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Facultad de Ciencias Exactas

Universidad Nacional del Centro
Pinto 399, 7000 Tandil, Argentina

Abstract

This paper is devoted to study an extension of intuitionistic modal
logic introduced by Fischer-Servi [6] by means of Lemmon-Scott axiom.
We shall prove that this logic is canonical.
Key words and phrases: modal logic, intuitionistic logic, intuition-
istic modal Logic.

Resumen

Este trabajo se dedica a estudiar una extensión de la lógica modal
intuicionista introducida por Fischer-Servi [6] por medio del axioma de
Lemmon-Scott. Se prueba que esta lógica es canónica.
Palabras y frases clave: lógica modal, lógica intuicionista, lógica
modal intuicionista,

1 Introduction

Edwald [5], Fischer-Servi [6] and Plotkin and Stirling [10] (see also [1] and
[11]) introduced independently an intuitionistic modal logic, called IK, with
two modal operators 2 and 3. The relational semantic for IK is represented
by triples of type 〈X,≤, R〉 where ≤ is a quasi-ordering on X and R is an
accessibility relation, such that (≤−1 ◦R) ⊆ (R◦ ≤−1) and (R◦ ≤) ⊆ (≤
◦R). Fischer-Servi studies several extensions for IK, by means of axioms
like 2ϕ → ϕ, and their duals ϕ → 3ϕ, but she does not study extensions
with only one axiom, for example 2ϕ → ϕ, or ϕ → 3ϕ. Since the modal
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operators are independent, in the sense that 2 is not defined in terms of 3,
and reciprocally, 3 is not defined in terms of 2, we can give extensions of
IK such as IK + {ϕ → 3ϕ} such that they are complete. Recently, in [12]
F. Wolter and M. Zakharyaschev, studied some intuitionistic modal logics
weaker than IK and show that some extensions of these logics by means of
the axioms 3m2np → 2k3lp are canonical. On the other hand, there exists
a general modal schema discovered by Lemmon and Scott that contains, as
a particular instance, many of the best known modal formulas. This formula
was characterized by R. Goldblatt by means of a first-order condition. The
purpose of the present work is to study an extension of the logic IK by means
of a similar formula. We shall give a of first-order condition for this formula.

In the next section, the preliminaries, we shall recall the basic notions of
the logic IK. Section 3 deals with the Kripke semantics for the extensions of
IK by means of the Lemmon-Scott axiom. Section 4 is devoted to the proof
that this logic is canonical.

2 Preliminaries

The language of propositional modal logic that we assume in the paper has the
connectives {∧,∨,→, 2, 3} and has in addition one propositional constant ⊥.
The set of propositional variables is denoted by V ar. The negation ¬ and the
constant > are defined by ¬p = p → ⊥ and > = ¬⊥, respectively. Fm will
denote the set of formulas.

The intuitionistic modal logic IK is the logic with the following sets of
axioms and the following rules:

1. Any axiomatization of the Intuitionistic Propositional Calculus (IPC).

2. (2ϕ ∧2ψ) → 2ϕ ∧2ψ

3. 3(ϕ ∨ ψ) → 3ϕ ∨3ψ

4. 2>
5. ¬3⊥
6. 3(ϕ → ψ) → (2ϕ → 3ψ)

7. (3ϕ → 2ψ) → 2(ϕ → ψ)

8.
ϕ ϕ → ψ

ψ
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9.
ϕ → ψ

2ϕ → 2ψ

10.
ϕ → ψ

3ϕ → 3ψ

The Kripke semantics for IK is represented by the relational structures
F = 〈X,≤, R〉 where ≤ is a quasi-ordering on X, that is, a binary reflexive
and transitive relation on X, R is a binary relation on X, and the following
two conditions are held:

(1) (R ◦ ≤) ⊆ (≤ ◦ R)

(2) (≤−1 ◦ R) ⊆ (R ◦ ≤−1),

where ◦ denotes the composition between binary relations.
Let F = 〈X,≤, R〉 be a frame. For Y ⊆ X, we put [Y ) = {x ∈ X : y ≤ x,

for some y ∈ Y } and (Y ] = {x ∈ X : x ≤ y, for some y ∈ Y }. A subset Y
of X is increasing if Y = [Y ) and is decreasing if Y = (Y ]. The sets of
all increasing sets of X will be denoted by Pi(X). We define two relations
that will be very important in the rest of this work. Let R2 =≤ ◦R and
R3 = R◦ ≤−1. These relations are fundamental in the analysis of extensions
of IK. For x ∈ X, we denote R(x) = {y ∈ X : (x, y) ∈ R}. For Y ⊆ X, we
write Y c = X − Y .

A valuation on a frame F is a function V : V ar → Pi(X). All valuation
V can be extended recursively to Fm by means of the following clauses:

1. V (⊥) = ∅,
2. V (ϕ ∨ ψ) = V (ϕ) ∪ V (ψ),

3. V (ϕ ∧ ψ) = V (ϕ) ∩ V (ψ),

4. V (ϕ → ψ) = {x ∈ X : [x) ∩ V (ϕ) ⊆ V (ψ)},
5. V (2ϕ) = {x ∈ X : R2(x) ⊆ V (ϕ)} = 2R2

(V (ϕ)), and

6. V (3ϕ) = {x ∈ X : R(x) ∩ V (ϕ) 6= ∅} = 3R(V (ϕ)).

We note that V (3ϕ) = {x ∈ X : R3(x) ∩ V (ϕ) 6= ∅}. Indeed, suppose that
R3(x) ∩ V (ϕ) 6= ∅. Then there exist y, z ∈ X such that y ∈ R(x), z ≤ y and
z ∈ V (ϕ). Since V (ϕ) ∈ Pi(X), y ∈ V (ϕ). Thus R(x) ∩ V (ϕ) 6= ∅. The other
direction follows by the reflexivity of ≤.
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We define the semantic notions of truth and validity in a model and validity
in a frame for formulas.

Given a model 〈F , V 〉 and a point x ∈ X we say that a formula ϕ is true
at x in 〈F , V 〉, in symbols 〈F , V 〉 ²x ϕ, if x ∈ V (ϕ). A formula ϕ is valid in
a model 〈F , V 〉, in symbols 〈F , V 〉 |= ϕ, if it is true at every point in X. A
formula ϕ is valid in a frame F , in symbols F |= ϕ, if for any valuation V on
F , ϕ is valid in the model 〈F , V 〉.

Let I be any modal logic that is an extension of IK. We will denote by
Fr(I) the class of all frames where every formula of I is valid. Now let F be a
class of frames. Th(F) denotes the class of all formulas that are valid in every
frame in F. A modal logic I is characterized by a class F of frames, or it is
complete relative to a class F of frames, F-complete for short, if Th(F) = I.

Let us use the following notation. Let ϕ ∈ Fm. Then we shall write
20ϕ = ϕ, 30ϕ = ϕ, 2n+1ϕ = 22nϕ and 3n+1ϕ = 33nϕ.

Let R be a relation on a set X. Let us define Rn recursively by: R0 is the
identity on X and Rn+1 = Rn ◦R.

Lemma 1. Let F = 〈X,≤, R〉 be a frame. Then

1. ≤−1 ◦Rn ⊆ Rn◦ ≤−1.

2. Rn◦ ≤⊆≤ Rn.

3. Rn
3 = Rn◦ ≤−1.

4. Rn
2 =≤ ◦Rn.

Proof. 1. By induction on n. Suppose that 1. is valid for n and let x, y, z ∈ X
such that x ≤−1 y and (y, z) ∈ Rn+1. Then there exists z1 ∈ X such that
(y, z1) ∈ Rn and (z1, z) ∈ R. By inductive hypothesis we get (x, z1) ∈≤−1

◦Rn ⊆ Rn◦ ≤−1. It follows that there exists w ∈ X such that (x,w) ∈ Rn

and z1 ≤ w. Since (z1, z) ∈ R, we have (w, z) ∈≤−1 ◦R ⊆ R◦ ≤−1. Then
there exists k ∈ X such that (w, k) ∈ R and z ≤ w. Since (x,w) ∈ Rn, then
(x, w) ∈ Rn+1◦ ≤−1.

The proof of 2. is similar, and 3. and 4. follow from 1. and 2., respectively.

Lemma 2. Let F = 〈X,≤, R〉 be a frame. Then for any x ∈ X, Rn
2(x),

(Rn
3(x))c ∈ Pi(X).

Proof. Let a ≤ b and (x, a) ∈ Rn
2. Then there exists c ∈ X such that x ≤ c

and (c, a) ∈ Rn. Then (c, b) ∈ Rn◦ ≤, and by 2. of Lemma 1, there exists
w ∈ X such that c ≤ w and (w, b) ∈ Rn. Since x ≤ c ≤ w, we get (x, b) ∈ Rn

2.
The proof of (Rn

3(x))c ∈ Pi(X) is similar.
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Corollary 3. Let F = 〈X,≤, R〉 be a frame. Let x ∈ X. Let V , V ′ be the
functions defined by:

1. V (p) = Rn
2(x) and

2. V ′(p) = (Rn
3(x))c.

each variable p and an n ≥ 0. Then V. and V ′ are valuations.

Proof. It is immediate by Lemma 2.

3 Lemon-Scott axiom

In this section we extend the modal logic IK with the Lemmon-Scott axiom
(LS). This is a natural generalization of the Lemmon-Scott axiom of classi-
cal modal logic, which has been characterized by R. Goldblatt in [7]. We
shall adapt the techniques given by Goldblatt to our case. It is known that
the LS axiom cover many known modal formulas, as for example the axiom
3m2np → 2k3lp.

We shall say that a formula α is positive if it can be constructed using no
connectives other than ∨,∧, 2,3. Let α(p1, p2, . . . .pn) be a positive formula,
where p1, p2, . . . .pn are the variables occurring in α. The formula obtained by
uniformly substitutions, for each t ≤ i ≤ k, the formula ψi for pi in α is the
formula α(ψ1, ψ2, . . . .ψn).

Let α(p1, p2, . . . .pn) be a positive formula and let us consider ~n = (n1,. . . ,nk)
and ~m = (m1, . . . , mk), where ni, mi ∈ N. Let F = 〈X,≤, R〉 be a frame and
let us consider ~t = (t1, . . . , tk), with ti ∈ X.

Let x ∈ X. We shall define a first-order condition Rα(x,~t, ~n) on the frame
F by recursion as follows:

Rpi(x,~t, ~n) ⇔ (ti, x) ∈ Rni
2 , i ≤ k, pi ∈ V ar,

Rα∧β(x,~t, ~n) ⇔ Rα(x,~t, ~n) ∧Rβ(x,~t, ~n)

Rα∨β(x,~t, ~n) ⇔ Rα(x,~t, ~n) ∨ Rβ(x,~t, ~n)

R2α(x,~t, ~n) ⇔ ∀y((x, y) ∈ R2 ⇒ Rα(y,~t, ~n))

R3α(x,~t, ~n) ⇔ ∃y((x, y) ∈ R ∧ Rα(y,~t, ~n))
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The first-order condition of Lemmon-Scott is:

R(α,~n, ~m) : ∀x∀t1 . . . ∀tk(xRm1t1 ∧ xRm2t2 ∧ . . . xRmktk ⇒ Rα(x,~t, ~n)).

We note that when the relation ≤ is the equality, the first-order condition
R(α,~n, ~m) is the first-order condition given in [7].

Let α(p1, p2, . . . , pk) be a positive formula. Then the Lemmon-Scott axiom
is the formula

ILS(αm
n ) : 3m12n1p1∧3m22n2p2∧ . . .∧3mk2nkpk → α(p1, p2, . . . , pk).

Proposition 4. Let F be a frame. Then F ² ILS(αm
n ) if and only if

R(α,~n, ~m) is valid en F .

Proof. Assume that F ² ILS(αm
n ). Let x ∈ X and ~t = (t1, . . . , tk) ∈ Xk

such that (x, ti) ∈ Rmi , i ≤ k. Let us consider the function V defined by
V (pi) = Rni

2 (ti). By Corollary 3, V is a valuation. Since ti ∈ V (2nipi),

we get x ∈
k⋂

i=1

V (3mi2nipi). Then by assumption, x ∈ V (α(p1, p2, . . . , pk)).

Now, by induction on the complexity of α we shall prove that Rα(x,~t, ~n) is
valid in F .

• Let α = pi. Then, x ∈ V (α(p1, p2, . . . , pk)) = V (pi) = Rni
2 (ti). So,

(ti, x) ∈ Rni
2 , for i ≤ k.

• Let α = 3ϕ. Then, x ∈ V (3ϕ(p1, p2, . . . , pk)) = 3RV (ϕ(p1, p2, . . . , pk)).
It follows that there exists y ∈ X such that (x, y) ∈ R and y ∈
V (ϕ(p1, p2, . . . , pk)). By inductive hypothesis, (x, y) ∈ R and Rϕ(y,~t, ~n).
Thus, R3ϕ(x,~t, ~n) is valid in F . The other cases are similar and left to
the reader.

Assume that R(α,~n, ~m) is valid in F . Let V be a valuation on F and let

x ∈ X such that x ∈
k⋂

i=1

V (3mi2nipi). Then for each i ≤ k, there exists

ti ∈ X such that (x, ti) ∈ Rmi and ti ∈ V (2nipi). By induction on the
complexity of α(p1, p2, . . . , pk) we prove that x ∈ V (α(p1, p2, . . . , pk)).

• Let α = pi. Since, Rpi(x,~t, ~n) is (ti, x) ∈ Rni
2 , for i ≤ k. Since ti ∈

V (2nipi), we have x ∈ V (pi).

• Let α = 2ϕ. Let (x, y) ∈ R2. Since, R2ϕ(x,~t, ~n) is ∀y((x, y) ∈ R2 ⇒
Rϕ(y,~t, ~n)), and as ti ∈ V (2nipi), then by inductive hypothesis we have
that for all y ∈ R2(x), y ∈ V (ϕ). Therefore, x ∈ V (2ϕ).
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• Let α = 3ϕ. Since, R3ϕ(x,~t, ~n) is ∃y((x, y) ∈ R ∧Rϕ(y,~t, ~n)), then by
inductive hypothesis there exists y ∈ R(x) and y ∈ V (ϕ). Therefore,
x ∈ V (3ϕ).

The cases α = ϕ∨ψ and α = ϕ∧ψ are similar and left to the reader.

4 Completeness

The completeness of the logic IK+ {ILS(αm
n )} will be prove by means of the

canonical model. First, we shall recall some notions.
Let us fix a modal logic I that is an extension of IK. A set of formulas is

a theory of I, or an I-theory, if it is closed under the deducibility relation `I .
A theory is consistent if it is not the set of all formulas. Equivalently, if the
formula ⊥ does not belong to it. A prime theory of I, or a prime I-theory, is a
consistent I-theory P with the following property: if (ϕ∨ψ) ∈ Γ, then ϕ ∈ P
or ψ ∈ Γ.

Proposition 5. Let Γ be a consistent theory and let ∆ be a set of formulas
closed under disjunctions (i.e. if ϕ,ψ ∈ ∆ then ϕ ∨ ψ ∈ ∆) and such that
Γ ∩∆ = ∅. Then there is a prime theory P such that Γ ⊆ P and P ∩∆ = ∅.
Proof. See [6].

Let us denote by Xc the set of all prime I-theories. We define the relation
Rc ⊆ Xc ×Xc as follows:

(P, Q) ∈ Rc ⇔ 2−1(P ) ⊆ Q ⊆ 3−1(P ),

where 2−1(P ) = {ϕ : 2ϕ ∈ P} and 3−1(P ) = {ϕ : 3ϕ ∈ P}. In [6] it was
shown that the structure Fc = 〈Xc,⊆, Rc〉 is indeed a frame. It will be called
the canonical frame for I.

Let Q be a prime I-theory and let us consider the sets Qc = {ϕ : ϕ /∈ Q}
and 2(Qc) = {2ϕ : ϕ ∈ Qc}. Then the set 2(Qc) is closed under disjunctions.
To see this, we note first that if 2ϕ `I 2ψ and ψ ∈ Qc, then 2ϕ ∈ 2(Qc),
because 2ϕ `I 2ψ ⇔ 2ϕ ∧ 2ψ a`I 2(ϕ ∧ ψ) a`I 2ϕ and as ψ /∈ Q,
ϕ ∧ ψ /∈ Q. So, if ψ,ϕ /∈ Q then ψ ∨ ϕ /∈ Q, and since 2ϕ ∨2ψ `I 2(ϕ ∨ ψ),
we get 2ϕ ∨2ψ ∈ 2(Qc).

The results of the following theorem is establish in [6] but we shall give a
simplified proof for completeness.

Proposition 6. Let P, Q ∈ Xc. Then
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1. 2−1(P ) ⊆ Q if and only if (P,Q) ∈ R2.

2. Q ⊆ 3−1(P ) if and only if (P, Q) ∈ R3.

3. 2ϕ /∈ P if and only if there exists Q ∈ Xc such that (P,Q) ∈ R2 and
ϕ /∈ Q.

4. 3ϕ ∈ P if and only if there exists Q ∈ Xc such that (P,Q) ∈ R3 and
ϕ ∈ Q.

5. (Rc◦ ⊆) ⊆ (⊆ ◦Rc).

6. (⊆−1 ◦Rc) ⊆ (Rc◦ ⊆−1).

7. Rc = R2 ∩R3.

Proof. 1. Let P,Q ∈ Xc such that 2−1(P ) ⊆ Q. Let us consider the theory
T = {ϕ : P ∪3Q `I ϕ}. We prove that

T ∩2(Qc) = ∅.

Suppose the contrary. Then there exists ϕ ∈ P , ψ ∈ Q and α /∈ Q such that
ϕ ∧ 3ψ `I 2α. Since ϕ `I 3ψ → 2α and 3ψ → 2α `I 2(ψ → α), we get
2(ψ → α) ∈ P . It follows that ψ → α ∈ Q, which is a contradiction. Then
T ∩ 2(Qc) = ∅. By Proposition 5, there exists D ∈ Xc such that P ⊆ D,
Q ⊆ 3−1(D) and 2−1(D) ⊆ Q. Therefore, (P, Q) ∈ R2.

The other direction is immediate.
3. Let us suppose that 2ϕ /∈ P . Let Tϕ be the closure under disjunctions

of the set {ϕ}. Then 2−1(P )∩Tϕ = ∅. By Proposition 5, there exists a prime
theory Q such that 2−1(P ) ⊆ Q and ϕ /∈ Q. By 1. above we get the desired
result.

5. Let P, Q, D ∈ Xc such that (P,D) ∈ Rc and D ⊆ Q. Then 2−1(P ) ⊆ Q.
By 1. above we have (P,Q) ∈ R2 =⊆ ◦Rc.

The proof of 2., 4., and 5. are similar. The proof of 6. follows from 1. and
2.

Define the canonical model for I as the model 〈Fc, Vc〉 on the canonical
frame Fc, where Vc is the valuation defined by Vc(p) = {P ∈ Xc : p ∈ P}, for
any variable p. It is clear that Vc is a valuation since the sets {P ∈ Xc : p ∈ P}
are increasing.

Proposition 7. 〈Fc, Vc〉 ²P ϕ ⇔ ϕ ∈ P .

Proof. See [6].
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Corollary 8. The modal logic IK is canonical and hence frame complete.

Lemma 9. Let Fc be the canonical frame of I. Then for every P, Q ∈ Xc,

(P, Q) ∈ Rn
2 ⇔ {ϕ : 2nϕ ∈ P} ⊆ Q. (1)

Proof. The proof is by induction on n. The case n = 1 follows from Proposi-
tion 6. Suppose that (1) is valid for n. If (P, Q) ∈ Rn+1

2 , then it is immediate
to check that

{
ϕ : 2n+1ϕ ∈ P

} ⊆ Q. Suppose that
{
ϕ : 2n+1ϕ ∈ P

} ⊆ Q.

Let us consider the set 2−1(P ) and let ∆ be the closure under disjunctions
of the set {2nψ : ψ /∈ Q}. We prove that

2−1(P ) ∩∆ = ∅.
Suppose the contrary. Then there exists 2α ∈ P and there exists ψ ∈ ∆ such
that `I α → 2nψ. Then `I 2α → 2n+1ψ. Since P is a theory, 2n+1ψ ∈ P .
It follows, ψ ∈ Q, which is a contradiction. Then, by Proposition 5, there
exists D ∈ Xc such that 2−1(P ) ⊆ D and ∆ ∩ D = ∅. It follows that
(P,Q) ∈ R2, and by inductive hypothesis, it follows that (D, Q) ∈ Rn

2, i.e.,
(P,Q) ∈ Rn+1

2 .

Now, we prove that the intuitionistic modal logic IK + {ILS(αm
n )} is

canonical. Let I be a intuitionistic modal logic such that IK+ {ILS(αm
n )} ⊆

I.

Proposition 10. Let Fc be the canonical frame of I. Let α(p1, p2, . . . , pn) be
a positive formula. Let Q ∈ Xc and ~P = (P1, P2, . . . , Pk) ∈ Xk

c . Then

Rα(Q, ~P , ~n) is valid in Fc iff {α(ψ1, ψ2, . . . , ψk) : 2niψi ∈ Pi, i ≤ k} ⊆ Q.

Proof. The proof is by induction on the complexity of α. We give the proof
for the case k = 1. The case α = p follows by the Lemma 9.

Let α = 3ϕ. Suppose that {3ϕ(ψ) : 2nψ ∈ P} ⊆ Q. We prove that
R3ϕ(Q,P, n) Let us consider the set Γ = {ϕ(ψ) : 2nψ ∈ P} and let us con-
sider the theory T (Γ) generated by Γ. We prove that

T (Γ) ∩3−1(Q)c = ∅.
If we suppose the contrary, then there exists ϕ(ψ1), ϕ(ψ2), . . . , ϕ(ψn) ∈ Γ and
β /∈ 3−1(Q) such that `I ϕ(ψ1) ∧ ϕ(ψ2) ∧ . . . ∧ ϕ(ψn) → β. Then,

`I 3(ϕ(ψ1) ∧ ϕ(ψ2) ∧ . . . ∧ ϕ(ψn)) → 3β.
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Thus, 3(ϕ(ψ1)∧ϕ(ψ2)∧. . .∧ϕ(ψn)) /∈ Q. But since ϕ(ψ1), ϕ(ψ2), . . . , ϕ(ψn) ∈
Γ, 2n(ψ1 ∧ψ2 ∧ . . .∧ψn) ∈ P . It follows 3(ϕ(ψ1)∧ϕ(ψ2)∧ . . .∧ϕ(ψn)) ∈ Q,
which is a contradiction. Therefore, there is a prime theory D such that
Γ ⊆ D and D ⊆ 3−1(Q). Since (Q,D) ∈ R3 = Rc◦ ⊆−1, then there exists
K ∈ Xc such that (Q, K) ∈ Rc and D ⊆ K. So, Γ ⊆ K. Then, by the
inductive hypothesis, Rϕ(ψ)(Q,P, n) and (Q, K) ∈ Rc.

The proof in the other direction is easy. The proof of the other cases are
similar and left to the reader.

Corollary 11. Let I be an intuitionistic modal logic such that it contains the
logic IK + {ILS(αm

n )}. Then the canonical frame Fc of I satisfies the first-
order condition R(α,~n, ~m) Therefore, the logic IK+{ILS(αm

n )} is canonical.

Proof. Let Q,P1, P2, . . . , Pk ∈ Xc. Suppose that (Q,P1) ∈ Rm1 ,. . . ,(Q,Pk) ∈
Rmk . By Proposition 10 we have to prove that

{α(ψ1, ψ2, . . . , ψk) : 2niψi ∈ Pi, i ≤ k} ⊆ Q.

Let 2niψi ∈ Pi, i ≤ k. Then
∧k

i=1 3mi2niψi ∈ Q. As ILS(αm
n ) ∈ Q,

α(ψ1, ψ2, . . . , ψk) ∈ Q Thus, Fc satisfies the condition R(α,~n, ~m), and con-
sequently IK + {ILS(αm

n )} is canonical.

5 Conclusions

In this paper we prove that the logic IK extended with the Lemmon-Scott
axiom is canonical and frame complete. By these results we can deduce that,
for instance, the logic IK +

{
2ϕ → 22ϕ, 32ϕ → 23ϕ

}
is canonical and its

class of frames are the frames F = 〈X,≤, R〉 where R2 = R◦ ≤ is transitive
and R2 ◦R3 ⊆ R3 ◦R2. These results generalize and extend the results given
by G. Fischer-Servi [6] on extensions of the logic IK.

An important fact of the logic IK is that it embodies a fully acceptable
interpretation of the modal operators 2 and 3 by means of the axioms 3(ϕ →
ψ) → (2ϕ → 3ψ) and (3ϕ → 2ψ) → 2(ϕ → ψ). Moreover, in the classical
modal logic K, the formula 2(ϕ∨ψ) → (2ϕ∨3ψ) is equivalent to any of the
two above formulas. This is not valid when we consider a modal logic based on
intuitionistic logic. This motivated define other classes of intuitionistic modal
logic with operators 2 and 3 using different combinations of these formulas.
These problems will be investigated in a future paper.
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