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Abstract

An elementary and self contained proof of the theorem which as-
serts that the only alternative,finite dimensional division algebras over
the real numbers are the reals, the complex numbers, the quaternions
and the octonions is given. Moreover, as a corollary, a theorem of Hur-
witz which gives the classification of the real normed algebras of finite
dimension is derived.
Key words and phrases: division algebra, quaternions, real normed
algebra.

Resumen

Se prueba de manera elemental y autocontenida que las únicas álge-
bras de división alternativas de dimensión finita sobre los reales, son los
números reales, los complejos, los cuaternios y los octonios. Asimismo,
como corolario se deriva un teorema de Hurwitz que clasifica las R-álge-
bras normadas de dimensión finita.
Palabras y frases clave: álgebra de división, cuaternios, álgebra real
normada.

Introduction

In 1843, Hamilton trying to extend to three dimensions the nice properties
(those of a normed algebra) of the complex numbers, realized that instead of
triples he consider quadruples of real numbers, the desired generalization is
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possible although at the cost of abandoning the commutativity of the product,
creating in this way the quaternions.

Soon after, in 1845, Cayley extends that construction to eight dimensions,
this time he should not only abandon the commutativity but also the asso-
ciativity of the product, building the octonions or Cayley numbers. In these
octonions the lack of associativity is compensed in part by a sort of weak
associativity, the alternative laws:

x(xy) = x2y, (yx)x = yx2

In 1877 Frobenius showed the singularity of the quaternions, proving the
theorem that classifies the associative division finite dimensional algebras over
the reals.

The singularity of the Cayley numbers was also proved: a theorem due to
Bruck and Kleinfeld (1957) asserts that an alternative division ring is neces-
sarily a division algebra of Cayley - Dickson (a generalization of the Cayley
numbers to an arbitrary field) or an associative division algebra [1].

The purpose of this article is to give an elementary and self contained
proof, in the spirit of the proof of Frobenius theorem given in [2], of the
following generalized Frobenius:

Main Theorem: An alternative division algebra of finite dimension over
the reals is isomorphic to the field of real numbers, to the complex one, to the
quaternion algebra or to the algebra of Cayley numbers.

This will be proved in section 2 where also the definition of the Cayley
numbers is given. In section 1 a few lemmas on general alternative algebras
needed in the proof are stablished, and in the last section a famous theorem
of Hurwitz (1898), which gives the classification of the real normed algebras
of finite dimension, is derived.

1 Lemmas

In a nonassociative algebra it is convenient to introduce the associator of x,
y, z, defined by:

A(x, y, z) = x(yz)− (xy)z.

Then the associativity is expressed by: A(x, y, z) = 0, and the alternative
laws become: A(x, x, y) = A(y, x, x) = 0. The associator is clearly linear in
each variable.

Throughout this section we assume that we work with an alternative al-
gebra (which satisfies the alternative laws above) over a field K, and x, y, z,
are elements of this algebra.
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(a) The associator is antisymmetric:

A(x, y, z) = −A(y, x, z) = −A(x, z, y) = −A(z, y, x).

We shall prove only the first identity, the others follow in a similar way. By
the left alternative law we have:

0 = A(x+y, x+y, z) = A(x, x, z)+A(x, y, z)+A(y, x, z)+A(y, y, z) = A(x, y, z)+A(y, x, z).

From (a) we have A(x, y, x) = −A(y, x, x), then:

(b) The so called flexible law is valid: x(yx) = (xy)x, and this common value
will be denoted then by xyx.

By (a) we have A(x, y, z) + A(y, x, z) = 0, and if xy + yx = 0:

0 = A(x, y, z) + A(y, x, z) + (xy + yx)z = x(yz) + y(xz).

Or x(yz) = −y(xz). In a similar fashion we have: (zx)y = −(zy)x, hence:

(c) If x, y anticommute, that is if xy = −yx, then:

x(yz) = −y(xz), (zx)y = −(zy)x.

(d) The following Moufang identity holds:

(zx)(yz) = z(xy)z

Proof:

(zx)(yz)− ((zx)y)z = A(zx, y, z) = A(y, z, zx) = y(z2x)− (yz)(zx) =
= y(z2x)−A(yz, z, x)− (yz2)x = A(y, z2, x)−A(yz, z, x) =
= A(y, z2, x)−A(x, yz, z) = A(y, z2, x)− x(yz2) + (x(yz))z =
= A(y, z2, x) + A(x, y, z)z −A(x, y, z2) = A(x, y, z)z,

then

(zx)(yz) = A(x, y, z)z + ((zx)y)z =
= A(x, y, z)z −A(z, x, y)z + z(xy)z = z(xy)z.

(e) If we define inductively: x1 = x, xn+1 = xnx for natural n, we have:

xnxm = xn+m (∗)
Proof: By induction on m using the flexible law one shows: xxm = xm+1.
Then by induction on n, as (∗) is obvious for m = 1, we can assume m > 1
and the inductive step follows from Moufang identity:

xn+1xm = (xxn)(xm−1x) = xxn+m−1x = xn+m+1.
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2 Main theorem

In what follows D denotes a finite dimensional alternative division algebra
over the field R of real numbers.

By lemma (e) the specialization: R[X] −→ D : X 7−→ x is an algebra
morphism.

The set of powers: 1, x, x2, . . . of an element x in D is linearly dependent (if
it is finite there is a dependence relation of the form xn = xm for n 6= m and
if it is infinite it follows from the finite dimensionality of D). As a polynomial
in R[X] is a product of polynomials of degree one or two, and as D has no
nonzero divisor we deduce that x satisfies a second degree equation with real
coefficients, That is:

(1) If x ∈ D then x2 ∈ R + Rx.

Explicitly x2 = ax + b for real a, b and so
(
x− a

2

)2 ∈ R. Then if x /∈ R we
must have

(
x− a

2

)2 = −c2 with c ∈ R. From this we obtain on one hand, if
D 6= R, the existence of i ∈ D such that i2 = −1, and on the other if x ∈ D

and xi = ix then x ∈ R + Ri, since if x /∈ R then
(
x− a

2

)2 = (ic)2 , but from
xi = ix we have

(
x− a

2

)2

− (ic)2 =
(
x− a

2
+ ic

)(
x− a

2
− ic

)
= 0

and so x ∈ R + Ri. We have proved:

(2) If D 6= R then there exists i ∈ D such that i2 = −1; C = R + Ri is a field
isomorphic to the field of complex numbers and C = {x ∈ D / xi = ix} .

Set C− = {x ∈ D / xi = −ix} . Obviously C− is a subspace of D such
that C ∩ C− = 0. Moreover:

(3) D = C ⊕ C−.

It only remains to prove that D = C + C− but this is a consequence of
the identity:

x =
1
2
(x− ixi) +

1
2
(x + ixi) (#)

since in virtue of the alternative and flexible laws x−ixi ∈ C and x+ixi ∈ C−

(for example: (x+ixi)i = xi−ix and i(x+ixi) = ix−xi and so x+ixi ∈ C−).
The next observation also follows from the alternative and flexible laws.

(4) If x, u ∈ D anticommute, then x2 and u commute.
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In fact, from xu = −ux it follows x2u = x(xu) = −x(ux) = −(xu)x =
(ux)x = ux2.

Now let x ∈ C−, x 6= 0. By (4), (2) and (1) we have x ∈ C ∩ (R + Rx) but
Rx ⊂ C− and so by (3), x2 ∈ R. If x2 > 0 then x ∈ R, which contradicts (3),
hence: x2 = −c2 with c ∈ R and if we define j = c−1x, we obtain j2 = −1 and
ji = −ij. Setting k = ij we deduce the defining relations of the quaternions:

i2 = j2 = k2 = −1; ij = −ji = k; jk = −kj = i; ki = −ik = j

For example, by Moufang identity we have: k2 = (ij)(ij) = −(ij)(ji) =
−ij2i = i2 = −1. Then,

(5) If D * C then there exists j ∈ C− such that j2 = −1 and the 4-
dimensional subspace C + Cj is an associative division algebra (over R) iso-
morphic to the Hamilton quaternions.

Inasmuch as C + Cj is associative, setting H = {x ∈ D / xk = (xi)j} it
follows that H is a subspace such that C + Cj ⊂ H. In order to establish the
opposite inclusion we first note:

(6) H = C ⊕ (C− ∩H) .

By (2) and (#) it suffices to verify that if x ∈ H then x + ixi ∈ H. From
lemma (c) and Moufang identity we have:

(x + ixi)k = xk − i(xk)i = xk − (ix)(ki) = xk − (ix)j,

and by the right alternative law:

((x + ixi)i)j = (xi)j − (ix)j.

But if x ∈ H then xk = (xi)j and so x + ixi ∈ H and (6) is proved.
Multiplication on the right by j defines an R-linear transformation T (x) =

xj that maps H into itself. In fact if x ∈ H then by lemma (c):

(xj)k = −(xk)j = −((xi)j)j = xi

((xj)i)j = −((xj)j)i = xi,

hence xj ∈ H. Also T interchanges C and C− ∩H, for if x ∈ C (xi = ix) we
have:

(xj)i = −(xi)j = −(ix)j = −i(xj)

where the last equality results from:

0 = A(x, i, j) = −A(i, x, j) = −i(xj) + (ix)j.
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Hence, if x ∈ C then xj ∈ C−∩H. In the same way one obtains: if x ∈ C−∩H
then xj ∈ C. But T is an automorphism (its inverse is the right multiplication
by −j) then dim(C ′ ∩ H) = dim C = 2 and, by (6), H is a 4-dimensional
subspace. As was observed above C + Cj ⊂ H and so:

(7) H = C + Cj.

By analogy with (3) we define H− = {x ∈ D / xk = −(xi)j} which is
obviously a subspace such that H ∩H− = 0. Moreover we shall prove:

(8) D = H ⊕H−.

To show that D = H + H− we use the identity:

x =
1
2
(x− xijk) +

1
2
(x + xijk)

where to avoid the proliferation of parenthesis we write xijk for ((xi)j)k and
so in similar cases. This notation will be maintained along the proof of (8) and
only in it. Due to the above identity it only remains to verify that x−xijk ∈ H
and x + xijk ∈ H−. We have by lemma (c) and the alternative laws:

(x + xijk)k = xk − xij

(x + xijk)ij = xij + xi2jkj = xij − xjkj = xij − xk

then x + xijk ∈ H−. Similarly one verifies that x− xijk ∈ H.

(9) If x ∈ H− then x anticommutes with i, j and k.

As x ∈ H− we have xk = 1
2A(x, i, j). But xk = −(xi)j implies x =

[(xi)j]k. Now, by Moufang identity:

kx = [k(xi)](jk) = [k(xi)]i = [(ij)(xi)]i = {[i(jx)]i}i = −i(jx)

and so kx = − 1
2As(i, j, x) = − 1

2As(x, i, j) = −xk.
Similarly, since by lemma (c) we have x = −[(xi)k]j (x ∈ H−), then we

have:

jx = −[j(xi)](kj) = [j(xi)]i = −[(ik)(xi)]i = −[i(kx)i]i = i(kx).

Hence jx = 1
2A(i, k, x) = 1

2A(x, i, k) = − 1
2xj − 1

2 (xi)k = −xj (since x =
−[(xi)k]j, thus xj = (xi)k).

One can prove that x anticommutes with i in a similar way or, more simply,
as it anticommutes with k and j we have:

xi = (xk)j = −(kx)j = (kj)x = −ix.
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(10) If D * H then there exists h ∈ H− such that h2 = −1.
Let x ∈ H−, x 6= 0. By (9), x ∈ C− and from (4), (2) and (1) we obtain:

x2 ∈ C ∩ (R + Rx) = R. But x /∈ R (x ∈ H−), thus x2 = −c2 with c ∈ R,
c 6= 0. Setting h = c−1x, (10) follows.

We are now in a position to end the proof:

(11) If D * H, then D is an 8-dimensional algebra isomorphic to the algebra
of Cayley numbers.

The mapping defined by T (x) = xh is a linear automorphism of D over R
(its inverse is right multiplication by −h) and interchanges H and H−, for if
x ∈ H we have:

(xh)k = −(xk)h = −((xi)j)h = −((xh)i)j

and so xh ∈ H−. Similarly if x ∈ H− then xh ∈ H.
Now, by (7), dim H− = dim H = 4 and, by (8), dim D = 8. It also follows

that H− = Hh and {h, ih, jh, kh} is a basis of H−. Hence {1, i, j, k, h, ih, jh, kh}
is a basis of D and we have:

(ih)(kh) = −(hi)(kh) = −h(ik)h = hjh = −(jh)h = j,

(ih)(ih) = −(ih)(hi) = −ih2i = i2 = −1.

In the same way one can obtain all the entries of the following table, whose
(r, s)-th element is the product xrxs (in that order) and where we use the
following notation:

x1 = i, x2 = j, x3 = k, x4 = h, x5 = ih, x6 = jh, x7 = kh

· x1 x2 x3 x4 x5 x6 x7

x1 −1 x3 −x2 x5 −x4 −x7 x6

x2 −x3 −1 x1 x6 x7 −x4 −x5

x3 x2 −x1 −1 x7 −x6 x5 −x4

x4 −x5 −x6 −x7 −1 x1 x2 x3

x5 x4 −x7 x6 −x1 1 −x3 x2

x6 x7 x4 −x5 −x2 x3 −1 −x1

x7 −x6 −x6 x4 −x3 −x2 x1 −1

The relations in this table are the definitory relations of the Cayley num-
bers and (11) follows. As we have not defined yet the Cayley numbers, we can-
not verify the last assertion, but now it is clear how to define them: take an 8-
dimensional vector space over R and an ordered basis {x0, x1, x2, x3, x4, x5, x6, x7} .
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Define a product of the elements of this basis in such way that x0 will be a
neutral element: x0xr = xrx0 (r = 0, . . . , 7) and for r, s = 1, . . . , 7 define xrxs

by the above table and extend by bilinearity:
(

7∑
r=0

arxr

)(
7∑

r=0

brxr

)
=

∑

0≤r,s≤7

arbs(xrxs)

where xrxs is to be replaced by its value given in the table. In this way we
obtain an alternative algebra (the alternative laws are valid for the elements of
the basis and then for arbitrary elements). To see that it is a division algebra
we proceed as in the case of the quaternions or of the complex numbers: the
conjugate of x = a0 +

∑
r≥1

arxr is defined by x = a0 −
∑
r≥1

arxr. Then:

xx = xx = a2
0 −

∑

r≥1

a2
rx

2
r −

∑

1≤r<s

aras(xrxs + xssr) =
∑

r≥o

a2
r.

Setting N(x) =
∑
r≥0

a2
r it follows that N(x) = 0 if and only if x = 0, and if

x 6= 0 then N(x)−1x is the inverse of x.

3 A corollary

If one takes the definitory basis {xr} as ortonormal, the complex numbers, the
quaternions and the Cayley numbers become real vector spaces with scalar
product 〈, 〉 such that N(x) = 〈x, x〉 . Also in these algebras one have xy = yx
and then N(xy) = N(x)N(y).

In general, a normed algebra is an algebra over the reals with a scalar
product 〈, 〉 such that the norm defined by N(x) = 〈x, x〉 is multiplicative:
N(xy) = N(x)N(y). In a normed algebra each element x can be writen univo-
cally as x = a+x′ where a ∈ R and x′ ∈ S, being S the ortogonal complement
of the subspace generated by the identity element, and its conjugate is defined
by: x = a− x′. It is clear that xx = xx and x = x. As we will see also in this
general situation one have N(x) = xx, this will follow from the next lemma:

Lemma In a normed algebra with scalar product 〈, 〉 we have:

〈xu, v〉 = 〈u, xv〉
Proof: From the basic relation between the scalar product and the norm:

〈x, y〉 =
1
2
{N(x + y)−N(x)−N(y)}
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and the multiplicative property of the norm we obtain:

〈xy, y〉 = N(y) 〈x, 1〉

then if x′ ∈ S we have 〈x′y, y〉 = 0 and if we put y = u + v it follows:
〈x′u, v〉 = −〈u, x′v〉 . From this, if x = a+x′ with a ∈ R and x′ ∈ S it results:

〈xu, v〉 = a 〈u, v〉+ 〈x′u, v〉 = 〈u, av〉 − 〈u, x′v〉 = 〈u, xv〉

Lemma Every normed algebra is an alternative division algebra.

Proof: From the previous lemma we have:

〈xx, y〉 = 〈x, xy〉 = N(x) 〈1, y〉 = 〈N(x), y〉

then N(x) = xx. As N(x) = 0 ⇐⇒ x = 0, it follows that N(x)−1x is the
inverse of x 6= 0.

To prove the alternative laws consider 〈xz, xy〉. On one hand we have
〈xz, xy〉 = N(x) 〈z, y〉 = 〈z, (xx)y〉 and on the other hand, by the previous
lemma, 〈xz, xy〉 = 〈z, x(xy)〉 and so:

(xx)y = x(xy),

but x + x ∈ R, then [(x + x)x]y = x[(x + x)y] and we have: x2y = x(xy). The
other alternative law follows similarly.

As a corollary of the main theorem and the lemma just proved, it follows
the famous Hurwitz’s theorem (1898):

Theorem A finite dimensional normed algebra is isomorphic to the real num-
bers, to the complex numbers, to the quaternions or to the Cayley numbers.
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