Remarks on Intuitionistic Modal Logics

Observaciones sobre Lógicas Modales Intuicionistas
Sergio Celani (scelani@exa.unicen.edu.ar)
Departamento de Matemática
Facultad de Ciencias Exactas
Universidad Nacional del Centro
Pinto 399, 7000 Tandil, Argentina

Abstract

This paper is devoted to study an extension of intuitionistic modal logic introduced by Fischer-Servi [6] by means of Lemmon-Scott axiom. We shall prove that this logic is canonical. Key words and phrases: modal logic, intuitionistic logic, intuitionistic modal Logic.

Resumen

Este trabajo se dedica a estudiar una extensión de la lógica modal intuicionista introducida por Fischer-Servi [6] por medio del axioma de Lemmon-Scott. Se prueba que esta lógica es canónica.
Palabras y frases clave: lógica modal, lógica intuicionista, lógica modal intuicionista,

1 Introduction

Edwald [5], Fischer-Servi [6] and Plotkin and Stirling [10] (see also [1] and [11]) introduced independently an intuitionistic modal logic, called IK, with two modal operators \square and \diamond. The relational semantic for IK is represented by triples of type $\langle X, \leq, R\rangle$ where \leq is a quasi-ordering on X and R is an accessibility relation, such that $\left(\leq^{-1} \circ R\right) \subseteq\left(R \circ \leq^{-1}\right)$ and $(R \circ \leq) \subseteq(\leq$ $\circ R$). Fischer-Servi studies several extensions for IK, by means of axioms like $\square \varphi \rightarrow \varphi$, and their duals $\varphi \rightarrow \diamond \varphi$, but she does not study extensions with only one axiom, for example $\square \varphi \rightarrow \varphi$, or $\varphi \rightarrow \diamond \varphi$. Since the modal

Recibido 2000/04/28. Revisado 2001/05/04. Aceptado 2001/05/07. MSC (2000): Primary 03B45.
operators are independent, in the sense that \square is not defined in terms of \diamond, and reciprocally, \diamond is not defined in terms of \square, we can give extensions of IK such as IK $+\{\varphi \rightarrow \diamond \varphi\}$ such that they are complete. Recently, in [12] F. Wolter and M. Zakharyaschev, studied some intuitionistic modal logics weaker than IK and show that some extensions of these logics by means of the axioms $\diamond^{m} \square^{n} p \rightarrow \square^{k} \diamond^{l} p$ are canonical. On the other hand, there exists a general modal schema discovered by Lemmon and Scott that contains, as a particular instance, many of the best known modal formulas. This formula was characterized by R. Goldblatt by means of a first-order condition. The purpose of the present work is to study an extension of the logic IK by means of a similar formula. We shall give a of first-order condition for this formula.

In the next section, the preliminaries, we shall recall the basic notions of the logic IK. Section 3 deals with the Kripke semantics for the extensions of IK by means of the Lemmon-Scott axiom. Section 4 is devoted to the proof that this logic is canonical.

2 Preliminaries

The language of propositional modal logic that we assume in the paper has the connectives $\{\wedge, \vee, \rightarrow, \square, \diamond\}$ and has in addition one propositional constant \perp. The set of propositional variables is denoted by Var. The negation \neg and the constant \top are defined by $\neg p=p \rightarrow \perp$ and $\top=\neg \perp$, respectively. $F m$ will denote the set of formulas.

The intuitionistic modal logic IK is the logic with the following sets of axioms and the following rules:

1. Any axiomatization of the Intuitionistic Propositional Calculus (IPC).
2. $(\square \varphi \wedge \square \psi) \rightarrow \square \varphi \wedge \square \psi$
3. $\diamond(\varphi \vee \psi) \rightarrow \diamond \varphi \vee \diamond \psi$
4. $\square \top$
5. $\neg \diamond \perp$
6. $\diamond(\varphi \rightarrow \psi) \rightarrow(\square \varphi \rightarrow \diamond \psi)$
7. $(\diamond \varphi \rightarrow \square \psi) \rightarrow \square(\varphi \rightarrow \psi)$
8. $\frac{\varphi \quad \varphi \rightarrow \psi}{\psi}$
9. $\frac{\varphi \rightarrow \psi}{\square \varphi \rightarrow \square \psi}$
10. $\frac{\varphi \rightarrow \psi}{\diamond \varphi \rightarrow \diamond \psi}$

The Kripke semantics for IK is represented by the relational structures $\mathcal{F}=\langle X, \leq, R\rangle$ where \leq is a quasi-ordering on X, that is, a binary reflexive and transitive relation on X, R is a binary relation on X, and the following two conditions are held:
(1) $(R \circ \leq) \subseteq(\leq \circ R)$
(2) $\left(\leq^{-1} \circ R\right) \subseteq\left(R \circ \leq^{-1}\right)$,
where \circ denotes the composition between binary relations.
Let $\mathcal{F}=\langle X, \leq, R\rangle$ be a frame. For $Y \subseteq X$, we put $[Y)=\{x \in X: y \leq x$, for some $y \in Y\}$ and $(Y]=\{x \in X: x \leq y$, for some $y \in Y\}$. A subset Y of X is increasing if $Y=[Y)$ and is decreasing if $Y=(Y]$. The sets of all increasing sets of X will be denoted by $\mathcal{P}_{i}(X)$. We define two relations that will be very important in the rest of this work. Let $R_{\square}=\leq \circ R$ and $R_{\diamond}=R \circ \leq^{-1}$. These relations are fundamental in the analysis of extensions of IK. For $x \in X$, we denote $R(x)=\{y \in X:(x, y) \in R\}$. For $Y \subseteq X$, we write $Y^{c}=X-Y$.

A valuation on a frame \mathcal{F} is a function $V: \operatorname{Var} \rightarrow \mathcal{P}_{i}(X)$. All valuation V can be extended recursively to $F m$ by means of the following clauses:

1. $V(\perp)=\emptyset$,
2. $V(\varphi \vee \psi)=V(\varphi) \cup V(\psi)$,
3. $V(\varphi \wedge \psi)=V(\varphi) \cap V(\psi)$,
4. $V(\varphi \rightarrow \psi)=\{x \in X:[x) \cap V(\varphi) \subseteq V(\psi)\}$,
5. $V(\square \varphi)=\left\{x \in X: R_{\square}(x) \subseteq V(\varphi)\right\}=\square_{R_{\square}}(V(\varphi))$, and
6. $V(\diamond \varphi)=\{x \in X: R(x) \cap V(\varphi) \neq \emptyset\}=\diamond_{R}(V(\varphi))$.

We note that $V(\diamond \varphi)=\left\{x \in X: R_{\diamond}(x) \cap V(\varphi) \neq \emptyset\right\}$. Indeed, suppose that $R_{\diamond}(x) \cap V(\varphi) \neq \emptyset$. Then there exist $y, z \in X$ such that $y \in R(x), z \leq y$ and $z \in V(\varphi)$. Since $V(\varphi) \in \mathcal{P}_{i}(X), y \in V(\varphi)$. Thus $R(x) \cap V(\varphi) \neq \emptyset$. The other direction follows by the reflexivity of \leq.

We define the semantic notions of truth and validity in a model and validity in a frame for formulas.

Given a model $\langle\mathcal{F}, V\rangle$ and a point $x \in X$ we say that a formula φ is true at x in $\langle\mathcal{F}, V\rangle$, in symbols $\langle\mathcal{F}, V\rangle \vDash_{x} \varphi$, if $x \in V(\varphi)$. A formula φ is valid in a model $\langle\mathcal{F}, V\rangle$, in symbols $\langle\mathcal{F}, V\rangle \models \varphi$, if it is true at every point in X. A formula φ is valid in a frame \mathcal{F}, in symbols $\mathcal{F} \models \varphi$, if for any valuation V on \mathcal{F}, φ is valid in the model $\langle\mathcal{F}, V\rangle$.

Let \mathcal{I} be any modal logic that is an extension of IK. We will denote by $\operatorname{Fr}(\mathcal{I})$ the class of all frames where every formula of \mathcal{I} is valid. Now let F be a class of frames. $T h(\mathrm{~F})$ denotes the class of all formulas that are valid in every frame in F. A modal logic \mathcal{I} is characterized by a class F of frames, or it is complete relative to a class F of frames, F -complete for short, if $\operatorname{Th}(\mathrm{F})=\mathcal{I}$.

Let us use the following notation. Let $\varphi \in F m$. Then we shall write $\square^{0} \varphi=\varphi, \diamond^{0} \varphi=\varphi, \square^{n+1} \varphi=\square \square^{n} \varphi$ and $\diamond^{n+1} \varphi=\diamond \diamond^{n} \varphi$.

Let R be a relation on a set X. Let us define R^{n} recursively by: R^{0} is the identity on X and $R^{n+1}=R^{n} \circ R$.

Lemma 1. Let $\mathcal{F}=\langle X, \leq, R\rangle$ be a frame. Then

1. $\leq^{-1} \circ R^{n} \subseteq R^{n} \circ \leq^{-1}$.
2. $R^{n} \circ \leq \subseteq \leq R^{n}$.
3. $R_{\diamond}^{n}=R^{n} \circ \leq^{-1}$.
4. $R_{\square}^{n}=\leq \circ R^{n}$.

Proof. 1. By induction on n. Suppose that 1. is valid for n and let $x, y, z \in X$ such that $x \leq^{-1} y$ and $(y, z) \in R^{n+1}$. Then there exists $z_{1} \in X$ such that $\left(y, z_{1}\right) \in R^{n}$ and $\left(z_{1}, z\right) \in R$. By inductive hypothesis we get $\left(x, z_{1}\right) \in \leq^{-1}$ $\circ R^{n} \subseteq R^{n} \circ \leq^{-1}$. It follows that there exists $w \in X$ such that $(x, w) \in R^{n}$ and $z_{1} \leq w$. Since $\left(z_{1}, z\right) \in R$, we have $(w, z) \in \leq^{-1} \circ R \subseteq R \circ \leq^{-1}$. Then there exists $k \in X$ such that $(w, k) \in R$ and $z \leq w$. Since $(x, w) \in R^{n}$, then $(x, w) \in R^{n+1} \circ \leq^{-1}$.

The proof of 2 . is similar, and 3 . and 4 . follow from 1. and 2 ., respectively.

Lemma 2. Let $\mathcal{F}=\langle X, \leq, R\rangle$ be a frame. Then for any $x \in X, R_{\square}^{n}(x)$, $\left(R_{\diamond}^{n}(x)\right)^{c} \in \mathcal{P}_{i}(X)$.

Proof. Let $a \leq b$ and $(x, a) \in R_{\square}^{n}$. Then there exists $c \in X$ such that $x \leq c$ and $(c, a) \in R^{n}$. Then $(c, b) \in R^{n} \circ \leq$, and by 2. of Lemma 1 , there exists $w \in X$ such that $c \leq w$ and $(w, b) \in R^{n}$. Since $x \leq c \leq w$, we get $(x, b) \in R_{\square}^{n}$.

The proof of $\left(R_{\diamond}^{n}(x)\right)^{c} \in \mathcal{P}_{i}(X)$ is similar.

Corollary 3. Let $\mathcal{F}=\langle X, \leq, R\rangle$ be a frame. Let $x \in X$. Let V, V^{\prime} be the functions defined by:

1. $V(p)=R_{\square}^{n}(x)$ and
2. $V^{\prime}(p)=\left(R_{\diamond}^{n}(x)\right)^{c}$.
each variable p and an $n \geq 0$. Then V. and V^{\prime} are valuations.
Proof. It is immediate by Lemma 2.

3 Lemon-Scott axiom

In this section we extend the modal logic IK with the Lemmon-Scott axiom (LS). This is a natural generalization of the Lemmon-Scott axiom of classical modal logic, which has been characterized by R. Goldblatt in [7]. We shall adapt the techniques given by Goldblatt to our case. It is known that the LS axiom cover many known modal formulas, as for example the axiom $\diamond^{m} \square^{n} p \rightarrow \square^{k} \diamond^{l} p$.

We shall say that a formula α is positive if it can be constructed using no connectives other than $\vee, \wedge, \square, \diamond$. Let $\alpha\left(p_{1}, p_{2}, \ldots p_{n}\right)$ be a positive formula, where $p_{1}, p_{2}, \ldots p_{n}$ are the variables occurring in α. The formula obtained by uniformly substitutions, for each $t \leq i \leq k$, the formula ψ_{i} for p_{i} in α is the formula $\alpha\left(\psi_{1}, \psi_{2}, \ldots \psi_{n}\right)$.

Let $\alpha\left(p_{1}, p_{2}, \ldots p_{n}\right)$ be a positive formula and let us consider $\vec{n}=\left(n_{1}, \ldots, n_{k}\right)$ and $\vec{m}=\left(m_{1}, \ldots, m_{k}\right)$, where $n_{i}, m_{i} \in \mathbb{N}$. Let $\mathcal{F}=\langle X, \leq, R\rangle$ be a frame and let us consider $\vec{t}=\left(t_{1}, \ldots, t_{k}\right)$, with $t_{i} \in X$.

Let $x \in X$. We shall define a first-order condition $R_{\alpha}(x, \vec{t}, \vec{n})$ on the frame \mathcal{F} by recursion as follows:

$$
\begin{array}{ll}
R_{p_{i}}(x, \vec{t}, \vec{n}) & \Leftrightarrow\left(t_{i}, x\right) \in R_{\square}^{n_{i}}, \quad i \leq k, \quad p_{i} \in V a r, \\
R_{\alpha \wedge \beta}(x, \vec{t}, \vec{n}) & \Leftrightarrow R_{\alpha}(x, \vec{t}, \vec{n}) \wedge R_{\beta}(x, \vec{t}, \vec{n}) \\
R_{\alpha \vee \beta}(x, \vec{t}, \vec{n}) & \Leftrightarrow R_{\alpha}(x, \vec{t}, \vec{n}) \vee R_{\beta}(x, \vec{t}, \vec{n}) \\
R_{\square \alpha}(x, \vec{t}, \vec{n}) & \Leftrightarrow \forall y\left((x, y) \in R_{\square} \Rightarrow R_{\alpha}(y, \vec{t}, \vec{n})\right) \\
R_{\diamond \alpha}(x, \vec{t}, \vec{n}) & \Leftrightarrow \exists y\left((x, y) \in R \wedge R_{\alpha}(y, \vec{t}, \vec{n})\right)
\end{array}
$$

The first-order condition of Lemmon-Scott is:

$$
R(\alpha, \vec{n}, \vec{m}): \forall x \forall t_{1} \ldots \forall t_{k}\left(x R^{m_{1}} t_{1} \wedge x R^{m_{2}} t_{2} \wedge \ldots x R^{m_{k}} t_{k} \Rightarrow R_{\alpha}(x, \vec{t}, \vec{n})\right)
$$

We note that when the relation \leq is the equality, the first-order condition $R(\alpha, \vec{n}, \vec{m})$ is the first-order condition given in [7].

Let $\alpha\left(p_{1}, p_{2}, \ldots, p_{k}\right)$ be a positive formula. Then the Lemmon-Scott axiom is the formula
$\operatorname{ILS}\left(\alpha_{n}^{m}\right): \quad \diamond^{m_{1}} \square^{n_{1}} p_{1} \wedge \diamond^{m_{2}} \square^{n_{2}} p_{2} \wedge \ldots \wedge \diamond^{m_{k}} \square^{n_{k}} p_{k} \rightarrow \alpha\left(p_{1}, p_{2}, \ldots, p_{k}\right)$.
Proposition 4. Let \mathcal{F} be a frame. Then $\mathcal{F} \vDash \operatorname{ILS}\left(\alpha_{n}^{m}\right)$ if and only if $R(\alpha, \vec{n}, \vec{m})$ is valid en \mathcal{F}.
Proof. Assume that $\mathcal{F} \vDash I L S\left(\alpha_{n}^{m}\right)$. Let $x \in X$ and $\vec{t}=\left(t_{1}, \ldots, t_{k}\right) \in X^{k}$ such that $\left(x, t_{i}\right) \in R^{m_{i}}, i \leq k$. Let us consider the function V defined by $V\left(p_{i}\right)=R_{\square}^{n_{i}}\left(t_{i}\right)$. By Corollary 3, V is a valuation. Since $t_{i} \in V\left(\square^{n_{i}} p_{i}\right)$, we get $x \in \bigcap_{i=1}^{k} V\left(\diamond^{m_{i}} \square^{n_{i}} p_{i}\right)$. Then by assumption, $x \in V\left(\alpha\left(p_{1}, p_{2}, \ldots, p_{k}\right)\right)$. Now, by induction on the complexity of α we shall prove that $R_{\alpha}(x, \vec{t}, \vec{n})$ is valid in \mathcal{F}.

- Let $\alpha=p_{i}$. Then, $x \in V\left(\alpha\left(p_{1}, p_{2}, \ldots, p_{k}\right)\right)=V\left(p_{i}\right)=R_{\square}^{n_{i}}\left(t_{i}\right)$. So, $\left(t_{i}, x\right) \in R_{\square}^{n_{i}}, \quad$ for $i \leq k$.
- Let $\alpha=\diamond \varphi$. Then, $x \in V\left(\diamond \varphi\left(p_{1}, p_{2}, \ldots, p_{k}\right)\right)=\diamond_{R} V\left(\varphi\left(p_{1}, p_{2}, \ldots, p_{k}\right)\right)$. It follows that there exists $y \in X$ such that $(x, y) \in R$ and $y \in$ $V\left(\varphi\left(p_{1}, p_{2}, \ldots, p_{k}\right)\right)$. By inductive hypothesis, $(x, y) \in R$ and $R_{\varphi}(y, \vec{t}, \vec{n})$. Thus, $R_{\diamond \varphi}(x, \vec{t}, \vec{n})$ is valid in \mathcal{F}. The other cases are similar and left to the reader.

Assume that $R(\alpha, \vec{n}, \vec{m})$ is valid in \mathcal{F}. Let V be a valuation on \mathcal{F} and let $x \in X$ such that $x \in \bigcap_{i=1}^{k} V\left(\diamond^{m_{i}} \square^{n_{i}} p_{i}\right)$. Then for each $i \leq k$, there exists $t_{i} \in X$ such that $\left(x, t_{i}\right) \in R^{m_{i}}$ and $t_{i} \in V\left(\square^{n_{i}} p_{i}\right)$. By induction on the complexity of $\alpha\left(p_{1}, p_{2}, \ldots, p_{k}\right)$ we prove that $x \in V\left(\alpha\left(p_{1}, p_{2}, \ldots, p_{k}\right)\right)$.

- Let $\alpha=p_{i}$. Since, $R_{p_{i}}(x, \vec{t}, \vec{n})$ is $\left(t_{i}, x\right) \in R_{\square}^{n_{i}}$, for $i \leq k$. Since $t_{i} \in$ $V\left(\square^{n_{i}} p_{i}\right)$, we have $x \in V\left(p_{i}\right)$.
- Let $\alpha=\square \varphi$. Let $(x, y) \in R_{\square}$. Since, $R_{\square \varphi}(x, \vec{t}, \vec{n})$ is $\forall y\left((x, y) \in R_{\square} \Rightarrow\right.$ $\left.R_{\varphi}(y, \vec{t}, \vec{n})\right)$, and as $t_{i} \in V\left(\square^{n_{i}} p_{i}\right)$, then by inductive hypothesis we have that for all $y \in R_{\square}(x), y \in V(\varphi)$. Therefore, $x \in V(\square \varphi)$.
- Let $\alpha=\diamond \varphi$. Since, $R_{\diamond \varphi}(x, \vec{t}, \vec{n})$ is $\exists y\left((x, y) \in R \wedge R_{\varphi}(y, \vec{t}, \vec{n})\right)$, then by inductive hypothesis there exists $y \in R(x)$ and $y \in V(\varphi)$. Therefore, $x \in V(\diamond \varphi)$.

The cases $\alpha=\varphi \vee \psi$ and $\alpha=\varphi \wedge \psi$ are similar and left to the reader.

4 Completeness

The completeness of the logic IK $+\left\{I L S\left(\alpha_{n}^{m}\right)\right\}$ will be prove by means of the canonical model. First, we shall recall some notions.

Let us fix a modal logic \mathcal{I} that is an extension of IK. A set of formulas is a theory of \mathcal{I}, or an \mathcal{I}-theory, if it is closed under the deducibility relation $\vdash_{\mathcal{I}}$. A theory is consistent if it is not the set of all formulas. Equivalently, if the formula \perp does not belong to it. A prime theory of \mathcal{I}, or a prime \mathcal{I}-theory, is a consistent \mathcal{I}-theory P with the following property: if $(\varphi \vee \psi) \in \Gamma$, then $\varphi \in P$ or $\psi \in \Gamma$.

Proposition 5. Let Γ be a consistent theory and let Δ be a set of formulas closed under disjunctions (i.e. if $\varphi, \psi \in \Delta$ then $\varphi \vee \psi \in \Delta$) and such that $\Gamma \cap \Delta=\emptyset$. Then there is a prime theory P such that $\Gamma \subseteq P$ and $P \cap \Delta=\emptyset$.

Proof. See [6].
Let us denote by X_{c} the set of all prime \mathcal{I}-theories. We define the relation $R_{c} \subseteq X_{c} \times X_{c}$ as follows:

$$
(P, Q) \in R_{c} \Leftrightarrow \square^{-1}(P) \subseteq Q \subseteq \diamond^{-1}(P)
$$

where $\square^{-1}(P)=\{\varphi: \square \varphi \in P\}$ and $\diamond^{-1}(P)=\{\varphi: \diamond \varphi \in P\}$. In [6] it was shown that the structure $\mathcal{F}_{c}=\left\langle X_{c}, \subseteq, R_{c}\right\rangle$ is indeed a frame. It will be called the canonical frame for \mathcal{I}.

Let Q be a prime \mathcal{I}-theory and let us consider the sets $Q^{c}=\{\varphi: \varphi \notin Q\}$ and $\square\left(Q^{c}\right)=\left\{\square \varphi: \varphi \in Q^{c}\right\}$. Then the set $\square\left(Q^{c}\right)$ is closed under disjunctions. To see this, we note first that if $\square \varphi \vdash_{\mathcal{I}} \square \psi$ and $\psi \in Q^{c}$, then $\square \varphi \in \square\left(Q^{c}\right)$, because $\square \varphi \vdash_{\mathcal{I}} \square \psi \Leftrightarrow \square \varphi \wedge \square \psi \vdash_{\mathcal{I}} \square(\varphi \wedge \psi) \vdash_{\mathcal{I}} \square \varphi$ and as $\psi \notin Q$, $\varphi \wedge \psi \notin Q$. So, if $\psi, \varphi \notin Q$ then $\psi \vee \varphi \notin Q$, and since $\square \varphi \vee \square \psi \vdash_{\mathcal{I}} \square(\varphi \vee \psi)$, we get $\square \varphi \vee \square \psi \in \square\left(Q^{c}\right)$.

The results of the following theorem is establish in [6] but we shall give a simplified proof for completeness.

Proposition 6. Let $P, Q \in X_{c}$. Then

1. $\square^{-1}(P) \subseteq Q$ if and only if $(P, Q) \in R_{\square}$.
2. $Q \subseteq \diamond^{-1}(P)$ if and only if $(P, Q) \in R_{\diamond}$.
3. $\square \varphi \notin P$ if and only if there exists $Q \in X_{c}$ such that $(P, Q) \in R_{\square}$ and $\varphi \notin Q$.
4. $\diamond \varphi \in$ Pif and only if there exists $Q \in X_{c}$ such that $(P, Q) \in R_{\diamond}$ and $\varphi \in Q$.
5. $\left(R_{c} \circ \subseteq\right) \subseteq\left(\subseteq \circ R_{c}\right)$.
6. $\left(\subseteq^{-1} \circ R_{c}\right) \subseteq\left(R_{c} \circ \subseteq^{-1}\right)$.
7. $R_{c}=R_{\square} \cap R_{\diamond}$.

Proof. 1. Let $P, Q \in X_{c}$ such that $\square^{-1}(P) \subseteq Q$. Let us consider the theory $T=\left\{\varphi: P \cup \diamond Q \vdash_{\mathcal{I}} \varphi\right\}$. We prove that

$$
T \cap \square\left(Q^{c}\right)=\emptyset .
$$

Suppose the contrary. Then there exists $\varphi \in P, \psi \in Q$ and $\alpha \notin Q$ such that $\varphi \wedge \diamond \psi \vdash_{\mathcal{I}} \square \alpha$. Since $\varphi \vdash_{\mathcal{I}} \diamond \psi \rightarrow \square \alpha$ and $\diamond \psi \rightarrow \square \alpha \vdash_{\mathcal{I}} \square(\psi \rightarrow \alpha)$, we get $\square(\psi \rightarrow \alpha) \in P$. It follows that $\psi \rightarrow \alpha \in Q$, which is a contradiction. Then $T \cap \square\left(Q^{c}\right)=\emptyset$. By Proposition 5, there exists $D \in X_{c}$ such that $P \subseteq D$, $Q \subseteq \diamond^{-1}(D)$ and $\square^{-1}(D) \subseteq Q$. Therefore, $(P, Q) \in R_{\square}$.

The other direction is immediate.
3. Let us suppose that $\square \varphi \notin P$. Let T_{φ} be the closure under disjunctions of the set $\{\varphi\}$. Then $\square^{-1}(P) \cap T_{\varphi}=\emptyset$. By Proposition 5 , there exists a prime theory Q such that $\square^{-1}(P) \subseteq Q$ and $\varphi \notin Q$. By 1 . above we get the desired result.
5. Let $P, Q, D \in X_{c}$ such that $(P, D) \in R_{c}$ and $D \subseteq Q$. Then $\square^{-1}(P) \subseteq Q$. By 1. above we have $(P, Q) \in R_{\square}=\subseteq \circ R_{c}$.

The proof of 2., 4., and 5. are similar. The proof of 6 . follows from 1. and 2.

Define the canonical model for \mathcal{I} as the model $\left\langle\mathcal{F}_{c}, V_{c}\right\rangle$ on the canonical frame \mathcal{F}_{c}, where V_{c} is the valuation defined by $V_{c}(p)=\left\{P \in X_{c}: p \in P\right\}$, for any variable p. It is clear that V_{c} is a valuation since the sets $\left\{P \in X_{c}: p \in P\right\}$ are increasing.

Proposition 7. $\left\langle\mathcal{F}_{c}, V_{c}\right\rangle \vDash_{P} \varphi \Leftrightarrow \varphi \in P$.
Proof. See [6].

Corollary 8. The modal logic IK is canonical and hence frame complete.
Lemma 9. Let \mathcal{F}_{c} be the canonical frame of \mathcal{I}. Then for every $P, Q \in X_{c}$,

$$
\begin{equation*}
(P, Q) \in R_{\square}^{n} \Leftrightarrow\left\{\varphi: \square^{n} \varphi \in P\right\} \subseteq Q . \tag{1}
\end{equation*}
$$

Proof. The proof is by induction on n. The case $n=1$ follows from Proposition 6. Suppose that (1) is valid for n. If $(P, Q) \in R_{\square}^{n+1}$, then it is immediate to check that $\left\{\varphi: \square^{n+1} \varphi \in P\right\} \subseteq Q$. Suppose that

$$
\left\{\varphi: \square^{n+1} \varphi \in P\right\} \subseteq Q
$$

Let us consider the set $\square^{-1}(P)$ and let Δ be the closure under disjunctions of the set $\left\{\square^{n} \psi: \psi \notin Q\right\}$. We prove that

$$
\square^{-1}(P) \cap \Delta=\emptyset
$$

Suppose the contrary. Then there exists $\square \alpha \in P$ and there exists $\psi \in \Delta$ such that $\vdash_{\mathcal{I}} \alpha \rightarrow \square^{n} \psi$. Then $\vdash_{\mathcal{I}} \square \alpha \rightarrow \square^{n+1} \psi$. Since P is a theory, $\square^{n+1} \psi \in P$. It follows, $\psi \in Q$, which is a contradiction. Then, by Proposition 5, there exists $D \in X_{c}$ such that $\square^{-1}(P) \subseteq D$ and $\Delta \cap D=\emptyset$. It follows that $(P, Q) \in R_{\square}$, and by inductive hypothesis, it follows that $(D, Q) \in R_{\square}^{n}$, i.e., $(P, Q) \in R_{\square}^{n+1}$.

Now, we prove that the intuitionistic modal logic IK $+\left\{I L S\left(\alpha_{n}^{m}\right)\right\}$ is canonical. Let \mathcal{I} be a intuitionistic modal logic such that IK $+\left\{\operatorname{ILS}\left(\alpha_{n}^{m}\right)\right\} \subseteq$ \mathcal{I}.

Proposition 10. Let \mathcal{F}_{c} be the canonical frame of \mathcal{I}. Let $\alpha\left(p_{1}, p_{2}, \ldots, p_{n}\right)$ be a positive formula. Let $Q \in X_{c}$ and $\vec{P}=\left(P_{1}, P_{2}, \ldots, P_{k}\right) \in X_{c}^{k}$. Then

$$
R_{\alpha}(Q, \vec{P}, \vec{n}) \text { is valid in } \mathcal{F}_{c} \text { iff }\left\{\alpha\left(\psi_{1}, \psi_{2}, \ldots, \psi_{k}\right): \square^{n_{i}} \psi_{i} \in P_{i}, i \leq k\right\} \subseteq Q
$$

Proof. The proof is by induction on the complexity of α. We give the proof for the case $k=1$. The case $\alpha=p$ follows by the Lemma 9 .

Let $\alpha=\diamond \varphi$. Suppose that $\left\{\diamond \varphi(\psi): \square^{n} \psi \in P\right\} \subseteq Q$. We prove that $R_{\diamond \varphi}(Q, P, n)$ Let us consider the set $\Gamma=\left\{\varphi(\psi): \square^{n} \psi \in P\right\}$ and let us consider the theory $T(\Gamma)$ generated by Γ. We prove that

$$
T(\Gamma) \cap \diamond^{-1}(Q)^{c}=\emptyset
$$

If we suppose the contrary, then there exists $\varphi\left(\psi_{1}\right), \varphi\left(\psi_{2}\right), \ldots, \varphi\left(\psi_{n}\right) \in \Gamma$ and $\beta \notin \diamond^{-1}(Q)$ such that $\vdash_{\mathcal{I}} \varphi\left(\psi_{1}\right) \wedge \varphi\left(\psi_{2}\right) \wedge \ldots \wedge \varphi\left(\psi_{n}\right) \rightarrow \beta$. Then,

$$
\vdash_{\mathcal{I}} \diamond\left(\varphi\left(\psi_{1}\right) \wedge \varphi\left(\psi_{2}\right) \wedge \ldots \wedge \varphi\left(\psi_{n}\right)\right) \rightarrow \diamond \beta
$$

Thus, $\diamond\left(\varphi\left(\psi_{1}\right) \wedge \varphi\left(\psi_{2}\right) \wedge \ldots \wedge \varphi\left(\psi_{n}\right)\right) \notin Q$. But since $\varphi\left(\psi_{1}\right), \varphi\left(\psi_{2}\right), \ldots, \varphi\left(\psi_{n}\right) \in$ $\Gamma, \square^{n}\left(\psi_{1} \wedge \psi_{2} \wedge \ldots \wedge \psi_{n}\right) \in P$. It follows $\diamond\left(\varphi\left(\psi_{1}\right) \wedge \varphi\left(\psi_{2}\right) \wedge \ldots \wedge \varphi\left(\psi_{n}\right)\right) \in Q$, which is a contradiction. Therefore, there is a prime theory D such that $\Gamma \subseteq D$ and $D \subseteq \diamond^{-1}(Q)$. Since $(Q, D) \in R_{\diamond}=R_{c} \circ \subseteq^{-1}$, then there exists $K \in X_{c}$ such that $(Q, K) \in R_{c}$ and $D \subseteq K$. So, $\Gamma \subseteq K$. Then, by the inductive hypothesis, $R_{\varphi(\psi)}(Q, P, n)$ and $(Q, K) \in R_{c}$.

The proof in the other direction is easy. The proof of the other cases are similar and left to the reader.

Corollary 11. Let \mathcal{I} be an intuitionistic modal logic such that it contains the logic $\mathbf{I K}+\left\{I L S\left(\alpha_{n}^{m}\right)\right\}$. Then the canonical frame \mathcal{F}_{c} of \mathcal{I} satisfies the firstorder condition $R(\alpha, \vec{n}, \vec{m})$ Therefore, the logic $\mathbf{I K}+\left\{I L S\left(\alpha_{n}^{m}\right)\right\}$ is canonical.

Proof. Let $Q, P_{1}, P_{2}, \ldots, P_{k} \in X_{c}$. Suppose that $\left(Q, P_{1}\right) \in R^{m_{1}}, \ldots,\left(Q, P_{k}\right) \in$ $R^{m_{k}}$. By Proposition 10 we have to prove that

$$
\left\{\alpha\left(\psi_{1}, \psi_{2}, \ldots, \psi_{k}\right): \square^{n_{i}} \psi_{i} \in P_{i}, i \leq k\right\} \subseteq Q
$$

Let $\square^{n_{i}} \psi_{i} \in P_{i}, i \leq k$. Then $\bigwedge_{i=1}^{k} \diamond^{m_{i}} \square^{n_{i}} \psi_{i} \in Q$. As $I L S\left(\alpha_{n}^{m}\right) \in Q$, $\alpha\left(\psi_{1}, \psi_{2}, \ldots, \psi_{k}\right) \in Q$ Thus, \mathcal{F}_{c} satisfies the condition $R(\alpha, \vec{n}, \vec{m})$, and consequently IK $+\left\{I L S\left(\alpha_{n}^{m}\right)\right\}$ is canonical.

5 Conclusions

In this paper we prove that the logic IK extended with the Lemmon-Scott axiom is canonical and frame complete. By these results we can deduce that, for instance, the logic IK $+\left\{\square \varphi \rightarrow \square^{2} \varphi, \diamond \square \varphi \rightarrow \square \diamond \varphi\right\}$ is canonical and its class of frames are the frames $\mathcal{F}=\langle X, \leq, R\rangle$ where $R_{\square}=R \circ \leq$ is transitive and $R_{\square} \circ R_{\diamond} \subseteq R_{\diamond} \circ R_{\square}$. These results generalize and extend the results given by G. Fischer-Servi [6] on extensions of the logic IK.

An important fact of the logic IK is that it embodies a fully acceptable interpretation of the modal operators \square and \diamond by means of the axioms $\diamond(\varphi \rightarrow$ $\psi) \rightarrow(\square \varphi \rightarrow \diamond \psi)$ and $(\diamond \varphi \rightarrow \square \psi) \rightarrow \square(\varphi \rightarrow \psi)$. Moreover, in the classical modal logic \mathbf{K}, the formula $\square(\varphi \vee \psi) \rightarrow(\square \varphi \vee \diamond \psi)$ is equivalent to any of the two above formulas. This is not valid when we consider a modal logic based on intuitionistic logic. This motivated define other classes of intuitionistic modal logic with operators \square and \diamond using different combinations of these formulas. These problems will be investigated in a future paper.

References

[1] Amati, G., Pirri, F. A Uniform Tableau Method for Intuitionistic Modal Logic I, Studia Logica, 53 (1994), 29-60.
[2] Benavides, M. R. F. A Natural Deduction Presentation for Intuitionistic Modal Logic, Logic, Sets and Information, Proceedings of the Tenth Brazilian Conference on Mathematical Logic, ITATIAIA, (1993), 25-59.
[3] Božić, M., Dožen, K. Models for Normal Intuitionistic Modal Logics, Studia Logica, 43(1984), 217-245.
[4] Dožen, K. Models for Stronger Normal Intuitionistic Modal Logics, Studia Logica,44(1985), 39-70.
[5] Ewald, W. B. Intuitionistic Tense and Modal Logic, Journal of Symbolic Logic, 51(1986), 39-70.
[6] Fischer-Servi, G. Axiomatizations for some Intuitionistic Modal Logics, Rend. Sem. Mat Polit. de Torino, 42(1984), 179-194.
[7] Goldblatt, R. Logics of Time and Computation, CSLI, Lectures Notes No. 7, 1992.
[8] Hugues G. E., Cresswell, M. J. A New Introduction to Modal Logic, Routledge, London, 1996.
[9] Ono, H. On Some Intuitionistic Modal Logics, Publication of The Research Institute for Math. Sc. 13 (1977), 687-722.
[10] Plotkin G., Stirling, C. A Framework for Intuitionistic Modal Logic, en J. Y. Halpern (ed.), Theorical Aspects of Reasoning and Knowledge, 399406, Morgan-Kaufmann, 1986.
[11] Simpson, A. K. The Proof Theory and Semantics of Intuicionistic Modal Logic, PhD-dissertation, Edinburgh, 1993.
[12] Wolter, F., Zakharyaschev, M. The relation between intuitionistic and classical modal logics, Algebra i Logica, 36(2) (1997), 121-155 (and also Algebra and Logica, 36(2) (1997), 73-92).

