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Abstract

We apply the optimal control theory to a linear elasticity problem.

It can be formulated as a minimization problem of a cost functional.

Numerical approximations are based on the optimality system of the

corresponding minimization problem. An iterative method is consid-

ered, for which convergence of the approximate solutions is proved pro-

vided that a penalization parameter in the cost functional is not too

small. Numerical solutions are presented to emphasize the role of this

parameter. It is shown that the iterative method suffers a drawback

that the approximate solutions are not good enough because the penal-

ization parameter can not be taken sufficiently small. Such a limitation

on the parameter is not inherited from the use of a penalization param-

eter in the cost functional. Indeed, some methods may be free of such

a limitation. We have shown by a simple spectral analysis that the so-

lution exists as the parameter tends to zero by the use of eigenfunction

representations.
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Resumen

Aplicamos la teoŕıa del control óptimo a un problema de elasticidad

lineal que puede ser formulado como un problema de minimización de

una funcional de costo. Las aproximaciones numéricas se basan en el

sistema de optimalidad del correspondiente problema de minimización.

Se considera un método iterativo para el cual se prueba la convergencia

de las soluciones aproximadas suponiendo que un parámetro de pena-

lización en la funcional de costo no sea muy pequeño. Se presentan

soluciones numéricas para enfatizar el rol de este parámetro. Se mues-

tra que el método iterativo tiene el inconveniente de que las soluciones

aproximadas no son suficientemente buenas porque el parámetro de pe-

nalización no puede ser tomado suficientemente pequeño. Tal limitación

sobre el parámetro no es heredada del uso de un parámetro de penaliza-

ción en la funcional de costo. En verdad, algunos métodos pueden estar

libres de esa limitación. Hemos mostrado mediante un simple análisis

espectral que la solución existe cuando el parámetro tiende a cero me-

diante el uso de representaciones con funciones propias.

Palabras y frases clave: Control óptimo, elasticidad lineal, método de

los elementos finitos, método iterativo, desarrollo en funciones propias.

1 Introduction

The theory of optimal control of systems governed by partial differential equa-
tions was essentially developed by Lions [7]. Many different type of control
problems have been considered and solutions by numerical methods have been
widely studied in the literature (see for examples, [3, 5, 7, 8]).

Theory of optimal control governed by a scalar equation of elliptic type,
such as those involving heat conduction, are well-known in the literature. The
problem is usually formulated as a minimization problem of a cost functional,
involving a positive parameter for technical reasons. For the practical ob-
jective of the optimal control solution this penalization parameter should be
taken as small as possible.

In this paper we shall apply the theory of optimal control to equilibrium
problems of linear elasticity, governed by an elliptic system of partial differ-
ential equations. An iterative method for the optimality system equivalent to
the minimization problem is considered and it is shown that the convergence
of the iterative solutions is guaranteed if the penalization parameter is not too
small. The role of this parameter will be examined in the numerical solutions
with finite element method in the iterative procedure. It is found that such
solutions are not good enough even with the smallest allowable parameter and
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hence the iterative method which does not allow the parameter to be arbitrary
small may hardly be able to deliver a satisfactory optimal solution. However,
this limitation seems to have been overlooked in many similar problems in
the literature [5, 8, 10], where the convergence of the numerical solution is
ensured by simply taking this parameter as 1 or a fixed convenient positive
number using gradient type methods. Therefore apparently those results may
suffer the same drawback as ours in this respect.

Such a limitation is not inherited from the use of penalization parameter
in the cost functional. Indeed, there are methods free of such limitation when
the parameter tends to zero. For this reason, we shall consider a spectral
analysis in which an explicit solution of the optimality system in Fourier
series expansion can be obtained in the limit as the parameter tends to zero.

A bold-faced letter stands for a vector quantity and its components are
represented by the corresponding normal letter with subindices ranging from
1 to n, the dimension of the physical space. The usual summation convention
will be used to the component indices, i.e., the repeated component indices
indicate a sum over its range from 1 to n.

2 An Optimal Control Problem in Elasticity

We consider the following boundary value problem of Dirichlet type in linear
elasticity:











−
∂

∂xj

(

Cijkl
∂uk

∂xl

)

= fi, in Ω

ui = 0, on ∂Ω

(1)

where the elasticity tensor Cijkl and the external force fi are given functions
of x = (xi) in a smooth region Ω ⊂ Rn with smooth boundary ∂Ω. The
problem is to determine the displacement field u = (ui) satisfying the system
(1). It is usually assumed that ([2])
a) The elasticity tensor Cijkl satisfy the condition:

Cijkl = Cjikl = Cijlk = Cklij . (2)

b) There are positive constants C and C̄, such that for any symmetric matrices
Sij ,

CSijSij ≤ CijklSijSkl ≤ C̄SijSij . (3)

The assumption (a) follows from the existence of stored-energy function and
the symmetry of stress and strain tensors, while the assumption (b) states
that the elasticity tensor is bounded and strictly positive definite.
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By virtue of these assumptions, the bilinear function σ defined by

σ(u, v) =

∫

Ω

Cijkl
∂ui

∂xj

∂vk

∂xl
dx, ∀u, v ∈ (H1

0 (Ω))n (4)

is an inner product in (H1
0 (Ω))n, called the energy inner product. The energy

norm ‖u‖σ = σ(u, u)1/2 is equivalent to the standard norm ‖u‖1 of the space
(H1(Ω))n for u ∈ (H1

0 (Ω))n. Indeed, from (3) we have

C‖u‖1 ≤ ‖u‖σ ≤ C̄‖u‖1. (5)

We denote the inner product in (L2(Ω))n by

(u, v)0 =

∫

Ω

u · v dv, ∀u, v ∈ (L2(Ω))n,

where u · v = uivi is the usual inner product in Rn. The usual norm in

(L2(Ω))n will be denoted by ‖u‖0 = (u, u)
1/2

0 .
The weak form of the problem (1) can now be stated as follows: For a

given function f ∈ (L2(Ω))n, find the solution u ∈ (H1
0 (Ω))n such that

σ(u, v) = (f , v)0, ∀v ∈ (H1
0 (Ω))n. (6)

We can verify easily that the bilinear function σ(·) is continuous and coercive
in (H1

0 (Ω))n. Therefore, according to Lax-Milgram Theorem ([2, 9]) and by
the use of elliptical regularity, for any f ∈ (L2(Ω))n, there is a unique solution
u ∈ (H1

0 (Ω))n∩(H2(Ω))n. The unique solution for the given f will be denoted
by u(f).

Now let us turn to the formulation of an optimal control problem to obtain
a prescribed displacement by means of externally applied forces on the body.
Suppose that the equilibrium position of the body has some prescribed form
given by a function zo(x) ∈ (L2(Ω))n, called an objective function. We can
ask the question of how to determine the function f such that u(f) is as close
to the objective function zo as possible in (L2(Ω))n.

By introducing the cost functional defined by

J(f) = ‖u(f ) − zo‖2
0 + N‖f‖2

0, (7)

the optimal control problem can be formulated as a minimization problem of
the cost functional:
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Determine a function g ∈ Uad such that

J(g) = inf
{

J(f ); f ∈ Uad

}

, (8)

where Uad is a convex and closed set of (L2(Ω))n.

The real goal of the problem is to minimize the first term of the cost
functional. The second term is added to limit the cost of control. The non-
negative penalty parameter N is used to change the relative importance of
the two terms in the cost functional. Therefore, for real purpose in obtaining
the optimal result, the constant N should be taken as small as possible.

3 Optimality System

For numerical calculation of the optimal control we shall establish a more
convenient formulation in terms of a system of differential equations. By the
use of the Gateaux-differential of the cost functional J , the problem (8) can
be characterized by
∫

Ω

(u(g)−zo) · (u(v)−u(g)) dx+N

∫

Ω

g · (v−g) dx ≥ 0, ∀v ∈ Uad. (9)

In order to obtain a more convenient form for the numerical calculation of
the function g, we shall reformulate the problem through the adjoint system.
Let the operator defined on the left hand side of the system (1) be denoted
by A : (H1

0 (Ω))n → (L2(Ω))n,

Aui = −
∂

∂xj

(

Cijkl
∂uk

∂xl

)

. (10)

Since by assumption, the elasticity Cijkl is symmetric, the operator A is self-
adjoint, i.e.,

(Au, v)0 = (u, Av)0, ∀u, v ∈ (H1
0 (Ω))n.

If we define the adjoint system by
{

Ap = u(g) − zo in Ω,
p = 0 on ∂Ω,

(11)

then by substituting (u(g) − zo) from (11) into (9), we have
∫

Ω

Ap · (u(v) − u(g)) + N

∫

Ω

g · (v − g) dx ≥ 0.
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Since A is self-adjoint and Au(f ) = f from the system (1), we have

∫

Ω

(p + Ng) · (v − g) dx ≥ 0, ∀v ∈ Uad. (12)

We consider the case Uad = (L2(Ω))n, for which it follows that

g = −
1

N
p.

Therefore, we can define the optimality system by











Au = − 1

N p in Ω

Ap = u − zo in Ω

u = p = 0 on ∂Ω.

(13)

This is a coupled system, besides some other solving methods, such as
conjugate gradient method, least-squared method [5, 10, 4], we shall consider
an iterative method which uncouples the system.

4 Iterative Method

In order to get a numerical solution for the problem, the optimality system is
uncoupled in the following way: Given p0 = 0 then the values of um and pm

are iteratively calculated from the following algorithm:











Aum = − 1

N pm−1 in Ω,

Apm = um − zo in Ω,

um = pm = 0 on ∂Ω,

(14)

We shall prove in the following theorem that the algorithm above is convergent
if N is not too small.

Theorem 4.1. There exists a positive constant δ, such that for N > δ,

{pm, um} → {p, u} strongly in (H1
0 (Ω))n ∩ (H2(Ω))n,

where p and u are solutions of the optimality system (13).

Proof. With the notation,

P m = pm − p and Um = um − u,
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from (13) and (14) we have











AUm = − 1

N P m−1 in Ω,

AP m = Um in Ω,

Um = P m = 0 on ∂Ω.

(15)

Taking inner product of the first equation with Um and the second with P m

and integrating over Ω, we obtain by the use of (4) after integration by parts,

σ(Um, Um) = −
1

N

∫

Ω

P m−1 · Um dx, (16)

σ(P m, P m) =

∫

Ω

Um · P m dx. (17)

Taking the energy norm of (16) and (17), we get

‖Um‖2
σ ≤

1

2N

{

‖P m−1‖2
0 + ‖Um‖2

0

}

,

‖P m‖2
σ ≤

1

2

{

α ‖Um‖2
0 +

1

α
‖P m‖2

0

}

.

In these relations we have used the elementary inequality, ab ≤ 1

2
(α a2+b2/α),

where α is real positive number. Since the norms ‖·‖σ and ‖·‖1 are equivalent
in (H1

0 (Ω))n, by (5) we have

C2‖Um‖2
1 ≤

1

2N

{

‖P m−1‖2
0 + ‖Um‖2

0

}

≤
K

2N

{

‖P m−1‖2
1 + ‖Um‖2

1

}

,

C2‖P m‖2
1 ≤

1

2

{

α ‖Um‖2
0 +

1

α
‖P m‖2

0

}

≤
K

2

{

α ‖Um‖2
1 +

1

α
‖P m‖2

1

}

.

In the second part of the above relations, we have used the Poincaré inequality,
where the constant K depends on Ω only. Hence we have

(2NC2 − K)‖Um‖2
1 ≤ K‖P m−1‖2

1,

(2α C2 − K)‖P m‖2
1 ≤ Kα2‖Um‖2

1.

Suppose that {N, α} ≥ r/2, where r = K/C2, then by combining the above
two inequalities we obtain

‖P m‖2
1 ≤ γ‖P m−1‖2

1, (18)
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where

γ =
α2r2

(2α − r)(2N − r)
.

The inequality (18) is valid for m = 1, 2, ... , so we have

‖P m‖2
1 ≤ γm‖P 0‖2

1. (19)

Since P 0 ∈ (H1
0 (Ω))n, if γ < 1 we conclude that as m → ∞, the sequence

{P m} converges strongly to zero in (H1
0 (Ω))n∩(H2(Ω))n, by the use of elliptic

regularity. The convergence of the sequence {Um} also follows in exactly the
same argument.

To conclude the proof of the theorem, we need to determine the constants
α and N so that the condition γ < 1 is satisfied. Moreover, the value of α will
be chosen in such a way that the lower bound for N is as small as possible.
Since α > r/2, let α = r/2+ε for ε > 0, then the condition γ < 1 is equivalent
to

N >
r

2

(

1 +
r

2ε

(r

2
+ ε

)2
)

.

Let the right hand side be denoted by δ, which takes its minimal value at
ε = r/2. With this choice, we have α = r and

N > δ =
r

2

(

1 + r2
)

, r =
K

C2
, (20)

which ensures the condition γ < 1 and the theorem is proved. ut

Remark. On the value of δ:
By the assumptions (2) and (3) on the elasticity tensor Cijkl , the elliptic

operator A defined in (10) is self-adjoint and positive definite. Hence by
the spectral theorem, the eigenvectors of A form an orthonormal basis of
the Hilbert space (H1

0 (Ω))n ∩ (H2(Ω))n, and the eigenvalues {λm} form an
increasing sequence of positive real numbers, i.e., 0 < λm ≤ λm+1 for m =
1, 2, · · · . Moreover, one can show that

λ1 = inf
uuu6=0

‖u‖2
σ

‖u‖2
0

.

Hence, it follows from (5) that

‖u‖2
0 ≤

1

λ1

‖u‖2
σ ≤

C̄

λ1

‖u‖2
1. (21)
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In order words, the constant K in the Poincaré inequality can be taken as
C̄/λ1, and we arrive at an estimated value of δ,

N > δ =
C̄

2C2λ1

(

1 +
C̄

C4λ2
1

)

.

In particular, for A = −∆, the Laplace operator, and Ω = (0, 1) × (0, 1), we
have C = C̄ = 1 and λ1 = 2π2, hence the constant N can be chosen as small
as 0.0254 and since the above estimate is not optimal the lower limit of δ can
be even smaller than this value as we shall see in the numerical example later.

4.1 Finite Element Approximation

Let V h be the finite dimensional subspace of (H1
0 (Ω))n in the finite element

approximation with maximum mesh size h. The Galerkin formulation of the
iterative problem (14) is given as follows:

Given z0 ∈ (L2(Ω))n and p0
h = 0, find um

h ∈ V h and pm
h ∈ V h such that

for all vh ∈ V h,
{

σ(um
h , vh) = (F (pm−1

h ), vh)0,

σ(pm
h , vh) = (um

h − zo, vh)0.
(22)

By employing finite element basis functions in V h, (22) are systems of linear
algebraic equations.

In Theorem 1, we have proved for N > δ that the numerical solution
{um, pm} for uncoupled system (14) converges to the solution {u, p} of the
optimality system. In the next theorem, we claim that the numerical solu-
tion of system (22), {um

h , pm
h }, obtained by the finite element method also

converges to {u, p}.

Theorem 4.2. Let N > δ, then for m → ∞ and h → 0,

{um
h , pm

h } −→ {u, p} in (H1
0 (Ω))n ∩ (H2(Ω))n,

where δ is the constant defined in Theorem 4.1.

Since um and pm are solutions in (H1
0 (Ω))n ∩ (H2(Ω))n of the optimality

system, the proof follows from the standard error estimate [1, 9, 11] and the
triangular inequality.
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5 Eigenfunction Expansion Method

In the previous section, we have proposed an iterative method for which the
approximate solution {um

h , pm
h } converges strongly to the solution {u, p} in

(H1
0 (Ω))n ∩ (H2(Ω))n, provided that the constant N > δ, meaning, N is

not allowed to be arbitrary small. In our numerical calculations, we have
found that such a restriction on N could be quite unsatisfactory in practical
solutions. In order to find the solution of the optimality system free from
such a restriction, in the following, we shall analyze the problem via the
eigenfunction expansion method.

Since the operator A is positive-definite and self-adjoint defined in the
Hilbert space H = (H1

0 (Ω))n ∩ (H2(Ω))n. By the spectral theorem, H admits
a complete orthonormal basis of eigenfunctions {ϕm} of A and the corre-
sponding eigenvalues λm can be arranged in ascending order,

0 < λm ≤ λm+1, m = 1, 2, 3 . . . .

Consequently, {u, p} ∈ H can be expressed in an eigenfunction expansion of
the form:

u(x) =
∞
∑

m=1

umϕm(x), p(x) =
∞
∑

m=1

pmϕm(x). (23)

Therefore, we have

Au(x) =

∞
∑

m=1

umλmϕm(x), Ap(x) =

∞
∑

m=1

pmλmϕm(x). (24)

Substituting into the equation (13)1, we obtain

∞
∑

m=1

umλmϕm(x) = −
1

N

∞
∑

m=1

pmϕm(x),

or
∞
∑

m=1

(

umλm +
pm

N

)

ϕm(x) = 0,

which implies that
pm = −umλmN. (25)

Similarly, from the equation (13)2, we obtain

∞
∑

m=1

pmλmϕm(x) =

∞
∑

m=1

(um − zm)ϕm(x),
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or
∞
∑

m=1

(

pmλm − (um − zm)
)

ϕm(x) = 0,

where zm are the Fourier coefficients in the eigenfunction expansion of the
given objective function z0 ∈ (L2(Ω))n:

z0(x) =

∞
∑

m=1

zmϕm(x). (26)

Hence, we have

um = zm + pmλm. (27)

From (25) and (27), we obtain the Fourier coefficients um and pm,

um =
zm

Nλ2
m + 1

, pm = −
Nλmzm

Nλ2
m + 1

,

and the solutions u(x) and p(x) of the optimality system (13) are given ex-
plicitly by

u(x) =

∞
∑

m=1

zm

Nλ2
m + 1

ϕm(x), (28)

p(x) = −

∞
∑

m=1

Nλmzm

Nλ2
m + 1

ϕm(x). (29)

From these solutions we can easily see that when N → 0 the function p(x)
tends to zero, while the solution u(x) converges to the objective function
z0(x). Moreover, by (28) it follows that ‖u‖0 < ‖z0‖0 for any N > 0.

On the other hand, the optimal control g ∈ (L2(Ω))n admits a represen-
tation in Fourier series, and since g = −p/N we obtain

g(x) =
∞
∑

m=1

λmzm

Nλ2
m + 1

ϕm(x), (30)

which tends to the expected solution given by the eigenfunction expansion of
Az0(x) in the limit as N → 0.
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6 Numerical Results

For convenience, we shall consider the Laplace operator, A = −∆, in the unit
square Ω = (0, 1) × (0, 1) as an example. Mathematically, it is a very special
case of the linear elasticity operator, in which the components of the equilib-
rium equation become independent of each other and the problem (1) can be
regarded as two independent problems of scalar equations for the individual
components. But for the purpose of examining the qualitative behavior of the
optimal control solutions, our numerical calculation, both in finite element
iterative approximation and in Fourier series expansion, will be illustrated for
the case of Laplace operator. For more general elliptic operators or more gen-
eral domains, eigenfunctions for spectral representations can be constructed
numerically.

Since u = p = 0 on ∂Ω the eigenvalues and the eigenfunctions of the
Laplace operator are well-known and they are given by

λmn = (n2 + m2)π2, ϕmn = sin mπx sin nπy.

The objective function can then be represented by

z0(x, y) =

∞
∑

m,n=1

zmn sinmπx sin nπy.

Substituting into (28) and (30), we have the approximation of the objective
function,

u(x, y) =
∞
∑

m,n=1

zmn

N(m2 + n2)2π4 + 1
sinmπx sin nπy,

and the function of optimal control,

g(x, y) =

∞
∑

m,n=1

(m2 + n2)π2zmn

N(m2 + n2)2π4 + 1
sin mπx sin nπy.

The exact solution of optimal control is then given by the function in the limit
when N → 0,

g(x, y) =

∞
∑

m,n=1

(m2 + n2)π2zmn sinmπx sin nπy.
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Fig. 1. Objective function z0(x, y)
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Fig. 2. Exact optimal control g(x, y)
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Fig. 3. u(x, y) for N = 0.005
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Fig. 4. g(x, y) for N = 0.005
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Fig. 5. u(x, y) for N = 0.00005
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Fig. 6. g(x, y) for N = 0.00005
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Fig. 7. u(x, y) for N = 0
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Fig. 8. g(x, y) for N = 0

For numerical calculations, we consider a prescribed objective function
given by

z0(x, y) =
(

16xy(1 − x)(1 − y)(x − y2)
)3

.

In Fig. 1 and Fig. 2, the objective function z0(x, y) and the exact optimal
control g(x, y) given above are shown. In finite element approximation, we
have taken a mesh of 15 × 15 square elements. Remember that there is a
lower limit of the parameter N . In the present case we have found that this
limit is approximately equal to 5×10−3 (Note that it is much smaller than the
estimated value given before) for which convergence is ensured in 20 iterations.
Convergence is much faster for greater values of N . However, from Fig. 3 and
Fig. 4, we can see that with this smallest allowable value of N , the numerical
results are still quite far from a good approximation to the exact solutions by
comparing the scales shown in the graphics. It is obvious from the graphics
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that ‖u‖0 is much too small compared to the expected value ‖z0‖0.

On the other hand, there is no restriction on the value of N for the method
of Fourier series expansion. Approximation by Fourier series is calculated by a
sum of 22 terms in eigenfunctions ϕmn for m2 +n2 < 62. Numerical solutions
are obtained for values of N = 5 × 10−3, 5 × 10−5 and also for N = 0. which
represents the exact solution to the problem. The figures for N = 5 × 10−3

are not shown here because they are practically identical to Figures 3 and 4
for the results of iterative approximation. Fig. 5, Fig. 6 and Fig. 7, Fig. 8
show the graphics for N = 5 × 10−5 and N = 0 respectively. We can see the
gradual improvement of the approximation for decreasing values of N and an
excellent agreement with the exact solutions shown in Fig. 1 and Fig. 2 for
the case of N = 0, for which the series are calculated with a finite sum of the
first 22 terms only.
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