Generalización de Funciones Contra-Continuas

Generalization of Contra-Continuous Functions

Rosas, E., Carpintero, C.
Universidad de Oriente
Cumaná, Venezuela
Vielma, J.
Universidad de los Andes
Mérida, Venezuela

Resumen

Se introducen los conceptos de función (α, β) -contra continua y (α, β) -contra semi continua. Se muestran algunas caracterizaciones y algunas propiedades fundamentales.

Palabras y frases clave: Funciones (α,β) -contra continuas, α -semi conexos, fuertemente α -S-cerrado.

Abstract

The concepts of (α, β) -contra continuous and (α, β) -contra semi continuous functions are introduced. Several characterizations and some fundamental properties are obtained.

Key words and phrases: (α, β) -contra continuous functions, α -semi conexo strongly, α -S-closed.

1 Introducción

En este trabajo se generalizan las nociones de funciones contra continuas y funciones contra semicontinuas dadas en [1], utilizando la teoría de operadores asociados a una topología y se dan a conocer algunos resultados importantes respectos a estos tipos de funciones. Para ello necesitamos considerar una serie de conceptos básicos los cuales pueden ser encontrados en [2], [3], [4] y [5].

Recibido 2000/08/15. Revisado 2001/10/17. Aceptado 2001/10/26. MSC (2000): Primary 54C08; Secondary 54C05, 54H05.

2 (α, β) -Contra Continuidad y (α, β) -Contra Semicontinuidad

Definición 2.1. Sean (X, Γ, α) y (Y, φ, β) espacios topológicos, α y β operadores asociados a las topologías Γ y φ sobre X y Y, respectivamente. Decimos que una función $f: X \longrightarrow Y$ es (α, β) -contra continua (resp. (α, β) -contra semicontinua)si $f^{-1}(B)$ es α -cerrado (resp. α -semicerrado) en X para todo conjunto β -abierto B en Y.

Ejemplo 2.1. Consideremos $X = Y = \{a, b, c\}$ y las topologías $\Gamma = \Psi = \{\emptyset, \{a\}, \{b\}, \{a, b\}, X\}$. Definamos los siguientes operadores $\alpha y \beta$ como sigue:

$$\alpha(A) = \left\{ \begin{array}{ll} A, & \mathrm{si} & b \in A \\ cl(A), & \mathrm{si} & b \notin A \end{array} \right. ; \quad \beta(A) = cl(A).$$

Observe que los conjuntos α -abiertos y β -abiertos en X y en Y respectivamente son los siguientes:

$$\Gamma_{\alpha} = \{\emptyset, \{b\}, \{a, b\}, X\}$$

$$\Psi_{\beta} = \{\emptyset, X\}$$

Ahora definamos $f: X \to Y$ como sigue

$$f(x) = \begin{cases} b, & \text{si } x = a \\ c, & \text{si } x = b \\ a, & \text{si } x = c \end{cases}$$

es fácil mostrar que f es (α, β) -contra continua.

Ejemplo 2.2. Consideremos $X = Y = \{a, b, c\}$ y las topologías

$$\Gamma = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}\$$

$$\Psi = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{a, c\}, X\}.$$

Definamos los siguientes operadores α y β como sigue:

$$\alpha(A) = \beta(A) = \left\{ \begin{array}{ll} A, & \text{si} & b \in A \\ cl(A), & \text{si} & b \notin A \end{array} \right..$$

Observe que los conjuntos $\Psi_{\beta} = \{\emptyset, X, \{b\}, \{a,b\}, \{a,c\}\} \text{ y los conjuntos } \alpha$ -semi abiertos α -SO $(X,\Gamma) = \{\emptyset, X, \{a\}, \{b\}, \{a,b\}, \{b,c\}\},$ en consecuencia los conjuntos α -semi cerrados son α -SR $(X,\Gamma) = \{\emptyset, X, \{b,c\}, \{a,c\}, \{c\}, \{a\}\}.$

Ahora definamos $f: X \to Y$ por

$$f(x) = \begin{cases} b, & \text{si } x = a \\ c, & \text{si } x = b \\ a, & \text{si } x = c \end{cases}$$

es fácil mostrar que f es (α, β) -contra semi continua.

Es de observar que en el caso que α y β sean, respectivamente, los operadores identidad sobre X y Y, la definición anterior se reduce a la definición de función contra continua dada en [1]. De igual forma, si α es el operador clausura en X y β es el operador identidad sobre Y, entonces tendremos la definición de función contra semicontinua.

En el siguiente teorema se caracterizan las funciones (α, β) -contra semi continuas.

Teorema 2.1. Para una función $f:(X,\Gamma,\alpha)\longrightarrow (Y,\varphi,\beta)$ las siguientes proposiciones son equivalentes:

- 1. f es (α, β) -contra semicontinua.
- 2. Para todo conjunto β -cerrado F en Y, $f^{-1}(F) \in \alpha$ - $SO(X, \Gamma)$.

Demostración. (1) \rightarrow (2): Sea F un conjunto β -cerrado en Y, entonces Y-F es β -abierto en Y, bajo la hipótesis que f sea (α,β) -contra semicontinua, $f^{-1}(Y-F)$ es α -semi cerrado en X, pero $X-f^{-1}(F)=f^{-1}(Y-F)$. Así $f^{-1}(F)$ es α -semiabierto en X, es decir, $f^{-1}(F) \in \alpha - SO(X,\Gamma)$. (2) \rightarrow (1): Dado un conjunto F, β -abierto en Y tendremos que Y-F es β -cerrado en Y. De (2) tenemos que $f^{-1}(Y-F) \in \alpha$ - $SO(X,\Gamma)$. Sigue de esto que $f^{-1}(F)$ es α -semicerrado, por lo tanto f es (α,β) -contra semi continua.

El siguiente teorema nos da la relación existente entre las nociones de (α, β) -contra continua y (α, β) -contra semicontinua.

Teorema 2.2. Sea $f:(X,\Gamma,\alpha) \longrightarrow (Y,\varphi,\beta)$. Si f es (α,β) -contra continua, entonces f es (α,β) -contra semicontinua.

El siguiente ejemplo muestra la existencia de funciones (α, β) -contra semi continuas que no son (α, β) -contra continuas.

Ejemplo 2.3. Sea $f: \mathbb{R} \longrightarrow \mathbb{R}$ la función dada por f(x) = [|x|], donde [|x|] denota la parte entera de x. Si consideramos en el dominio de f el operador clausura y en el codominio de ésta el operador identidad, entonces

dado un conjunto F cerrado en \mathbb{R} tendremos, en el caso $F \cap \mathbb{Z} = \emptyset$, que $f^{-1}(F) = \emptyset$. Si $F \cap \mathbb{Z} \neq \emptyset$ entonces $f^{-1}(F)$ es unión de intervalos de la forma $[n, n+1), n \in \mathbb{Z}$, luego $f^{-1}(F)$ es un conjunto clausura semiabierto. Pero $f^{-1}((1.5, 2.5)) = [2, 3)$ no es un conjunto clausura cerrado, pues no es cerrado en \mathbb{R} .

Teorema 2.3. Sea $f:(X,\Gamma,\alpha) \longrightarrow (Y,\varphi,\beta)$. Si f es (α,β) -contra semicontinua entonces para cada $x \in X$ y cada conjunto F β -cerrado en Y que contenga a f(x) existe un conjunto $U \in \alpha$ -SO (X,Γ) tal que $x \in U$ y $f(U) \subseteq F$. Además, si α es un operador monótono entonces el recíproco es válido.

Demostración. Para cada $x \in X$, sea F un conjunto β - cerrado en Y tal que $f(x) \in F$. Bajo el supuesto que f sea (α, β) -contra semicontinua, entonces $f^{-1}(F) \in \alpha$ -SO(X, Γ) y $x \in f^{-1}(F)$. Tomando $U = f^{-1}(F)$ se tiene entonces el resultado deseado.

Por otra parte, si suponemos que α es un operador monótono. Sea F un conjunto β -cerrado en Y. Si $f^{-1}(F) = \emptyset$ entonces $f^{-1}(F) \in \alpha$ - $SO(X,\Gamma)$, si $f^{-1}(F) \neq \emptyset$ y conseguimos por cada $x \in X$ tal que $f(x) \in F$ conjuntos $U_x \in \alpha$ - $SO(X,\Gamma)$ en los cuales $x \in U_x$ y $f(U_x) \subseteq F$, entonces $U_x \subseteq f^{-1}(F)$ por cada uno de tales x. Como cada $U_x \in \alpha$ - $SO(X,\Gamma)$ y α se asume monótono resulta que $\bigcup_{x \in f^{-1}(F)} U_x$ es α -semiabierto, pero $f^{-1}(F) = \bigcup_{x \in f^{-1}(F)} U_x$ y en consecuencia $f^{-1}(F)$ es α -semiabierto en X.

Observe que este último teorema permite dar, bajo el supuesto que α sea monótono, una caracterización local de la noción (α,β) -contra semicontinuidad.

3 Espacios α - T_1 , α -Conexos y α -Semi conexos

Definición 3.1. Sea (X, Γ, α) un espacio topológico con α un operador asociado a la topologia Γ sobre X. Se dice que X es un espacio α - T_1 si para cualesquiera dos puntos distintos x, y en X existen conjuntos U, V abiertos en X tales que; $x \in U, y \in V, y \notin \alpha(U)$ y $x \notin \alpha(V)$.

En el siguiente teorema se caracterizan los espacios α - T_1 .

Teorema 3.1. Sea (X, Γ, α) un espacio topológico con α un operador asociado a la topologia Γ sobre X, entonces X es α - T_1 si y sólo si cada conjunto $\{x\}$, con $x \in X$, es α -cerrado.

A continuación se introduce la noción de espacio α - conexo. Primeramente, daremos la definición de funciones (α, β) -continuas, las cuales se describen en [4].

Definición 3.2. Sea (X,Γ) y (Y,Ψ) dos espacios topológicos y sean α, β operadores asociados a las topologiás Γ y Ψ respectivamente. Decimos que una función $f:(X,\Gamma)\to (Y,\Psi)$ es (α,β) -continua si para cada punto $x\in X$ y cada abierto V de f(x) en Y, existe un abierto U en X que contiene a x tal que $f(\alpha(U))\subseteq \beta(V)$.

Teorema 3.2. Si $f:(X,\Gamma,\alpha)\to (Y,\Psi,i_d)$ es una función (α,i_d) -continua entonces f es continua en el sentido usual.

Definición 3.3. Sea (X, Γ, α) un espacio topológico con α el operador asociado a la topología Γ sobre X. Se dice que X es un espacio α -conexo si no existen funciones $f: X \longrightarrow \{0,1\}$; (α, i_d) continuas que sean sobreyectivas.

El lema que sigue será de utilidad en la caracterización de los espacios α -conexos.

Lema 3.3. Si $f:(X,\Gamma,\alpha) \longrightarrow (Y,\varphi,i_d)$ es una función (α,i_d) continua, entonces $f^{-1}(V)$ es α -abierto para cada $V \in \varphi$.

Demostración. Supongamos que $f:(X,\Gamma,\alpha)\longrightarrow (Y,\varphi,i_d)$ es (α,i_d) continua. Sea $V\in\varphi$ y supongamos $x\in f^{-1}(V)$, esto es $f(x)\in V$. Por hipótesis existe $U_x\in\Gamma$ tal que $f[\alpha(U_x)]\subseteq i_d(V)$, esto es $f[\alpha(U_x)]\subseteq V$. Luego; $U_x\in\Gamma$, $x\in U_x$ y $\alpha(U_x)\subseteq f^{-1}(V)$, por lo tanto $f^{-1}(V)$ es α - abierto. \square

Teorema 3.4. Sean (X, Γ, α) , $A \subseteq X$ y $C_A : X \longrightarrow \{0,1\}$ la función característica de A. Entonces C_A es (α, i_d) continua si y sólo si A es simultáneamente un subconjunto α -abierto y α -cerrado de X.

Demostración. (Suficiencia). Supongamos que C_A es (α, i_d) continua. Nótese que $C_A^{-1}(\{1\}) = A$ y $C_A^{-1}(\{0\}) = X - A$, según el lema anterior, $C_A^{-1}(\{1\})$ y $C_A^{-1}(\{0\})$ son conjuntos α- abiertos en X, pero, $A \cap (X - A) = \emptyset$. Así se concluye que A es simultáneamente un conjunto α-abierto y α-cerrado de X.

(Necesidad). Supongamos que A es un conjunto α -abierto y α -cerrado en X. Sean $x \in X$ y $V \subseteq \{0,1\}$ tal que $C_A(x) \in V$.

Caso 1. Si $C_A(x) = 0$ entonces $x \in X - A$, y existe un abierto $U_x \in \Gamma$ tal que $x \in U_x$ y $\alpha(U_x) \subseteq X - A$, luego

$$C_A[\alpha(U_x)] \subseteq C_A(X-A) = \{0\} \subset V = i_d(V).$$

Caso 2. Si $C_A(x)=1$ entonces $x\in A$, y existe un abierto $U_x\in \Gamma$ tal que $x\in U_x$ y $\alpha(U_x)\subseteq A$. Así,

$$C_A[\alpha(U_x)] \subseteq C_A(A) = \{1\} \subseteq V = i_d(V).$$

De los dos casos (1) y (2), se concluye que C_A es una función (α, i_d) continua.

Caracterizamos ahora los espacios α - conexos según el siguiente

Teorema 3.5. Sea (X, Γ, α) . X es un espacio α - conexo si y sólo si los únicos subconjuntos que son simultáneamente α -abiertos y α -cerrados de X son \emptyset y X.

Demostración. (Suficiencia). Supongamos que existe un subconjunto A de X, $A \neq \emptyset$ y $A \neq X$, tal que simultáneamente A es α -abierto y α -cerrado. Entonces, del teorema anterior, $C_A: X \longrightarrow \{0,1\}$ es una función (α,i_d) continua y sobreyectiva, luego X no es un espacio α -conexo.

(Necesidad). Supóngase que X no es un espacio α - conexo, existe entonces una función $f: X \longrightarrow \{0,1\}$ que es (α,i_d) continua y sobreyectiva. Usando el Lema 3.3, obtenemos que $A_0 = f^{-1}(\{0\})$ y $A_1 = f^{-1}(\{1\})$ son conjuntos α - abiertos en X, pero $f(X) = \{0,1\}$. Así $\{A_0,A_1\}$ forman una partición de X y A_i , i=0,1, es un subconjunto propio no vacío de X el cual es simultáneamente α -abierto y α -cerrado.

Introducimos ahora la noción de espacio α - semiconexo. Tales espacios son estudiados en forma más extensa en [5].

Definición 3.4. Sea (X, Γ, α) . Decimos que X es un espacio α - semiconexo si los únicos subconjuntos de X que son simultaneamente α -semiabiertos y α -semicerrados son ϕ y X mismo.

Veamos ahora en los teoremas que siguen condiciones suficientes sobre el dominio y codominio los cuales permiten asegurar que una función $f(\alpha, \beta)$ -contra continua (resp. (α, β) -contra semicontinua) sea constante.

Teorema 3.6. Sean $f:(X,\Gamma,\alpha)\longrightarrow (Y,\varphi,\beta)$, α un operador regular y $f:X\longrightarrow Y$ una función (α,β) -contra continua. Si X es un espacio α -conexo y Y es un espacio β - T_1 , entonces f es una función constante.

Demostración. Si Y es un espacio β - T_1 entonces por el Teorema 3.1, cada conjunto $\{y\}$, $y \in Y$, es β -cerrado. Supongamos que $f: X \longrightarrow Y$ es (α, β) -contra continua, X es un espacio α -conexo y que f no es una función constante,

es decir, existen x_0, x_1 en $X, x_0 \neq x_1$, tales que $f(x_0) \neq f(x_1)$, entonces la colección $\mathcal{C} = \{f^{-1}(\{y\}) : y \in Y\}$ es una partición de X por conjuntos α -abiertos y $|\mathcal{C}| \geq 2$. Bajo el supuesto que α es regular, la unión de α abiertos es α -abierto y $\mathcal C$ contiene un subconjunto propio no vacío de X que es simultáneamente α -abierto y α -cerrado. Contradicción por que X es α -

Teorema 3.7. Sean $f:(X,\Gamma,\alpha)\longrightarrow (Y,\varphi,\beta)$, α un operador monótono $y f: X \longrightarrow Y$ una función (α, β) -contra semicontinua. Si X es un espacio α -semi conexo y Y es un espacio β - T_1 entonces f es una función constante.

Demostración. Si Y es un espacio β - T_1 , entonces cada conjunto unitario $\{y\}, y \in Y, \text{ es } \beta\text{-cerrado. Supongamos } f: X \longrightarrow Y \text{ es } (\alpha, \beta)\text{-contra semicon-}$ tinua, X es un espacio α -semi conexo y que f no es una función constante, es decir que $f(x_0) \neq f(x_1)$ para ciertos puntos x_0, x_1 en $X, x_0 \neq x_1$, entonces $\mathcal{C} = \{f^{-1}(\{y\}) : y \in Y\}$ es una partición de X por conjuntos α - semiabiertos y $|\mathcal{C}| \geq 2$. Como α es monótono, entonces la unión de conjuntos α -semi abiertos es α -semi abierto, de esta forma $\mathcal C$ contiene un subconjunto propio no vacío de X el cual es α -semi abierto y α -semi cerrado simultáneamente. Contradicción por que X es α -semi conexo.

4 Espacios Fuertemente α -S-Cerrados

Definición 4.1. Sea (X, Γ, α) , entonces:

- 1. X se dice un espacio α -compacto (resp. α -semi compacto) si todo cubrimiento $\{V_i: i \in I\}$ de X por conjuntos abiertos (resp. α -semi abiertos) contiene una colección finita $\{V_{i_1}, V_{i_2}, \dots, V_{i_n}\}, n \in \mathbb{Z}^+$, tal que $X = \bigcup_{k=1}^n \alpha(V_{i_k})$ (resp. $X = \bigcup_{k=1}^n V_{i_k}$).
- 2. X es α -S-cerrado si dado cualquier cubrimiento $\{V_i : i \in I\}$ de X por conjuntos α -semi regulares existe una subcolección finita $\{V_{i_1}, V_{i_2}, \dots, V_{i_n}\}, n \in$ \mathbf{Z}^+ , tal que $X = \bigcup_{k=1}^n V_{i_k}$.
- 3. X es Fuertemente α -S-cerrado si todo cubrimiento $\{V_i: i \in I\}$ de X por conjuntos α -cerrados, contiene una subcolección finita $\{V_{i_1}, V_{i_2}, \dots, V_{i_n}\}, n \in$ \mathbf{Z}^+ , tal que $X = \bigcup_{k=1}^n V_{i_k}$.

Observe que de la definición anterior sigue que

 α -semi compacto \implies α -S-cerrado \implies Fuertemente α -S-cerrado.

En el siguiente teorema se recogen algunas relaciones entre las nociones descritas en la Definición 4.1 y la (α, β) -contra continuidad (resp. (α, β) -contra semi continuidad), para funciones sobreyectivas, las cuales generalizan los resutados aparecidos en [1].

Teorema 4.1. Sea $f:(X,\Gamma,\alpha)\longrightarrow (Y,\varphi,\beta)$, una función sobreyectiva. Entonces:

- 1. Si f es (α, β) -contra semicontinua y X es α -semi compacto, entonces Y es un espacio fuertemente α -S-cerrado.
- 2. Si f es (α, β) -contra continua y X es compacto, entonces Y es un espacio fuertemente α -S-cerrado.

Demostración. 1. Si $f: X \longrightarrow Y$ es una función (α, β) -contra semi continua, sobreyectiva y X es un espacio α -semi compacto, entonces dado cualquier cubrimiento $\{V_i: i \in I\}$ de Y por conjuntos β -cerrados tendremos que $\{f^{-1}(V_i): i \in I\}$ es un cubrimiento de X por conjuntos α - semi abiertos, ya que cada $f^{-1}(V_i)$ es α -semi abierto, en consecuencia existe una colección $\{f^{-1}(V_{i_k}): k=1,2,\ldots,n\}, n \in \mathbb{Z}^+$, tal que

$$X = \bigcup_{k=1}^{n} f^{-1}(V_{i_k})$$
, lo que implica que

$$Y = f(X) = f\left[\bigcup_{k=1}^{n} f^{-1}(V_{i_k})\right] \subseteq \bigcup_{k=1}^{n} V_{i_k}.$$

Así, Y es fuertemente α -S-cerrado.

2. Sea $f: X \longrightarrow Y$ una función (α, β) -contra continua, sobreyectiva y X es compacto. Dado cualquier cubrimiento $\{V_i: i \in I\}$ de Y por conjunto β -cerrados, entonces $\{f^{-1}(V_i): i \in I\}$ es un cubrimiento de X por conjuntos α -abiertos, como todo conjunto α -abierto es abierto en X, entonces $\{f^{-1}(V_i); i \in I\}$ es un cubrimiento de X por abiertos y existe una cantidad finita $\{f^{-1}(V_{i_1}), f^{-1}(V_{i_2}), \ldots, f^{-1}(V_{i_n})\}, n \in \mathbb{Z}^+,$ tal que $X = \bigcup_{k=1}^n f^{-1}(V_{i_k})$, en consecuencia $Y = f(X) \subseteq \bigcup_{k=1}^n V_{i_k}$, por lo tanto Y es fuertemente α -S-cerrado.

Definición 4.2. Sea (X, Γ, α) un espacio. Un subconjunto A de X se dice que es α -fuertemente compacto relativo a X si todo cubrimiento A por conjuntos α - abiertos en X tiene un subcubrimiento finito. Si A = X, entonces X se dice α -fuertemente compacto.

Usando esta definición, obtenemos el siguiente teorema

Teorema 4.2. Sean (X, Γ, α) , (Y, ψ, β) dos espacios $y \ f : X \longrightarrow Y$ sobreyectiva. Si f es (α, β) -contra continua $y \ X$ es fuertemente α -S-cerrado, entonces Y es α -fuertemente compacto.

Definición 4.3. Sea $f:(X,\Gamma,\alpha)\longrightarrow (Y,\psi,\beta)$. Se dice que f es una función $\alpha\beta$ -cerrada si la imagen de cualquier conjunto α -cerrado es β -cerrado.

Recordemos que si β es un operador sobre la topología Φ del conjunto Y, entonces la colección de todos los conjuntos β -abiertos es denotada por Γ_{β} . Si $|\Gamma_{\beta}| > 2$, entonces tenemos el siguiente teorema.

Teorema 4.3. Sea $f:(X,\Gamma,\alpha) \longrightarrow (Y,\psi,\beta)$ sobreyectiva $y |\Gamma_{\beta}| > 2$. Si f es (α,β) -contra continua $y \alpha\beta$ -cerrada, entonces Y no es β -conexo.

Se puede notar fácilmente que si $|\Gamma_{\beta}|=2$, la conclusión del teorema anterior es falsa. Para ver esto, tómese $f:X\longrightarrow Y$, donde X es cualquier espacio, α cualquier operador sobre X,Y consta de un punto, β el operador identidad que es el único que existe sobre Y y f la función constante. Bajo éstas conclusiones f es (α,β) -contra continua, es $\alpha\beta$ -cerrada y sobreyectiva pero Y es β -conexo.

Referencias

- [1] Dontchev, J., Noiri, T. Contra semi continuous functions, Math. Panonica **10**(2), 159–168.
- [2] Kasahara, S. Operation compact spaces, Math. Japonica, 24(1979), 97– 105.
- [3] Ogata, H. Operation on topological spaces and associated topology, Math. Japonica, **36**(1) (1991), 175–184.
- [4] Rosas, E., Vielma, J. Operator compact and operator connected spaces, Scientiae Mathematicae, 1(2) (1998), 203–208.
- [5] Rosas, E., Vielma, J., Carpintero, C., α -semi connected and locally α -semi connected properties in topological spaces. Por aparecer en Scientiae Mathematicae Japonicae on line 2001.