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Abstract

For any positive integer m let Fm = 22m

+ 1 be the mth Fermat
number. In this short note we show that the only solutions of the dio-
phantine equation Fm =

(
n
k

)
are the trivial ones, i.e., those with k = 1

or n− 1.
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Resumen

Para cualquier entero positivo m sea Fm = 22m

+1 el m-simo número
de Fermat. En esta breve nota demostramos que las únicas soluciones
de la ecuación diofántica Fm =

(
n
k

)
son las triviales, es decir aquellas

para las cuales k = 1 o n− 1.
Palabras y frases clave: Números de Fermat, triángulo de Pascal,
ecuaciones diofánticas.

1 Introduction

For any integer m ≥ 0 let Fm = 22m

+ 1 be the mth Fermat number. A
triangular number is a positive integer of the form

(
n
2

)
for some positive integer

n. In [2], Krishna showed that the only triangular Fermat number is F0 =
3 =

(
3
2

)
. This result appears also in Radovici-Mărculescu [4]. Both proofs are

immediate and are based on modular arguments. In this note, we extend the
above result. Our main theorem is the following.
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Theorem 1. If

Fm =
(

n

k

)
, for some n ≥ 2k ≥ 2, (1)

then k = 1.

Notice that the condition n ≥ 2k is not really restrictive because of the
symmetry of the binomial coefficients

(
n

k

)
=

(
n

n− k

)
. (2)

The above result can be interpreted by saying that the Fermat numbers
sit in the Pascal triangle only in the trivial way.

A connection of the Fermat numbers with the Pascal triangle was pointed
out in the paper of Hewgill [1]. We mention that several other diophantine
equations involving the Pascal triangle and Fermat numbers were previously
investigated. For example, in [3] we determined all binomial coefficients which
can be numbers of sides of regular polygons which can be constructed with
the ruler and the compass.

2 Proof of Theorem 1

Assume that equation (1) has a solution with k > 1. Notice that in this case
m > 4 because Fm is prime for m = 0, 1, . . . , 4. We first show that k < 2m.
Indeed, assume that k ≥ 2m. Since m ≥ 5, it follows that k ≥ 25 = 32. One
can easily check that

k! <
( k

2.2

)k

for all k ≥ 10. (3)

Indeed, inequality (3) follows from Stirling’s formula. Equation (1) and in-
equality (3) now imply that

22m

+ 1 = Fm =
(

n

k

)
=

n(n− 1) . . . (n− k + 1)
k!

>
(n− k)k

k!

>
(2.2(n− k)

k

)k

≥ (2.2)k ≥ (2.2)2
m

,

or

1 +
1

22m >
(2.2

2

)2m

=
(
1 +

1
10

)2m

> 1 +
2m

10
,
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or
10 > 2m+2m

,

which is certainly impossible for m ≥ 5. Thus, k < 2m.
At this point, we recall the following well-known result due to Lucas.

Assume that p is a prime and write

n = n0 + n1p + · · ·+ ntp
t for some ni ∈ {0, 1, . . . , p− 1}, with nt 6= 0, (4)

and
k = k0 + k1p + · · ·+ ktp

t for some ki ∈ {0, 1, . . . , p− 1}. (5)

Then, (
n

k

)
≡

(
n0

k0

)(
n1

k1

)
· · ·

(
nt

kt

)
(mod p). (6)

Assume that
n =

∏

p|n
pαp , (7)

and let
A = {p : p|n and p ≡ 1 (mod 2m+1)}. (8)

Finally, let n = n1d, where
n1 =

∏

p∈A

pαp . (9)

We now show that d|k. This is clear if d = 1. Assume that d > 1 and choose
a prime number q|d. Since all the prime divisors of Fm are congruent to 1
modulo 2m+1, it follows that q 6 | Fm. But since q|d|n, it follows that if one
writes n in base q according to formula (4), then one gets that n0 = 0. If
q 6 | k, then k0 > 0 and now formula (6) would imply that

Fm ≡
(

n

k

)
≡

(
0
k0

)
·
(

n1

k1

)
· · · · ·

(
nt

kt

)
≡ 0 (mod q),

which is impossible because q does not divide Fm. Hence, every prime divisor
of d divides k as well. To show that d|k, we need to show that if qα || d for
some α ≥ 1, then qα|k. Assuming that this were not so, it follows that qβ || k
for some β < α. But in this case, nβ = 0 and kβ 6= 0 which, via formula (6),
would imply again that q divides Fm, which is impossible.
Hence, d|k. In particular, since k < 2m, it follows that d < 2m as well.
We now notice that since n1 is a product of primes from A, it follows that
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n1 ≡ 1 (mod 2m+1). This implies that n ≡ d (mod 2m+1). However, since
d ≤ k < 2m < 2m+1, Lucas’s theorem for the prime p = 2 implies that

Fm =
(

n

k

)
≡

(
d

k

)
(mod 2). (10)

Since Fm is odd and d ≤ k, formula (10) implies that d = k. Thus, k|n. We
may now write equation (1) as

Fm =
n

k
·
(

n− 1
k − 1

)
, (11)

where n
k is an integer. At this point, one should notice that the relevant feature

of the preceeding argument was based only on the shape of the prime divisors
of Fm. Hence, one can iterate the above argument to get that (k − i)|(n− i)
for all i = 0, 1, . . . , k − 1. This is equivalent to

n ≡ i (mod k − i) ≡ k (mod k − i), for all i = 0, 1, . . . , k − 1. (12)

Let
N = lcm(1, 2, . . . , k) = [1, 2, . . . , k]. (13)

From formula (12), we get that n ≡ k (mod N). Write n = k + aN for some
positive integer a. Now equation (1) implies that

Fm =
(

n

k

)
=

n

k
· n− 1
k − 1

· · · · · n− k + 1
1

=
k−1∏

i=0

(
1 + a

N

k − i

)
. (14)

Let Ni = N
k−i for i = 1, 2, . . . , k − 1. Notice that exactly one of the numbers

Ni is odd and all the other ones are even. Indeed, the only odd number Ni

corresponds to i = k−2µ, where 2µ is the largest power of 2 less than or equal
to k. We now look again at equation (14) and we write it as

22m

+ 1 =
k−1∏

i=0

(1 + aNi) = 1 + aS1 + a2S2 + ... + akSk, (15)

where Sj is the jth fundamental symmetric polynomial in the Ni’s. Since
eactly one of the numbers Ni is odd, it follows that S1 is odd and that Sj is
even for all j ≥ 1. Equation number (15) can now be written as

22m

= a(S1 + aS2 + ... + ak−1Sk). (16)
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From formula (16), one can see right away that the factor S1+aS2+...+ak−1Sk

is odd and larger than 1 (here is where k > 1 is really used), so it cannot divide
the power of 2 from the left hand side of equation (16).
The Theorem is therefore proved.
Remark. One can mimic the above arguments to show that is a > 1 is any
positive integer and Fm(a) = a2m

+ 1 is the mth generalized Fermat number,
then the equation

Fm(a) =
(

n

k

)
, for some n ≥ 2k and k ≥ 2, (17)

has only finitely many computable solutions. That is, there exists a constant
C(a) depending only on a such that all solutions of equation (17) satisfies
m < C(a). The fact that there are sometimes non-trivial solutions of (17) is
illustrated by the example

F1(3) =
(

5
2

)
.

A generalization of the result from the present paper to diophantine equations
involving equal values of binomial coefficients and members of Lucas sequences
will be given in a forthcoming paper.
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