove that $\left[Y \oplus_{F_{1}} Z\right]=\left[Y \oplus_{F_{2}} Z\right] \Leftrightarrow h_{1}-h_{2}$ has an extension onto l_{1}. From Corollary 1.3 this is equivalent to proving that $\left[Y \oplus_{F_{1}-F_{2}} Z\right]=[Y \oplus Z] \Leftrightarrow$ $h_{1}-h_{2}$ has an extension onto l_{1}.
$\Rightarrow)$ Writing F for $F_{1}-F_{2}$ and h for $h_{1}-h_{2}$, the following diagram is commutative:

This means that there exists a retract $r: Y \oplus Z \rightarrow Y$, hence $r i=I_{Y}$. Let us write $\hat{h}=r H$. Then $\hat{h} j=r H j=r i h=h$ so that \hat{h} is an extension of h. $\Leftarrow)$ Now we have the following commutative diagram.

$$
\begin{aligned}
& 0 \rightarrow K \xrightarrow{j} l_{1} \xrightarrow{p} Z \rightarrow 0 \\
& h \downarrow \swarrow \stackrel{h}{h} \downarrow H \quad \| \\
& 0 \rightarrow Y \xrightarrow{i} Y \oplus_{F} Z \xrightarrow{q} Z \rightarrow 0
\end{aligned}
$$

$H j=i h$ so that $K \subset \operatorname{Ker}(H-\hat{h})$. Hence $H-\hat{h}$ factors through p, and therefore there exists a bounded linear operator $s: Z \rightarrow Y \oplus_{F} Z$ such that $s p=H-\hat{h}$. Hence $q s p=q H-q \hat{h}=q H=p$, i.e. $q s=I_{Z}$. Thus $Y \oplus_{F} Z=$ $Y \oplus Z$.

On the other hand, let $[h] \in \mathscr{E}(Y, Z)$ and let us consider the Push-Out of j and h, where j is the embedding of K in l_{1}. It only remains to prove that there exists a bounded linear operator $T: P O \rightarrow Y \oplus_{F} Z$ such that the following diagram is commutative, with F defined as at the beginning of this proof:

$$
\begin{array}{rl}
0 \rightarrow K & j \\
h \downarrow & l_{1} \xrightarrow{p} Z \rightarrow 0 \\
0 \rightarrow Y \rightarrow P O(j, h) \rightarrow Z & \rightarrow 0 \\
\| & \| \\
0 & \rightarrow Y \xrightarrow{i} Y \oplus_{F} Z \xrightarrow{q} Z \rightarrow 0
\end{array}
$$

Let b be a bounded selection of q. Hence we have a bounded linear operator $P: x \in l_{1} \rightarrow b p x \in Y \oplus_{F} Z$, and the following diagram is commutative:

$$
\begin{array}{cc}
K \xrightarrow{j} & l_{1} \\
h \downarrow & \downarrow P \\
Y \xrightarrow{i} Y \oplus_{F} Z .
\end{array}
$$

Using the Push-Out universal property, there exists a unique bounded linear operator $t: P O \rightarrow K$ such that the third diagram is commutative. Considering $T=i t h$, then T is the operator sought.

Corollary 1.9.

(i) Let Z be a Banach space and let us consider its projective representation. Then K represents the covariant functor $Y \in \operatorname{Ban} \rightsquigarrow \operatorname{Ext}(Y, Z)$.
(ii) Let Y be a Banach space and let us consider its injective representation. Then l_{∞} / Y represents the contravariant functor $Z \in B a n \rightsquigarrow \operatorname{Ext}(Y, Z)$.

2 Main Result

Lemma 2.1. Let Y, Z be two Banach spaces. Then

$$
\operatorname{Ext}(Y, Z)=\{[Y \oplus Z]\} \Rightarrow \operatorname{Ext}\left(Y_{1}, Z_{1}\right)=\left\{\left[Y_{1} \oplus Z_{1}\right]\right\}
$$

for all Y_{1} complemented in Y, and for all Z_{1} complemented in Z.
Proof. Let $[F] \in \operatorname{Ext}\left(Y_{1}, Z_{1}\right)$. If $\operatorname{Ext}(Y, Z)=\{[Y \oplus Z]\}$, this means that every short exact sequence that has Y as subspace and Z as quotient splits. Then there exists a retract $R: Y \oplus Z \rightarrow Y$ such that the following diagram is commutative:

$$
\begin{aligned}
& 0 \rightarrow Y_{1} \hookrightarrow Y_{1} \oplus_{F} Z_{1}^{\stackrel{\text { S }}{\curvearrowleft}} Z_{1} \rightarrow 0 \\
& \mathrm{r} \quad \mathrm{~S} \\
& \| \curvearrowleft P \uparrow \quad \curvearrowleft p \uparrow \downarrow j \\
& 0 \rightarrow Y_{1} \xrightarrow[\mathrm{R}]{\stackrel{i}{\longrightarrow}} P B \xrightarrow{Q} Z \rightarrow 0 \\
& \phi \uparrow \downarrow \pi \curvearrowleft \quad \downarrow \Pi \quad \| \\
& 0 \rightarrow Y \xrightarrow{I} P B O \rightarrow Z \rightarrow 0 \text {. } \\
& \text { || } \\
& Y \oplus Z
\end{aligned}
$$

If $r=\phi R \Pi$ then $r i=\phi R \Pi i=\phi R I \pi=\phi \pi=I_{Y_{1}}$. Hence, there is also a section S of Q. Thus $s=P S j$ is such that $q s=q P S j=p Q S j=p j=I_{Z_{1}}$. Therefore $\operatorname{Ext}\left(Y_{1}, Z_{1}\right)=\left\{\left[Y_{1} \oplus Z_{1}\right]\right\}$.

Theorem 2.2. Let Y, Z be two Banach spaces, then

$$
\operatorname{Ext}(Y, Z)=\{[Y \oplus Z]\} \Rightarrow \operatorname{Ext}\left(Z^{*}, Y^{*}\right)=\left\{\left[Z^{*} \oplus Y^{*}\right]\right\}
$$

Proof. Let us consider the projective representation of Z

$$
0 \rightarrow K \xrightarrow{j} l_{1} \xrightarrow{p} Z \rightarrow 0
$$

Let $h \in \mathcal{L}(K, Y)$. Then h has an extension onto l_{1}, and there exists $\hat{h} \in \mathcal{L}\left(l_{1}, Y\right)$ such that $h=\hat{h} j$. Therefore $h^{* * *}=j^{* * *}(\hat{h})^{* * *}$.

The following diagram is commutative:

$$
\begin{gathered}
0 \rightarrow K^{* *} \xrightarrow{j^{* *}} l_{1}^{* *} \xrightarrow{p^{* *}} Z^{* *} \rightarrow 0 \\
\uparrow i K^{* *} \xrightarrow{j_{1}} P B \xrightarrow{p_{1}} Z \rightarrow 0 .
\end{gathered}
$$

If we consider now the following commutative diagram:

then $P O=P B^{*}$.
Let $H=i^{*}(\hat{h})^{* * *}$. Since

$$
\operatorname{Im}\left(H \mid Y^{*}\right) \subset \operatorname{Im}\left(j_{1}^{*-1} \mid K^{*}\right)=\operatorname{Im}\left(i^{*} i_{l_{1}^{*}}\right)
$$

then $h^{*}=j^{*}\left(\left(i^{*} i_{l_{1}^{*}}\right)^{-1} \circ H \mid Y^{*}\right)$, so that $\left(i^{*} i_{l_{1}^{*}}\right)^{-1} \circ H \mid Y^{*}$ is the lifting we are looking for.

In general the reciprocal is not true. For instance, the Lindenstrauss lifting principle ([3], Proposition 2.1.) states that $\operatorname{Ext}\left(l_{2}, l_{1}\right)=\left\{\left[l_{2} \oplus l_{1}\right]\right\}$.

If JL denotes the Johnson-Lindenstrauss space then c_{0} is a subspace of JL and $\mathrm{JL} / c_{0}=l_{2}$ thus $[\mathrm{JL}] \in \operatorname{Ext}\left(c_{0}, l_{2}\right)$ and $[\mathrm{JL}] \neq\left[c_{0} \oplus l_{2}\right]$ because c_{0} is not complemented in JL.

Adding a condition the reciprocal is true.
Theorem 2.3. Let Y, Z be two Banach spaces such that Y is complemented in its bidual. Then

$$
\operatorname{Ext}\left(Z^{*}, Y^{*}\right)=\left\{\left[Z^{*} \oplus Y^{*}\right]\right\} \Rightarrow \operatorname{Ext}(Y, Z)=\{[Y \oplus Z]\}
$$

Proof. Let $i_{K^{*}}: K^{*} \hookrightarrow K^{* * *}, i_{K^{* *}}: K^{* *} \hookrightarrow K^{* * * *}, i_{l_{1}^{* *}}: l_{1}^{* *} \hookrightarrow l_{1}^{* * * *}$, $i_{l_{1}^{*}}: l_{1}^{*} \hookrightarrow l_{1}^{* * *}$ be the canonical embeddings. Let $h \in \mathcal{L}(K, Y)$. Then h^{*} has a lifting into l_{1}^{*}, and we have the following commutative diagram:

$$
\begin{array}{r}
0 \rightarrow Z^{*} \xrightarrow{p^{*}} l_{1}^{*} \xrightarrow{h^{*}} \underset{Y^{*}}{h^{*}} K^{*} \rightarrow 0 \\
Y^{*}
\end{array}
$$

where $h^{*}=j^{*} \hat{h^{*}}$ therefore $h^{* *}=\left(\hat{h^{*}}\right)^{*} j^{* *}$ thus $h^{* *} i_{K^{*}}^{*}=\left(\hat{h^{*}}\right)^{*} j^{* *} i_{K^{*}}^{*}$. Hence we have that

$$
\begin{aligned}
h^{* *} & =h^{* *} i_{K^{*}}^{*} i_{K^{* *}}=\left(\hat{h}^{*}\right)^{*} j^{* *} i_{K^{*}}^{*} i_{K^{* *}} \\
& =\left(\hat{h^{*}}\right)^{*} i_{l_{1}^{*}}^{*} i_{l_{1}^{* *}} j^{* *} .
\end{aligned}
$$

In these conditions, $\left(\hat{h^{*}}\right)^{*} i_{l_{1}^{*}}^{*} i_{l_{1}^{* *}}$ is an extension of $h^{* *}$ onto $l_{1}^{* *}$, so if i_{K} : $K \hookrightarrow K^{* *}, i_{l_{1}}: l_{1} \hookrightarrow l_{1}^{* *}$, are the natural embeddings then $\left(\hat{h}^{*}\right)^{*} i_{l_{1}^{*}}^{*} i_{l_{1}^{* *}} i_{l_{1}}$ is an extension of $h^{* *} i_{K}$ onto l_{1}.

Finally, using Lemma 2.1 the proof is complete.
Corollary 2.4. Let Y, Z be two Banach spaces such that Y is complemented in its bidual and $[F] \in \mathcal{Q}(Z, Y)$. If $F^{*}: Y^{*} \rightarrow Z^{*}$ is such that $F^{*} y^{*}(z)=$: $y^{*}(F z)$, then $\left[F^{*}\right] \in \mathcal{Q}\left(Y^{*}, Z^{*}\right)$ and $d(F, \operatorname{Lin}(Z, Y))=d\left(F^{*}, \operatorname{Lin}\left(Y^{*}, Z^{*}\right)\right)$.

References

[1] Castillo, J.M.F., González, M. Three-space Problems in Banach Spaces Theory, Lecture Notes in Math, 1667, Springer 1997.
[2] Domanski, P. Extensions and Liftings of Linear Operators, thesis, Poznan 1987.
[3] Kalton, N.J., Pelczynski, A. Kernels of Surjections from \mathscr{L}_{1}-spaces with an Application to Sidon Sets, Math. Ann. 309 (1997), 135-158.

