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1. Introduction

The large measure of attention that complex Calabi-Yau varieties drew in re-
cent years stands in marked contrast to the limited attention for their coun-
terparts in positive characteristic. Nevertheless, we think these varieties de-
serve a greater interest, especially since the special nature of these varieties
lends itself well for excursions into the largely unexplored territory of varieties
in positive characteristic. In this paper we mean by a Calabi-Yau variety a
smooth complete variety of dimension n over a field with dimHi(X,OX) = 0
for i = 1, . . . , n−1 and with trivial canonical bundle. We study some invariants
of Calabi-Yau varieties in characteristic p > 0, especially the height h of the
Artin-Mazur formal group for which we prove the estimate h ≤ h1,n−1 + 1 if
h 6= ∞. We show how this invariant is related to the cohomology of sheaves of
closed forms.
It is well-known that K3 surfaces do not possess non-zero global 1-forms. The
analogous statement about the existence of global i-forms with i = 1 and
i = n − 1 on a n-dimensional Calabi-Yau variety is not known and might
well be false in positive characteristic. We show that for a Calabi-Yau variety
of dimension ≥ 3 over an algebraically closed field k of characteristic p > 0
with no non-zero global 1-forms there is no p-torsion in the Picard variety and
Pic/pPic is isomorphic to NS/pNS with NS the Néron-Severi group of X. If in
addition X does not have a non-zero global 2-form then NS/pNS ⊗Fp

k maps

injectively into H1(X,Ω1
X). This yields the estimate ρ ≤ h1,1 for the Picard
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number. We also study Calabi-Yau varieties of Fermat type and of Kummer
type to illustrate the results.

2. The Height of a Calabi-Yau Variety

The most conspicuous invariant of a Calabi-Yau variety X of dimension n
in characteristic p > 0 is its height. There are several ways to define it, using
crystalline cohomology or formal groups. In the latter setting one considers the
functor F r

X : Art → Ab defined on the category of local Artinian k-algebras
with residue field k by

F r
X(S) := Ker{Hr

et(X × S, Gm) −→ Hr
et(X, Gm)}.

According to a theorem of Artin and Mazur [2], for a Calabi-Yau variety X and
r = n this functor is representable by a smooth formal group ΦX of dimension 1
with tangent space Hn(X,OX). Formal groups of dimension 1 in characteristic
p > 0 are classified up to isomorphism by their height h which is a natural
number ≥ 1 or ∞. In the former case (h 6= ∞) the formal group is p-divisible,
while in the latter case the formal group is isomorphic to the additive formal
group Ĝa.
For a non-singular complete variety X over an algebraically closed field k
of characteristic p > 0 we let WmOX be the sheaf of Witt rings of length
m, which is coherent as a sheaf of rings. It has three operators F , V and
R given by F (a0, . . . , am) = (ap

0, . . . , a
p
m), V (a0, . . . , am) = (0, a0, . . . , am)

and R(a0, . . . , am) = (a0, . . . , am−1) satisfying the relations RV F = FRV =
RFV = p. The cohomology groups Hi(X,WmOX) with the maps induced by
R form a projective system of finitely generated Wm(k)-modules. The projec-
tive limit is the cohomology group Hi(X,WOX). Note that this need not be
a finitely generated W (k)-module. It has semi-linear operators F and V .
Let X be a Calabi-Yau manifold of dimension n. The vanishing of the groups
Hi(X,OX) for i 6= 0, n and the exact sequence

0 → Wm−1OX → WmOX → OX → 0

imply that Hi(X,WmOX) vanishes for i = 1, . . . , n − 1 and all m > 0, hence
Hi(X,WOX) = 0. We also see that restriction R : WmOX → Wm−1OX

induces a surjective map Hn(X,WmOX) → Hn(X,Wm−1OX) with kernel
Hn(X,OX). The fact that F and R commute implies that if the induced map
F : Hn(X,WmOX) → Hn(X,WmOX) vanishes then F : Hn(X,WiOX) →
Hn(X,WiOX) vanishes for i < m too. It also follows that Hn(X,WiOX) is a
k-vector space for i < m.
It is known by Artin-Mazur [2] that the Dieudonné module of the formal group
ΦX is Hn(X,WOX) with WOX the sheaf of Witt vectors of OX . This implies
the following result, cf. [3] where we proved this for K3-surfaces. We omit the
proof which is similar to that for K3 surfaces.
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Theorem 2.1. For a Calabi-Yau manifold X of dimension n we have the fol-

lowing characterization of the height:

h(ΦX) = min{i ≥ 1: [F : Hn(WiOX) → Hn(WiOX)] 6= 0}.

We now connect this with de Rham cohomology. Serre introduced in [14] a
map Di : Wi(OX) → Ω1

X of sheaves in the following way:

Di(a0, a1, . . . , ai−1) = api−1−1
0 da0 + . . . + ap−1

i−2 dai−2 + dai−1.

It satisfies Di+1V = Di, and Serre showed that this induces an injective map
of sheaves of additive groups

Di : WiOX/FWiOX → Ω1
X . (1)

The exact sequence 0 → WiOX
F
−→ WiOX −→ WiOX/FWiOX → 0 gives rise

to an isomorphism

Hn−1(WiOX/FWiOX) ∼= Ker[F : Hn(WiOX) → Hn(WiOX)]. (2)

Proposition 2.2. If h 6= ∞ then the induced map

Di : Hn−1(X,WiOX/FWiOX) → Hn−1(X,Ω1
X)

is injective, and dim Im Di = min{i, h − 1}.

Proof. We give a proof for the reader’s convenience. Take an affine open cov-
ering {Ui} of X. Assuming some D` is not injective, we let ` be the smallest
natural number such that D` is not injective on Hn−1(W`OX/FW`OX). Let

α = {fI} with fI = (f
(0)
I , . . . , f

(`−1)
I ) ∈ Γ(Ui0,...,in−1

,W`OX) represent a non-
zero element of Hn−1(W`OX/FW`OX) such that D`(α) is zero in Hn−1(Ω1

X).
Then there exists elements ωJ = ωj0j1...jn−2

in Γ(Uj0 ∩ . . . ∩ Ujn−2
,Ω1

X) such
that

`−1∑

j=0

(f
(j)
I )p`−j−1

d log f
(j)
I =

∑

j

ωIj
,

where the multi-index Ij = {i0, . . . , in−1} is obtained from I by omitting ij .
By applying the inverse Cartier operator we get an equation

`−1∑

j=0

(f
(j)
I )p`−j

d log f
(j)
I + df

(`)
I =

∑

j

ω̃Ij

for certain functions f
(`)
I and differential forms ω̃Ij

with C(ω̃Ij
) = ωIj

.

Since α is an non-zero element of Hn−1(W`OX/FW`OX), the element β =

(f
(0)
I , . . . , f

(`−1)
I , f

(`)
I ) gives a non-zero element of Hn−1(W`+1OX/FW`+1OX).

In view of (2) for i = ` + 1 the element β gives a non-zero element β̃ of

Hn(W`+1OX) such that F (β̃) = 0 in Hn(W`+1OX). Take the element α̃ in
Hn(W`OX) which corresponds to the element α under the isomorphism (2) for
i = `. Then we have F (α̃) = 0 in Hn(W`OX), and R`(α̃) 6= 0 in Hn(X,OX)

by the assumption on `. Therefore, we have R`(β̃) 6= 0 in Hn(X,OX), and the
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elements V jRj(β̃) for j = 0, . . . , ` generate Hn(W`+1OX). Hence the Frobe-
nius map is zero on Hn(W`+1OX). Repeating this argument, we conclude that
the Frobenius map is zero on Hn(WiOX) for any i > 0 and this contradicts
the assumption h 6= ∞.

Corollary 2.3. If the height h of an n-dimensional Calabi-Yau variety X is

not ∞ then h ≤ dimHn−1(Ω1
X) + 1.

Definition 2.4. A Calabi-Yau manifold X is called rigid if
dimHn−1(X,Ω1

X) = 0.

Please note that the tangent sheaf ΘX is the dual of Ω1
X , hence by the triviality

of the canonical bundle it is isomorphic to Ωn−1
X . Therefore, by Serre duality

the space of infinitesimal deformations H1(X,ΘX) is isomorphic to the dual of
Hn−1(X,Ω1

X).

Corollary 2.5. The height of a rigid Calabi-Yau manifold X is either 1 or

∞.

3. Cohomology Groups of Calabi-Yau Varieties

Let X be a Calabi-Yau variety of dimension n over k. The existence of Frobe-
nius provides the de Rham cohomology with a very rich structure from which
we can read off characteristic p properties. If F : X → X(p) is the relative
Frobenius operator then the Cartier operator C gives an isomorphism

Hj(F∗Ω
•
X/k) = Ωj

X,d-closed
/dΩj−1

X −̃→ Ωj
X(p)

of sheaves on X(p). We generalize the sheaves dΩj−1
X and Ωj

X,d-closed
by setting

(cf. [6])

B0Ω
j
X = (0), B1Ω

j
X = dΩj−1

X , Bm+1Ω
j
X = C−1(BmΩj

X).

and

Z0Ω
j
X = Ωj

X , Z1Ω
j
X = Ωj

X,d-closed
, Zm+1Ω

j
X = Ker(dCm).

Note that we have the inclusions

0 = B0Ω
j
X ⊂ B1Ω

j
X ⊂ . . . ⊂ BmΩj

X ⊂ . . .

. . . ⊂ ZmΩj
X ⊂ . . . ⊂ Z1Ω

j
X ⊂ Z0Ω

j
X = Ωj

X

and that we have an exact sequence

0 → Zm+1Ω
j
X −→ ZmΩj

X
dCm

−→ dΩj
X → 0.

Alternatively, the sheaves BmΩj
X and ZmΩj

X can be viewed as locally free

subsheaves of (Fm)∗Ω
j
X on X(pm). Duality for the finite morphism Fm implies

that for every j ≥ 0 there is a perfect pairing of OX(pm)-modules Fm
∗ Ωj

X ⊗

Fm
∗ Ωn−j

X −→ Ωn
X(pm) given by (α, β) 7→ Cm(α ∧ β). This induces perfect

pairings of OX(pm) -modules

BmΩj
X ⊗ Fm

∗ Ωn−j
X /ZmΩn−j

X → ΩX(pm)
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and

ZmΩj
X ⊗ Fm

∗ Ωn−j
X /BmΩn−j

X → ΩX(pm)

Now we have an isomorphism Fm
∗ Ωj

X/ZmΩj
X

∼= BmΩj+1
X induced by the map

d. Going back to the interpretation of the BmΩj
X as sheaves on X we find in

this way for 1 ≤ j ≤ n and m > 0 perfect pairings

BmΩj
X ⊗ BmΩn+1−j

X → Ωn
X (ω1 ⊗ ω2) 7→ Cm(ω1 ∧ ω2).

We first note another interpretation for BmΩ1
X : the injective map of sheaves

of additive groups Dm : Wm(OX)/FWm(OX) → Ω1
X induces an isomorphism

Dm : Wm(OX)/FWm(OX) −̃→ BmΩ1
X . (3)

We write hi(X,−) for dimk Hi(X,−). Note that duality implies hi(BmΩn
X) =

hn−i(BmΩ1
X).

Proposition 3.1. We have hi(X,BmΩ1
X) = 0 unless i = n or i = n − 1. If

i = n − 1 or i = n we have

hi(BmΩ1
X) =

{
min{m,h − 1} if h 6= ∞

m if h = ∞.

Proof. The statement about hn−1(BmΩ1
X) follows from (3) and the character-

ization of the height given in Section 2. The other statements follow from the
long exact sequence associated with the short exact sequence

0 −→ OX
F
−→ OX

d
−→ dOX −→ 0

and the exact sequence

0 → Bm → Bm+1
Cm

−−→B1 → 0. (4)

The details can safely be left to the reader. This concludes the proof.

The natural inclusions BiΩ
j
X ↪→ Ωj

X and ZiΩ
j
X ↪→ Ωj

X of sheaves of groups on
X induce homomorphisms

H1(BiΩ
j
X) → H1(Ωj

X) and H1(ZiΩ
j
X) → H1(Ωj

X)

whose images are denoted by Im H1(BiΩ
j
X) and ImH1(ZiΩ

j
X). Note that we

have a non-degenerate cup product pairing

〈 , 〉 : Hn−1(X,Ω1
X) ⊗ H1(X,Ωn−1

X ) → Hn(X,Ωn
X) ∼= k.

Lemma 3.2. The images Im Hn−1(BiΩ
1
X) and Im H1(ZiΩ

n−1
X ) are orthogonal

to each other for the pairing 〈 , 〉.

Proof. From the definitions it follows that for elements α ∈ Hn−1(BiΩ
1
X) and

β ∈ H1(ZiΩ
n−1
X ) we have Ci(α ∧ β) = 0. The long exact sequence associated

to

0 → B1Ω
n
X → Z1Ω

n
X → Ωn

X → 0 (5)

together with the fact that Hn(ZiΩ
n
X) = Hn(Ωn

X) for i ≥ 0 implies that C acts
without kernel on Hn(Ωn

X). This proves the required orthogonality.
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Lemma 3.3. If h 6= ∞ we have dim ImH1(X,ZiΩ
n−1
X ) = dimH1(Ωn−1

X )− i for

0 ≤ i ≤ h − 1.

Proof. If the height h = 1 then we have Hn−1(BiΩ
1
X) = 0 by (4) and moreover

the vanishing of Hi(X, dΩn−1
X ) and the exact sequence

0 → Zi+1Ω
n−1
X −→ ZiΩ

n−1
X

dCi

−−→ dΩn−1
X → 0 (6)

imply that ImH1(X,ZiΩ
n−1
X ) = H1(X,Ωn−1

X ) for i ≥ 1. For 2 ≤ h < ∞,
we know by Proposition 2.2 that ImHn−1(X,BiΩ

1
X) ⊂ Hn−1(X,Ω1

X) is of
dimension min{i, h − 1}. The exact sequence (6) gives an exact sequence

k −→ H1(Zi+1Ω
n−1
X )

ψi+1
−−→ H1(ZiΩ

n−1
X ) −→ k

from which we deduce that either dimψi+1(H
1(Zi+1Ω

n−1
X )) =

dimH1(ZiΩ
n−1
X ) + 1 or dimψi+1(H

1(Zi+1Ω
n−1
X )) = dimH1(ZiΩ

n−1
X ). By

induction dim ImH1(ZiΩ
n−1
X ) is at least dim H1(Ωn−1

X ) − i. On the other

hand, by Proposition 3.1 we have dim ImH1(ZiΩ
n−1
X ) ≤ dimH1(Ωn−1

X ) − i for
i ≤ h − 1.

Lemma 3.4. If X is a Calabi-Yau manifold of dimension n with h = ∞ then

(Im Hn−1(X,BiΩ
1
X))⊥ = Im H1(ZiΩ

n−1
X ).

Proof. We prove this by induction on i. By the exact sequence (5) we have
dimHi(X, dΩn−1

X ) = 1 for i = 0, 1. Thus, by the exact sequence (6) we see
that the difference dim ImH1(ZiΩ

n−1)− dim ImH1(Zi+1Ω
n−1) is equal to 0 or

1, and we have an exact sequence

H1(Zi+1Ω
n−1)

φ
−→ H1(ZiΩ

n−1)
dCi

−→ H1(dΩn−1
X ).

Assume that Im Hn−1(Bj−1Ω
1) 6= Im Hn−1(BjΩ

1) for j ≤ i and
ImHn−1(BiΩ

1) = Im Hn−1(Bi+1Ω
1). By Lemma 3.2,

ImH1(Zi−1Ω
n−1) ⊃ ImH1(ZiΩ

n−1)

and ImH1(Zi−1Ω
n−1) 6= ImH1(ZiΩ

n−1) for j ≤ i. Suppose ImH1(ZiΩ
n−1) 6=

ImH1(Zi+1Ω
n−1). The natural homomorphism φ : H1(Zi+1Ω

n−1) →
H1(ZiΩ

n−1) is not surjective. Since H1(dΩn−1
X ) ∼= k, we see that dCi :

H1(ZiΩ
n−1) → H1(dΩn−1

X ) is surjective and we factor it as

H1(ZiΩ
n−1)

Ci

−→ H1(Ωn−1)
d

−→ H1(dΩn−1
X ).

Since dCi is surjective, d is not the zero map on Ci(H1(ZiΩ
n−1)). Therefore,

we have
Ci(H1(ZiΩ

n−1)) 6⊂ Im H1(Z1Ω
n−1).

Take an affine open covering of X, and take any Čech cocycle Ci(η) = {Ci(ηjk)}
of Ci(H1(ZiΩ

n−1)) with respect to this affine open covering. Take any element

ζ ∈ Hn−1(BiΩ
1). Then there exists an element ζ̃ such that Ci(ζ̃) = ζ. We

consider the image of the element Ci(η) ∧ ζ in Hn(X,Ωn
X). Then, we have

Ci(η̃) ∧ ζ = Ci(η̃) ∧ Ci(ζ̃) = Ci(η ∧ ζ̃)
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Since ImHn−1(B2iΩ
1) = ImHn−1(BiΩ

1), the image of ζ̃ in Hn−1(Ω1
X) is con-

tained in ImHn−1(BiΩ
1). As ImH1(ZiΩ

n−1)) is orthogonal to ImHn−1(BiΩ
1),

we see that η∧ζ̃ is zero in Hn(X,Ωn
X), and we have Ci(η∧ζ̃) = 0 in Hn(X,Ωn

X).

Therefore, we see that the image of Ci(H1(ZiΩ
n−1)) in H1(Ωn−1

X ) is orthogonal
to ImHn−1(BiΩ

1) and we have

Ci(H1(ZiΩ
n−1)) ⊂ ImHn−1(BiΩ

1)⊥ ⊂ ImH1(ZiΩ
n−1) ⊂ ImH1(Z1Ω

n−1),

a contradiction. Hence, we have ImH1(ZiΩ
n−1) = ImH1(Zi+1Ω

n−1).

Collecting results we get the following theorem.

Theorem 3.5. If X is a Calabi-Yau variety of dimension n and height h then

for i ≤ h − 1 we have

ImHn−1(X,BiΩ
1
X)⊥ = ImH1(X,ZiΩ

n−1
X ).

One reason for our interest in the spaces ImH1(X,ZiΩ
n−1
X ) comes from the

fact that they play a role as tangent spaces to strata in the moduli space as in
the analogous case of K3 surfaces, cf. [3]. We intend to come back to this in a
later paper.

4. Picard groups

We suppose that X is a Calabi-Yau variety of dimension n ≥ 3. We have the
following result for the space of regular 1-forms.

Proposition 4.1. All global 1-forms are indefinitely closed: for i ≥ 0 we have

H0(X,ZiΩ
1
X) = H0(X,Ω1

X). The action of the Cartier operator on this space

is semi-simple.

Proof. Since the sheaves BiΩ
1
X have non non-zero cohomology in degree 0 and

1 the exact sequence

0 → BiΩ
1
X −→ ZiΩ

1
X

Ci

−→ Ω1
X → 0.

implies dim H0(ZiΩ
1
X) = dimH0(Ω1

X). Since the natural map H0(ZiΩ
1
X) →

H0(Ω1
X) is injective, we have H0(ZiΩ

1
X) = H0(Ω1

X). The second assertion
follows from H0(BiΩ

1
X) = 0.

It is well known that for a p−1-linear semi-simple homomorphism λ on a finite-
dimensional vector space V the map λ− idV is surjective. This means that we
have a basis of logarithmic differential forms Cω = ω.

Corollary 4.2. If id denotes the identity homomorphism on H0(X,Ω1
X) the

map C − id : H0(X,Ω1
X) → H0(X,Ω1

X) is surjective.

Proposition 4.3. Suppose that X is a smooth complete variety for which all

global 1-forms are closed and such that C gives a bijection H0(X,Z1Ω
1
X) −→

H0(X,Ω1
X). Then we have an isomorphism

H0(X,Ω1
X) ∼= Pic(X)[p] ⊗Z k.
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Proof. Let L be a line bundle representing an element [L] of order p in Pic(X).
Then there exists a rational function g ∈ k(X)∗ such that (g) = pD, where D
is a divisor corresponding to L. One observes now by a local calculation that
dg/g is a regular 1-form and thus defines an element of H0(X,Ω1

X). Conversely,
if ω is a global regular 1-form with Cω = ω then ω can be represented locally as
dfi/fi with respect to some open cover {Ui}. From the relation dfi/fi = dfj/fj

we see d log(fi/fj) = 0 and this implies d(fi/fj) = 0. Hence we see that
fi/fj = φp

ij form some 1-cocycle {φij}. This cocycle defines a torsion element

of order p of Pic(X). These two maps are each others inverse and the result
follows.
We are using the notation Pic(X) (resp. NS(X)) for the Picard group (resp.
Néron-Severi group) of X. If L is a line bundle with transition functions {fij}
then d log fij represents the first Chern class of L. In this way we can define a
homomorphism

ϕ1 : Pic(X) −→ H1(Z1Ω
1
X), [L] 7→ c1(L) = {dfij/fij}

which obviously factors through Pic(X)/pPic(X).

Proposition 4.4. The homomorphism ϕ1 : Pic(X)/pPic(X) −→
H1(X,Z1Ω

1
X) is injective.

Proof. We take an affine open covering {Ui}. Suppose that there exists an
element [L] such that ϕ1([L]) = 0. Then there exists a d-closed regular 1-form
ωi on an affine open set Ui such that dfij/fij = ωj − ωi on Ui ∩ Uj and we
have dfij/fij = C(ωj) − C(ωi). Therefore, we have ωj − C(ωj) = ωi − C(ωi)
on Ui ∩ Uj . This shows that there exists an regular 1-form ω on X such that
ω = ωi − C(ωi) on Ui. By Corollary 4.2, there exists an element ω′ ∈ H0(Ω1

X)
such that (C − id)ω′ = ω. Replacing ωi + ω′ by ωi, we have

dfij/fij = ωj − ωi

with C(ωi) = ωi. Then, there exists an regular function fi on Ui such that
ωi = dfi/fi. So we have d log fij = d log(fj/fi). Therefore, there exists a
regular function ϕij on Ui ∩ Uj such that fij = (fj/fi)ϕ

p
ij . Thus [L] is a p-th

power. We conclude that ϕ1 : Pic(X)/pPic(X) → H1(Z1Ω
1
X) is injective.

Proposition 4.5. The natural homomorphism H1(Z1Ω
1
X) → H2

DR(X) is in-

jective.

Proof. Let {Ui} be an affine open covering of X. A Čech cocycle {ωij} in
H1(Z1Ω

1
X) is mapped to {(0, ωij , 0)} in H2

DR(X). Suppose this element is zero
in H2

DR(X). Then there exist elements ({fij}, {ωi}) with fij ∈ Γ(Ui ∩Uj , OX)
and ωi ∈ Γ(Ui,Ω

1
X) such that

fjk − fik + fij = 0 ωij = dfij + ωj − ωi dωi = 0.

Since {fij} gives an element of H1(OX) and H1(OX) = 0, there exists an
element {fi} such that fij = fj − fi on Ui ∩ Uj . Therefore, we have ωij =
(dfj + ωj)− (dfi + ωi). Since d(dfi + ωi) = 0, we conclude that {ωij} is zero in
H1(Z1Ω

1
X).
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The results above imply the following theorem.

Theorem 4.6. The natural homomorphism Pic(X)/pPic(X) −→ H2
DR(X) is

injective.

Let us point out at this point that for a Calabi-Yau manifold X the Picard group
Pic(X) is reduced and coincides with the Néron-Severi group NS(X) because
NS(X) = Pic(X)/Pic0(X) and Pic0(X) vanishes because of H1(X,OX) = 0.

Lemma 4.7. For a Calabi-Yau manifold X of dimension n ≥ 3 with non non-

zero global 1-forms Pic(X) has no p-torsion.

Proof. Take an affine open covering {Ui} of X. Assume {fij} represents an
element [L] ∈ Pic(X) which is p-torsion. Then, there exist regular functions
fi ∈ H0(Ui, O

∗
X) such that fp

ij = fi/fj . The dfi/fi on Ui glue together to yield

a regular 1-form ω on X. Since H0(X,Ω1
X) = 0, we see ω = 0, i.e., dfi = 0.

Therefore, there exist regular functions gi ∈ H0(Ui, O
∗
X) such that fi = gp

i .
Hence, we have {fij} ∼ 0 and we see that Pic(X) has no p-torsion.

Lemma 4.8. Let X be a Calabi-Yau manifold X of dimension n ≥ 3 with no

non-zero global 2-forms. Then, the homomorphism

Pic(X)/pPic(X) −→ H1(Ω1
X)

defined by {fij} 7→ {dfij/fij} is injective.

Proof. By the assumption H0(X,Ω2
X) = 0 we have H0(X, dΩ1

X) = 0. There-
fore, from the exact sequence

0 → Z1Ω
1
X −→ Ω1

X
d

−→ dΩ1
X → 0,

we deduce a natural injection H1(Z1Ω
1
X) −→ H1(Ω1

X). So the result follows
from Lemma 4.4.

Theorem 4.9. Let X be a Calabi-Yau manifold X of dimension n ≥ 3 with

H0(X,Ωi
X) = 0 for i = 1, 2. Then the natural homomorphism

NS(X)/pNS(X) ⊗Fp
k −→ H1(Ω1

X) = H2
dR(X)

is injective and the Picard number satisfies ρ ≤ dimk H1(Ω1
X).

Proof. Suppose that this homomorphism is not injective. Then with respect

to a suitable affine open covering {Ui} there exist elements {f
(ν)
ij } representing

non-zero elements in NS(X)/pNS(X), such that

∑̀

ν=1

aνdf
(ν)
ij /f

(ν)
ij = 0 in H1(Ω1

X)

for suitable aν ∈ k. We take such elements with the minimal `. We may assume
a1 = 1 and we have ai/aj /∈ Fp for i 6= j. By Lemma 4.8, we have ` ≥ 2. There
exists ωi ∈ H1(Ui,Ω

1
X) such that

∑̀

ν=1

aνdf
(ν)
ij /f

(ν)
ij = ωj − ωi (1)
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on Ui ∩ Uj . There exists an element ω̃i ∈ H1(Ui,Ω
1
X) such that C(ω̃i) = ωi.

Therefore, taking the Cartier inverse, we have

∑̀

ν=1

ãνdf
(ν)
ij /f

(ν)
ij + dgij = ω̃j − ω̃i

with ãν ∈ k, ãp
ν = aν , and suitable dgij ∈ H0(Ui∩Uj , dOX). Since {df

(ν)
ij /f

(ν)
ij }

is a cocycle, we see that {dgij} ∈ H1(X, dOX). Since H1(X, dOX) = 0, there
exists an element dgi ∈ H0(Ui, dOX) such that dgij = dgj − dgi. Therefore, we
have

∑̀

ν=1

ãνdf
(ν)
ij /f

(ν)
ij = (ω̃j − dgj) − (ω̃i − dgi). (2)

Subtracting (2) from (1) we get a non-trivial linear relation with a smaller ` in
H1(Ω1

X), a contradiction.
Remark. In the case of a K3 surface X the natural homomorphism

NS(X)/pNS(X) ⊗Fp
k −→ H2

DR(X)

is not injective if X is supersingular in the sense of Shioda. Ogus showed that
the kernel can be used for describing the moduli of supersingular K3 surfaces,
cf. Ogus[10]. So the situation is completely different in dimension ≥ 3.

5. Fermat Calabi-Yau manifolds

Again p is a prime number and m a positive integer which is prime to p. Let f
be a smallest power of p such that pf ≡ 1 mod m and put q = pf . We denote
by Fq a finite field of cardinality q. We consider the Fermat variety Xr

m(p) over
Fq defined by

Xm
0 + Xm

1 + . . . + Xm
r+1 = 0

in projective space Pr+1 of dimension r + 1. The zeta function of Xr
m over Fq

was calculated by A. Weil (cf. [18]). The result is:

Z(Xr
m/Fq, T ) =

P (T )(−1)r−1

(1 − T )(1 − qT ) . . . (1 − qrT )
,

where P (T ) =
∏

α(1 − j(α)T ) with the product taken over a set of vectors α
and j(α) is a Jacobi sum defined as follows. Consider the set

Am,r = {(a0, a1, . . . , ar+1) ∈ Zr+2 | 0 < ai < m,
∑r+1

j=0aj ≡ 0(mod m)},

and choose a character χ : F∗
q → C∗ of order m. For α = (a0, a1, . . . , ar+1) ∈

Am,r we define

j(α) = (−1)r
∑

χ(va1
1 ) . . . χ(v

ar+1

r+1 ),

where the summation runs over vi ∈ F∗
q with 1 + v1 + . . . + vr+1 = 0. Thus

the j(α)’s are eigenvalues of the Frobenius map over Fq on the `-adic étale
cohomology group Hr

et(X
r
m,Q`).

Now, let ζ = exp(2πi/m) be a primitive m-th root of unity, and K = Q(ζ)
the corresponding cyclotomic field with Galois group G = Gal(K/Q). For an

Documenta Mathematica 8 (2003) 97–113



On the Height of Calabi-Yau Varieties . . . 107

element t ∈ (Z/mZ)∗ we let σt be the automorphism of K defined by ζ 7→ ζt.
The correspondence t ↔ σt defines an isomorphism (Z/mZ)∗ ∼= G and we shall
identify G with (Z/mZ)∗ by this isomorphism. We define a subgroup H of
order f of G by H = {pj mod m | 0 ≤ j < f}
Let {t1, . . . , tg} with ti ∈ Z/mZ∗, be a complete system of representatives of
G/H with g = |G/H|, and put

AH(α) =
∑

t∈H

[
r+1∑

j=1

〈taj/m〉],

where [a] (resp. 〈a〉) means the integral part (resp. the fractional part) of a
rational number a.
Choose a prime ideal P in K lying over p; it has norm N(P) = pf = q. If Pi

denotes the prime ideal Pσ−1
−ti we have the prime decomposition (p) = P1 · · · Pg

in K and Stickelberger’s theorem tells us that

(j(α)) =

g∏

i=1

P
AH(tiα)
i ,

where tiα = (tia0, . . . , tiar+1). For the details we refer to Lang[7] or Shioda-
Katsura[16].
Now we restrict our attention to Fermat Calabi-Yau manifolds Xr

m(p) with
m = r + 2.

Theorem 5.1. Assume r ≥ 2. Let Φr be the Artin-Mazur formal group of the

r-dimensional Calabi-Yau variety X = Xr
r+2(p). The height h of Φr is equal

to either 1 or ∞. Moreover, h = 1 if and only if p ≡ 1 (mod r + 2).

Before we give the proof of this theorem we state a technical lemma.

Lemma 5.2. Under the notation above, assume [
∑r+1

j=1〈taj/(r + 2)〉] = 0 with

t ∈ (Z/(r + 2)Z)∗. Then aj = t−1 in (Z/(r + 2)Z)∗ for all j = 0, 1, . . . , r + 1.

Proof. Since t ∈ (Z/(r+2)Z)∗, we have 〈taj/(r+2)〉 ≥ 1/(r+2). Suppose there
exists an index i such that tai 6≡ 1 (mod r + 2). Then we have the inequality

〈tai/(r+2)〉 ≥ 2/(r+2) and thus
∑r+1

j=1〈taρ/(r+2)〉 ≥ 1, which contradicts the

assumption. So we have tai ≡ 1 (mod r + 2) and aj ≡ t−1 for j = 1, . . . , r + 1.
Since a0 + a1 + . . . + ar+1 ≡ 0 (mod r + 2), we conclude a0 ≡ t−1.
Proof of the theorem. The Dieudonné module D(Φr) of Φr is isomorphic to
Hr(X,WOX). We denote by Q(W) the quotient field of the Witt ring W (k)
of k. Then, if h < ∞, we have

h = dimQ(W ) Hr(X,WOX) ⊗W (k) Q(W ).

and by Illusie [6] we know we have

Hr(X,WOX) ⊗W (k) Q(W ) ∼= Hr
cris(X) ⊗ Q(W )[0,1[.

According to Artin-Mazur [2], the slopes of Hr
cris(X) ⊗ Q(W ) are given by

(ordPq)/f and the (ordPj(α))/f . Hence, the height h is equal to the number
of j(α) such that AH(α) < f .
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First, assume p ≡ 1 (mod r + 2), i.e. f = 1. Then H = 〈1〉 and AH(α) <
f = 1 implies AH(α) = 0. Therefore, by Lemma 5.2, we have aj = 1 for all
j = 0, 1, . . . , r + 1 and there is only one α, namely α = (1, 1, . . . , 1), such that
ordPj(α) = 0. So we conclude h = 1 in this case.
Secondly, assume p 6≡ 1 (modr + 2). By definition, we have f ≥ 2. We
now prove that there exists no α such that AH(α) < f . Suppose AH(α) =∑

t∈H [
∑r+1

j=1〈taj/(r + 2)〉] < f . Then there exists an element t ∈ H such that

[
∑r+1

j=1〈taj/(r + 2)〉] = 0. By Lemma 5.2 we have α = (t−1, t−1, . . . , t−1). For

t′ ∈ H with t′ 6= t we have [
∑r+1

ρ=1〈t
′t−1/(r + 2)〉] 6= 0. Therefore the inequality

yields [
∑r+1

j=1〈t
′t−1/(r + 2)〉] = 1 for t′ ∈ H, t′ 6= t. Since AH(tα) = AH(α) for

any t ∈ H, by a translation by t, we may assume α = (1, 1, . . . , 1), i.e., t = 1.
Moreover, we can take a representative of t′ ∈ H such that 0 < t′ < r + 2.
Then,

1 = [

r+1∑

j=1

〈t′t−1/(r + 2)〉] = [

r+1∑

j=1

〈t′/(r + 2)〉] = [

r+1∑

j=1

t′/(r + 2)]

= [(r + 1)t′/(r + 2)]

and we get 1 ≤ (r + 1)t′/(r + 2) < 2. By this inequality, we see t′ = 2.
Therefore, we have H = {1, 2}. Since H is a subgroup of (Z/(r + 2)Z)∗, we
see that 22 ≡ 1 mod r + 2. Therefore, we have r = 1, which contradicts our
assumption.
Hence there exists no α such that ordPj(α) < 1 and we conclude h = ∞ in
this case. This completes the proof of the theorem.

For K3 surfaces we have two notions of supersingularity. We generalize these
to higher dimensions.

Definition 5.3. A Calabi-Yau manifold X of dimension r is said to be of
additive Artin-Mazur type (‘supersingular in the sense of Artin’) if the height
of Artin-Mazur formal group associated with Hr(X,OX) is equal to ∞.

Definition 5.4. A non-singular complete algebraic variety X of dimension r
is said to be fully rigged (‘supersingular in the sense of Shioda’) if all the even
degree étale cohomology groups are spanned by algebraic cycles.

By the theorem above, we know that the Fermat Calabi-Yau manifolds are of
additive Artin-Mazur type if and only if p 6≡ 1 mod m with m = r + 2. As to
being fully rigged we have the following theorem.

Theorem 5.5 (Shioda-Katsura [16]). Assume m ≥ 4, (p,m) = 1 and r is

even. Then the Fermat variety Xr
m(p) is fully rigged if and only if there exists

a positive integer ν such that pν ≡ −1 mod m.

M. Artin conjectured that a K3 surface X is supersingular in the sense of
Artin if and only if X is supersingular in the sense of Shioda. He also showed
that “if part” holds. In the case of the Fermat K3 surface, i.e, X2

4 (p), by the
two theorems above, we see, as is well-known, that the Artin conjecture holds.
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However, in the case of even r ≥ 4, the above two theorems imply that this
straightforward generalization of the Artin conjecture to higher dimension does
not hold.

6. Kummer Calabi-Yau manifolds

Let A be an abelian variety of dimension n ≥ 2 defined over an algebraically
closed field of characteristic p > 0, and G be a finite group which acts on A
faithfully. Assume that the order of G is prime to p, and that the quotient
variety A/G has a resolution which is a Calabi-Yau manifold X. We call X a
Kummer Calabi-Yau manifold. We denote by π : A −→ A/G the projection,
and by ν : X −→ A/G the resolution.

Theorem 6.1. Under the assumptions above the Artin-Mazur formal group

Φn
X is isomorphic to the Artin-Mazur formal group Φn

A.

Proof. Since the order of G is prime to p, the singularities of A/G are rational,
and we have Riν∗OX = 0 for i ≥ 1. So by the Leray spectral sequence we have
Hn(A/G,OA/G) ∼= Hn(X,OX) ∼= k and Hn−1(A/G,OA/G) ∼= Hn−1(X,OX) ∼=
0. It follows that the Artin-Mazur formal group Φn

A/G is pro-representable by

a formal Lie group of dimension 1 (cf. Artin-Mazur[2]). Since the tangent
space Hn(A/G,OA/G) of Φn

A/G is naturally isomorphic to the tangent space

Hn(X,OX) of Φn
X as above, the natural homomorphism from Φn

A/G to Φn
X is

non-trivial. One-dimensional formal groups are classified by their height and
between formal groups of different height there are no non-trivial homomor-
phisms . So the height of Φn

A/G is equal to that of Φn
X and we thus see that

Φn
A/G and Φn

X are isomorphic.

Since the order of G is prime to p, there is a non-trivial trace map
from Hn(A,OA) to Hn(A/G,OA/G). Therefore, π∗ : Hn(A/G,OA/G) −→
Hn(A,OA) is an isomorphism. Therefore, as above we see that the height of
Φn

A/G is equal to the height of Φn
A, and that Φn

X is isomorphic to Φn
A. Q.e.d.

Though the following lemma might be well-known to specialists we give here a
proof for the reader’s convenience.

Lemma 6.2. Let A be an abelian variety of dimension n ≥ 2 and p-rank f(A).
The height h of the Artin-Mazur formal group ΦA of A is as follows:

(1) h = 1 if A is ordinary, i.e., f(A) = n,

(2) h = 2 if f(A) = n − 1,
(3) h = ∞ if f(A) ≤ n − 2.

Proof. We denote by Hi
cris(A) the i-th cristalline cohomology of A and as usual

by Hi
cris(A)[`,`+1[ the additive group of elements in Hi

cris(A) whose slopes are
in the interval [`, ` + 1[. By the general theory in Illusie [6], we have

Hn(A,W (OA)) ⊗W Q(W ) ∼= (Hn
cris(A) ⊗W Q(W ))[0,1[

with Q(W ) the quotient field of W . The theory of Dieudonné modules implies

h = dimQ(W ) D(ΦA) = dimQ(W ) Hn(A,W (OA)) ⊗W Q(W ) if h < ∞,
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and dimQ(W ) D(ΦA) = 0 if h = ∞. We know the slopes of H1
cris(A) for each

case. Since we have
Hn

cris(A) ∼= ∧nH1
cris(A),

counting the number of slopes in [0, 1[ of Hn
cris(A) gives the result.

Corollary 6.3. Let X be a Kummer Calabi-Yau manifold of dimension n
obtained from an abelian variety A as above. Then the height of the Artin-

Mazur formal group Φn
X is equal to either 1, 2 or ∞.

Example 6.4. Assume p ≥ 3. Let A be an abelian surface and ι the map
A → A sending a ∈ A to its inverse −a ∈ A. We denote by Km(A) the
Kummer surface of A, i.e., the minimal resolution of A/〈ι〉. Then Φ2

Km(A) is

isomorphic to Φ2
A.

Example 6.5. Assume p ≥ 5, and let ω be a primitive third root of unity. Let
E be a non-singular complete model of the elliptic curve defined by y2 = x3+1,
and let σ be an automorphism of E defined by x 7→ ωx, y 7→ y. We set A = E3

and put σ̃ = σ × σ × σ. The minimal resolution X of A/〈σ̃〉 is a Calabi-Yau
manifold, and the Artin-Mazur formal group Φ3

X is isomorphic to Φ3
A.

Let ω be a complex number with positive imaginary part, and L = Z + Zω
be a lattice in the complex numbers C. From here on, we consider an elliptic
curve E = C/L, and we assume that E has a model defined over an algebraic
number field K. Then A = E × E × E is an abelian threefold, and we let
G ⊆ AutK(E) be a finite group which faithfully acts on A. We assume that
G has only isolated fixed points on A and that the quotient variety A/G has
a crepant resolution ν : X → A/G defined over K, [12]. We denote by π the
projection A → A/G. For a prime p of K, we denote by X̄ the reduction
modulo p of X.

Example 6.6. [K. Ueno [17]] Assume that E is an elliptic curve defined over
Q having complex multiplication σ : E → E by a primitive third root of unity.
Then G = Z/3Z = 〈σ〉 acts diagonally on A = E3. A crepant resolution of A/G
gives a rigid Calabi-Yau manifold defined over Q. For a prime number p ≥ 5
the reduction modulo p of A is the abelian threefold given in Example 6.5.

Theorem 6.7. Let X be a Calabi-Yau obtained as crepant resolution of A/G
as above. Assume moreover that X is rigid. Then the elliptic curve E has

complex multiplication and the intermediate Jacobian of X is isogenous to E.

Corollary 6.8. Under the assumptions as in the theorem, we take a prime

p of good reduction for Xand let X̄ be the reduction of X modulo p. Then

the height of the formal group ΦX̄ is either 1 or ∞. It is ∞ if and only if

the reduction of the intermediate Jacobian variety of X at p is a supersingular

elliptic curve.

Example 6.9. We consider the reduction X̄ modulo p of the variety X in the
Example 6.6. We assume the characteristic of the residue field of p is not equal
to 2 and 3. Then the height h(ΦX̄) = ∞ if and only if the reduction modulo p
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of the intermediate Jacobian of X is a supersingular elliptic curve, and this is
the case if and only if p ≡ 2 (mod 3).

Before we prove the theorem we introduce some notation. We have a natural
identification H1(E,Z) = Z + Zω. Fixing a non-zero regular differential form
η on E determines a regular three form p∗1η ∧ p∗2η ∧ p∗3η = ΩA on A. We have
a natural homomorphism

H3(X,Z) → H3
dR(X) → H3(X,OX).

If X is rigid, the corresponding quotient H3(X,OX)/H3(X,Z) gives the inter-
mediate Jacobian of X. Since dimC H3(X,OX) = 1, the intermediate Jacobian
of X is isomorphic to an elliptic curve.
We can define the period map with respect to ΩA:

πA : H3(X,Z) −→ C γ 7→

∫

γ

ΩA.

By Poincaré duality we can identify πA with the natural projection H3(X,Z) →
H3(X,C) → H3(X,OX) = C (cf. Shioda [15], for instance.) There exists a
regular 3-form ΩX on X such that ΩA = (ν−1 ◦π)∗ΩX . We can define πX with
respect to ΩX for the Calabi-Yau manifold X as well.
In order to describe the structure of the intermediate Jacobian of X we look
at the period map of an abelian threefold, following the method in Shioda [15]
(also see Mumford [8]). Choose a basis u1, u2 of H1(E,R). This determines a
C-basis H1(E,R) ⊗R C = H1(E,C). If ei for i = 1, 2, 3 is the standard basis
of C3 then u2i−1 = ei and u2i = ωei for i = 1, 2, 3 form a basis of H1(A,Z)
and A = C3/M with M the lattice generated by u1, . . . , u6. The dual basis is
denoted by vi. The basis of H1(A,Z) determines a canonical basis vi ∧ vj ∧ vk

of H3(A,Z). The natural homomorphism

pA : H3(A,Z) −→ H3
dR(A) −→ H3(A,OA) ∼= C.

is an element of HomC(H3(A,C),C) and can be considered as an element of
H3(A,C) and is given by

pA =
∑

i<j<k

det(ui, uj , uk)vi ∧ vj ∧ vk.

Therefore the image of pA in C is spanned by the complex numbers 1, ω, ω2

and ω3 over Z.
We now give the proof of Theorem 6.7. Let S be the set of non-free points of
the action of G on A. Then the restriction of π to A\S is étale on A/G\π(S).
Since S is of codimension 3 in A, we have the following diagram:

H3(A,Z) ∼= H3(A \ S,Z)
pA
−→ H3(A,OA) ∼= C

↓ π∗ ↓ (π |A\S)∗ ↓ π∗

H3(A/G,Z) ∼= H3(A/G \ π(S),Z)
pA/G
−→ H3(A/G,OA/G) ∼= C

↓ ∼= ↓ ν∗

H3(X,Z)
pX
−→ H3(X,OX) ∼= C.

Documenta Mathematica 8 (2003) 97–113



112 G. van der Geer, T. Katsura

The vertical arrows on the right hand side give an identification of H3(A,OA)
and H3(X,OX). Because p does not divide the order of G we see that H3(A, Q)
maps surjectively to H3(A/G, Q) = H3(A, Q)G, hence the image of H3(A, Z)
is commensurable with H3(X, Z).
Now Im pX is a lattice in C, and Im pA is a lattice in C as well. We know
that Im pA is generated by 1, ω, ω2 and ω3 and thus ω is a quadratic number
and the intermediate Jacobian has complex multiplication by Q(ω). Hence the
intermediate Jacobian C/Im pX of X is isogenous to E.

7. Questions

We close with two natural basic questions that suggest themselves.
Is there a function f(n) such that a Calabi-Yau variety in characteristic p >
0 of dimension n lifts to characteristic 0 if p > f(n)? Note that Hirokado
constructed a non-liftable Calabi-Yau threefold in characteristic 3, see [5] (see
also [13]).
Can a Calabi-Yau variety of dimension 3 in positive characteristic have non-zero
regular 1-forms or regular 2-forms?
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