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Abstract. In this paper we employ enriched category theory to
construct a convenient model for several stable homotopy categories.
This is achieved in a three-step process by introducing the pointwise,
homotopy functor and stable model category structures for enriched
functors. The general setup is shown to describe equivariant stable
homotopy theory, and we recover Lydakis’ model category of simpli-
cial functors as a special case. Other examples – including motivic
homotopy theory – will be treated in subsequent papers.
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1 Introduction

An appropriate setting to study stable phenomena in algebraic topology is
the stable homotopy theory of spectra described in [1]. More recently, much
research has been focused on rebuilding the foundation of stable homotopy
theory. There are now several equivalent model categories to study structured
ring spectra and their modules. These frameworks are important in many
aspects and make powerful tools from algebra applicable to “brave new rings”.
For the purpose of this paper, the relevant constructions are those of symmetric
spectra [9] and simplicial functors [11].

In [8], Hovey considers the notion of spectra for general model categories. This
level of generality allows one to use techniques from stable homotopy theory
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in traditionally unrelated subjects. Of particular interest, where further ap-
plications are expected, is algebraic geometry and Voevodsky’s motivic stable
homotopy category [16]. We are interested in an approach to this subject where
all coherence problems which arise when one tries to make a smash product
are encoded in the underlying category. This is different from the popular
means of attack through symmetric spectra, where the controlling categories
are much more restricted. Our point of view is analogous to Lydakis’ work
[11] on simplicial functors as a model for ordinary spectra. But the theory we
develop here is complicated by the fact that we do not assume properties which
are particular to simplicial sets. Let us state a tentative version of the main
theorem in this paper. Due to their technical nature, we defer on listing all the
required assumptions. The basic input is a monoidal model category V and a
finitely presentable cofibrant object T in V, the 1-sphere. See Sections 6 and 7
for precise statements.

Theorem 1. There is a monoidal model category (F ,∧, I) which satisfies the
monoid axiom, and a right Quillen equivalence from F to the stable model
category of T -spectra.

A T -spectrum is a sequence (E0, E1, . . .) of objects in V together with structure
maps T ⊗ En

- En+1. An object in F is a functor X from a category of
finitely presentable objects in V to V, which is “continuous” or enriched in the
sense that for finitely presentable objects v and w there is a natural map

v ⊗ X(w) - X(v ⊗ w).

Using this map, it follows that any enriched functor yields a T -spectrum by
evaluating at spheres T⊗n. We show that the induced functor from F to the
category of T -spectra is a right Quillen equivalence. The monoidal structure is
a special case of a result due to Day [4]. By construction, the sphere spectrum
or unit I is the inclusion of the subcategory of finitely presentable objects.
For V the category of simplicial sets, Lydakis [11] has shown that F models
the classical stable homotopy category. Our theorem extends this result to
a wide range of model categories. In the sequel [5] we construct a model for
Voevodsky’s motivic stable homotopy category. Motivic cohomology has a
natural description as an algebra in this model. The monoid axiom implies
that also categories of algebras and modules in F have model structures [15].

As a guide to this paper, it seems appropriate to summarize the content of each
section. In Section 2 we recall categorical precursors and Day’s smash product
for enriched functors. This material is included to make the paper reason-
ably self-contained and to set notation. Next we record a general isomorphism
between enriched functor categories build from spheres and symmetric spec-
tra. Moreover, under this isomorphism the corresponding smash products are
shown to agree. Section 3 recalls some frequently used notions in homotopical
algebra. An expert could skip most of this part. We introduce a class of model
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categories dubbed weakly finitely generated and show that weak equivalences
and fibrant objects are closed under filtered colimits. Such a model structure
is cofibrantly generated, with additional finiteness conditions on the generat-
ing cofibrations and acyclic cofibrations which are satisfied in many cases of
interest. This introductory part ends with a discussion of fibrant replacement
functors. Quillen’s small object argument is the usual device for replacing ob-
jects in a model category by fibrant objects. Some modifications are necessary
in the enriched setting. If the monoid axiom holds and the model category
is weakly finitely generated, we construct enriched fibrant replacements. Our
constructions are primarily of a technical interest and might be omitted on a
first cursory reading. However, we should remark that much of the following
relies on this input.
In the remaining sections we study homotopical algebra for enriched functor
categories. First we construct the pointwise model structure where the fibra-
tions and weak equivalences are defined pointwise. This gives an example of
a weakly finitely generated model structure provided some weak assumptions
are satisfied. In many cases of interest, we prove the monoid axiom and that
smashing with a cofibrant object preserves weak equivalences. The latter re-
sult requires further assumptions on F , and is similar to the algebraic fact that
tensoring with a projective module preserves short exact sequences. These two
results are important for the model structures we construct later on.
One drawback with the pointwise model structure is that it has far too many

homotopy types. For example, a weak equivalence v
∼- w does not neces-

sarily induce a pointwise weak equivalence V(w,−) - V(v,−) on the level
of representable functors. However, for all fibrant objects u in V the map
V(w, u) - V(v, u) is a weak equivalence. We therefore enlarge the class of
pointwise weak equivalences by looking at fibrant objects as input only. The re-
sult is the homotopy functor model structure which has the same cofibrations as
the pointwise model structure. The fibrant functors are precisely the pointwise
fibrant functors which preserve weak equivalences, thus any enriched functor
is weakly equivalent in the homotopy functor model structure to a homotopy
functor. It seems to be of considerable interest to discuss a motivic version of
Goodwillie’s calculus of functors. Let us remark that the homotopy functor
model structure is a first step in this direction.
In Section 6, the stable model structure is constructed by means of a general sta-
bilization process. Theorem 6.26 lists conditions for the stable model structure
to exist. The stable fibrations are characterized by pointwise homotopy pull-
back squares, and stable acyclic fibrations are precisely the pointwise acyclic
fibrations. To prove these results we compare with spectra [8]. The stabiliza-
tion we use does not coincide with the usual stabilization for spectra, and it
requires some cruel details to compare them. These can be found in Appendix
A. We note that the monoid axiom holds under an additional assumption on
the source of the functor category. For a particular choice of the source cate-
gory, which is explained in Section 7, the evaluation functor is the right adjoint
in a Quillen equivalence. It follows that the highly structured category of en-
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riched functors describes the same homotopy theory as spectra in many cases
of interest. In Section 8, we give a short summary of the important algebraic
consequences of the previous sections.
In the last section we discuss equivariant homotopy theory for finite groups and
we prove the following theorem. The general machinery gives deeper structure
than stated, but we refer the reader to Section 9 for more details.

Theorem 2. Let G be a finite group. Then there is a monoidal model category
(GF ,∧, SG) satisfying the monoid axiom and a right Quillen equivalence from
GF to the category of G-spectra.

The general framework may seem abstract, but we obtain a common footing
for applications. A project in progress suggests that the approach anticipated
in the present paper is relevant for the theory of motives. We hope the reader
finds results herein which he or she can prove to have further applications.

2 Enriched Categories

This section contains an introduction to enriched categories, Day’s work on
enriched functor categories [4], and simplicial homotopies in categories enriched
over simplicial sets. In the last part we show that spectra and symmetric
spectra are isomorphic to enriched functor categories build from spheres.

2.1 Introduction

Entry points to the literature on enriched category theory include [2] and [12].
A monoidal category consists of a category V, and

• a functor ⊗:V × V - V and natural associativity isomorphisms

αA,B,C : (A ⊗ B) ⊗ C - A ⊗ (B ⊗ C)

subject to the coherence law [2, 6.1],

• an object e of V called the unit, and natural unit isomorphisms

lA: e ⊗ A - A and rA:A ⊗ e - A

such that [2, 6.2] holds.

The functor ⊗ is the tensor or monoidal product of V. A monoidal category is
symmetric monoidal if there is a natural isomorphism σA,B :A⊗B - B⊗A
subject to the coherence laws [2, 6.3, 6.4, 6.5]. A symmetric monoidal category
(V,⊗, e) is closed if there exists a right adjoint HomV(A,−):V - V to
the endofunctor − ⊗ A for every object A of V. The categories of sets Set

and pointed sets Set∗ are both closed symmetric monoidal categories. Let ∆
denote the simplicial category. Its objects are the finite ordered sets [n] =
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{0 < 1 < · · · < n} for n ≥ 0, and morphisms are order-preserving maps.
Consider sSet = Fun(∆op,Set), the category of simplicial sets. Its monoidal
product is the categorical product, formed degree-wise in Set. If K,L ∈ sSet,
the simplicial set of maps HomsSet(K,L) has n-simplices the set of maps from
K ×∆n to L. Here ∆n is the simplicial set represented by [n]. The unit of the
product is the terminal object ∆0.
Let (V,⊗, e) be a closed symmetric monoidal category. Then a V-category C,
or a category enriched over V, consists of a class Ob C of objects and

• for any pair (a, b) of objects in C, an object VC(a, b) of V called the V-
object of maps in C,

• a composition VC(b, c) ⊗ VC(a, b) - VC(a, c), an identity or unit map
e - VC(a, a) subject to the associativity and unit coherence laws listed
in [2, 6.9 and 6.10].

Categories in the usual sense are the Set-categories. If C is a category, let
SetC(a, b) denote the set of maps in C from a to b. A closed symmetric monoidal
category V is a V-category due to its internal Hom objects [2, 6.2.6]. Let
V(A,B) denote the V-object HomV(A,B) of maps in V. Any V-category C
defines a Set-category UC. Its class of objects is Ob C, the morphism sets are
SetUC(a, b) = SetV(e,VC(a, b)). For example, the Set-category obtained from
a sSet-category C has morphism sets SetsSet(∆

0, sSetC(a, b)) = sSetC(a, b)0
the zero-simplices of the simplicial sets of maps.
A V-functor F from C to D is an assignment from Ob C to ObD together with
morphisms homF

a,b:VC(a, b) - VD(F (a), F (b)) in V which preserve compo-
sition and identities. A small sSet-category defines a simplicial object in the
category Cat of small categories. With this description, a sSet-functor is a
natural transformation of functors from ∆op to Cat [11, 3.2].
If F and G are V-functors from C to D, a V-natural transformation t:F - G
consists of the following data: There is a morphism t(a):F (a) - G(a) in
UD for every a ∈ Ob C, and all the diagrams of the following form commute.

VC(a, b)
homF

a,b - VD(F (a), F (b))

VD(G(a), G(b))

homG
a,b

?
VD(t(a),G(b))- VD(F (a), G(b))

VD(F (a),t(b))
?

The V-natural isomorphisms and V-adjoint pairs of V-functors are defined as
for V = Set. The adjoint pair of endofunctors (−⊗A,V(A,−)) on V explicate a
V-adjoint pair. Denote the unit of the adjunction by ηA: IdV

- V(A,−⊗A),
and the counit by ǫA:V(A,−) ⊗ A - IdV . Details concerning hom−⊗A and

homV(A,−) can be found in Appendix A.
Note that any V-functor F : C - D gives a functor UF :UC - UD with the
same effect on objects as F , and similarly for V-natural transformations. That
is, one can consider U as a 2-functor from the 2-category of small V-categories,
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V-functors and V-natural transformations to the 2-category of small categories,
functors and natural transformations. A V-category C is called small provided
UC is small. In fact, U is the base change along the lax symmetric monoidal
functor SetV(e,−):V - Set, see [2, 6.4]. If no confusion can arise, we will
omit U from the notation.
The monoidal product C ⊗ D of two V-categories C and D is the V-category
where Ob (C⊗D) := Ob C×ObD and VC⊗D((a, x), (b, y)) := VC(a, b)⊗VD(x, y).
Note that the monoidal product in V induces a V-functor mon:V ⊗ V - V.
A V-category C is a right V-module if there is a V-functor act: C ⊗ V - C,
denoted (c,A) - c⊘A and a V-natural unit isomorphism rc: act(c, e) - c
subject to the following conditions.

• There are natural coherent associativity isomorphisms

act(c,A ⊗ B) - act(act(c,A), B).

• The isomorphisms act(c, e ⊗ A)
-- act(c,A) coincide.

A right V-module (C, act, r) is closed if there is a V-functor

coact:Vop ⊗ C - C

such that for all A ∈ ObV and c ∈ Ob C, the V-functor act(−, A): C - C
is left V-adjoint to coact(A,−) and act(c,−):V - C is left V-adjoint to
VC(c,−).
A monoidal V-category consists of a V-category C equipped with a V-functor
⋄: C⊗C - C, a unit u ∈ Ob C, a V-natural associativity isomorphism and two
V-natural unit isomorphisms satisfying the conditions mentioned for V = Set.
Symmetric monoidal and closed symmetric monoidal V-categories are defined
similarly.

2.2 Categories of enriched functors

If C is a small V-category, V-functors from C to V and their V-natural transfor-
mations form the category [C,V] of V-functors from C to V. If V is complete,
then [C,V] is also a V-category. Denote this V-category by F(C), or F if no
confusion can arise. The morphism V-object VF (X,Y ) is the end

∫
Ob C

V(X(c), Y (c)).

See [2, 6.3.1] for details. Note that UF is [C,V]. One can compare F with C and
V as follows: Given c ∈ Ob C, X - X(c) defines the V-functor Evc:F - V
called “evaluation at c”. The assignment c - VC(c,−) from C to F is again
a V-functor Cop - F , called the V-Yoneda embedding [2, 6.3.6]. VC(c,−) is
a representable functor, represented by c.
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Lemma 2.1 (Enriched Yoneda lemma). Let V be a complete closed sym-
metric monoidal category and C a small V-category. For every V-functor
X: C - V and every c ∈ Ob C, there is a V-natural isomorphism X(c) ∼=
VF (VC(c,−),X).

The isomorphism in 2.1 is called the Yoneda isomorphism [2, 6.3.5]. It follows
from 2.1 that every V-functor can be expressed as a colimit of representable
functors [2, 6.6.13, 6.6.17]:

Lemma 2.2. If V is a bicomplete closed symmetric monoidal category and C is
a small V-category, then [C,V] is bicomplete. (Co)limits are formed pointwise.

Corollary 2.3. Assume V is bicomplete, and let C be a small V-category.
Then any V-functor X: C - V is V-naturally isomorphic to the coend

∫ Ob C

VC(c,−) ⊗ X(c).

See [2, 6.6.18] for a proof of 2.3.

Proposition 2.4. Let V be a closed symmetric monoidal category, and let C
be a small V-category. Then F is a closed V-module.

Proof. There is an obvious “pointwise” closed V-module structure. The V-
functor F ⊗ V - F defined by (X,A) - (−⊗A) ◦X gives the action of
V on F . Next, the assignment (A,X) - V(A,−) ◦ X defines the coaction.
There are V-natural isomorphisms VF ((−⊗A)◦X,Y ) ∼= VF (X,V(A,−)◦Y ) ∼=
V(A,VF (X,Y )) induced from the natural closed V-module structure on V.
From this, a routine check finishes the proof.

Recall the notion of left Kan extensions:

Proposition 2.5. Fix a bicomplete closed symmetric monoidal category V, and
a V-functor F : C - D of small V-categories. For any V-functor X: C - V,
there exists a V-functor F∗(X):D - V and a V-natural isomorphism

VF(D)(F∗X,Y ) ∼= VF(C)(X,Y ◦ F ).

In other words, there exists a V-adjoint pair of V-functors

F∗:F(C)
-¾ F(D):F ∗

where F ∗ denotes pre-composition with F .

See [2, 6.7.7] for a proof of 2.5. The V-functor F∗X is the left Kan extension
of X along F . An explicit expression is given by the coend

F∗X =

∫ Ob C

VD(F (c),−) ⊗ X(c).
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2.3 Smash product of enriched functors

Let (C, ⋄, u) be a small symmetric monoidal V-category where V is bicomplete.
In [4], B. Day constructed a closed symmetric monoidal product ∧ on the
category [C,V] of V-functors from C to V. For X,Y ∈ Ob [C,V], there is the
V-functor

X∧Y : C ⊗ C
X⊗Y- V ⊗ V

mon- V.

The smash product X ∧ Y ∈ Ob [C,V] is the left Kan extension

⋄∗(X∧Y ) =

∫ Ob (C⊗C)

VC(c ⋄ d,−) ⊗ (X(c) ⊗ Y (d)): C - V.

The next result is a special case of [4, 3.3], cf. [4, 3.6, 4.1].

Theorem 2.6 (Day). Let (V,⊗, e) be a bicomplete closed symmetric monoidal
category and (C, ⋄, u) a small symmetric monoidal V-category. Then the cate-
gory ([C,V],∧,VC(u,−)) is closed symmetric monoidal.

The V-category F of V-functors from C to V is also a closed symmetric monoidal
V-category. The internal Hom functor, right adjoint to − ∧ X, is given by

F(X,Y )(c) = VF (X,Y (c ⋄ −)) =

∫
d∈Ob C

V(X(d), Y (c ⋄ d)).

Concerning smash products of representable functors, one has the following
result.

Lemma 2.7. The smash product of representable functors is again repre-
sentable. There is a natural isomorphism VC(c,−) ∧ VC(d,−) ∼= VC(c ⋄ d,−).

In the following, a sub-V-category means a sub-V-category of V. We use 2.7
to define assembly maps if C is a full sub-V-category containing the unit and
closed under the monoidal product. In this case, the inclusion I: C ⊂ - V
can be chosen as the unit of [C,V]. The composition X ◦ Y of two V-functors
X,Y : C - V is given by I∗X ◦ Y . Up to coherent natural isomorphisms, the
composition is associative with unit I.

Corollary 2.8. Given functors X and Y in [C,V], there exists a natural
assembly map X ∧ Y - X ◦ Y = I∗X ◦ Y which is an isomorphism if Y is
representable.

Proof. One can define the assembly map objectwise via the composition

I∗X(c) ⊗ Y (d)
swI∗X

Y (d)
(c)
- I∗X(Y (d) ⊗ c)

I∗X(swY
c (d))- I∗X(Y (c ⊗ d))

where swZ
c :Z ⊗ c - Z(c⊗−) is ‘the’ natural map described in Appendix A.

Here is another description via representable functors. Suppose X = V(c,−)
and Y = V(d,−), for c, d ∈ Ob C. By 2.7, X ∧ Y is naturally isomorphic to
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V(c ⊗ d,−), i.e. to V(c,−) ◦ V(d,−). If X is arbitrary, it follows from 2.3 that
X ∧ V(d,−) is naturally isomorphic to I∗X ◦ V(d,−). If also Y is arbitrary,
apply 2.3 and consider the natural map

∫ Ob C

(I∗X ◦ V(c,−)) ⊗ Y (c) - I∗X ◦

∫ Ob C

V(c,−) ⊗ Y (c).

2.4 Categories enriched over simplicial sets

A functor F :V - W of monoidal categories (V,⊗, e) and (W,⊗′, e′) is lax
monoidal if there is a natural transformation tA,B :F (A)⊗′F (B) - F (A⊗B)
and a morphism e′ - F (e), such that the diagrams [2, 6.27, 6.28] commute.
The word “lax” is replaced by “strict” if tA,B is a natural isomorphism and
e′ - F (e) is an isomorphism. F is lax symmetric monoidal if tB,A◦σFA,FB =
F (σA,B) ◦ tA,B . In this case, every W-category is a V-category by [2, 6.4.3].
We used this fact for the forgetful 2-functor U induced by SetV(e,−). The
assembly map makes Id[C,V] into a lax monoidal functor from the monoidal
category ([C,V], ◦, I) to the closed symmetric monoidal category ([C,V],∧, I).
Suppose that F : sSet - V is a lax symmetric monoidal functor. One can
then lift the notion of simplicial homotopy equivalence from sSet-categories to
V-categories.

Definition 2.9. Let C be a sSet-category and f, f ′:∆0 - sSetC(c, d) maps
in C. Then H:∆1 - sSetC(c, d) is a simplicial homotopy from f to f ′ if the
following diagram commutes, where i0 and i1 are the canonical inclusions.

∆0 i0 - ∆1 ¾ i1
∆0

sSetC(c, d)

H
?¾ f

′f -

The map f is called a simplicial homotopy equivalence if there exists a map
g:∆0 - sSetC(d, c), and simplicial homotopies from g ◦ f to idc and from
f ◦ g to idd. Let the symbol ≃ denote simplicial homotopy equivalences.

Simplicial homotopy equivalence is in general not an equivalence relation.
If C is a closed sSet-module with action (c,K) - c ⊘ K and coac-
tion (c,K) - cK , a simplicial homotopy may also be described by maps

c⊘∆1 - d or c - d∆1

. If C has pushouts, the simplicial mapping cylin-
der factors any map f as follows: Let Cf denote the pushout of the diagram

c ⊘ ∆1 ¾c⊘i1
c ⊘ ∆0 ¾∼=

c
f- d.

The maps c ⊘ ∆1 c⊘s- c ⊘ ∆0
∼=- c

f- d and idd : d - d induce the
simplicial homotopy equivalence pf :Cf

- d. Its homotopy inverse is the

Documenta Mathematica 8 (2003) 409–488



418 B. I. Dundas, O. Röndigs, P. A. Østvær

canonical map. Denote the composition c - c ⊘ ∆0 c⊘i0- c ⊘ ∆1 - Cf

by if : c - Cf . Note the factorization pf ◦ if = f . The relevance of this will
become clear in the context of simplicial model categories. In this case, if is a
cofibration provided c is cofibrant. It is easy to prove the next result.

Lemma 2.10. A sSet-functor preserves simplicial homotopies, and therefore
simplicial homotopy equivalences.

Corollary 2.11. Assume F : sSet - V is a lax monoidal functor. Then
any V-functor preserves simplicial homotopy equivalences.

2.5 Spectra as enriched functors

Let (V,⊗, e) denote a bicomplete closed symmetric monoidal category with
initial object ∅. For T ∈ ObV, one can consider T -spectra in V, see [8, 1.1]. A
T -spectrum E is a sequence E0, E1, · · · of objects in V, together with structure
maps en:En ⊗ T - En+1 for all n. If E and F are T -spectra, a map of
T -spectra g:E - F is a collection of maps gn:En

- Fn such that

En ⊗ T
en- En+1

Fn ⊗ T

gn⊗T

?
fn- Fn+1

gn+1

?

commutes for all n. Thus T -spectra in V form a category Sp(V, T ), see [8, 1.3].
We claim Sp(V, T ) can be viewed as an enriched functor category, cf. [11, 4.3].
Its domain category is the V-category TSph. The objects in TSph are the
objects Tn for n ≥ 0, where T 0 = e and Tn := T ⊗ Tn−1 for n > 0. The
V-objects of morphisms are VTSph(Tm, Tn) := Tn−m for n ≥ m ≥ 0 and
VTSph(Tm, Tn) := ∅ for n < m. Note that there are canonical unit maps
idT 0 :T 0 - VTSph(Tn, Tn) for all n ≥ 0. It remains to describe the compo-
sition. For k, l,m ≥ 0, the map

VTSph(T l+m, T k+l+m) ⊗ VTSph(Tm, T l+m) - VTSph(Tm, T k+l+m)

is the associativity isomorphism αk,l:T
k ⊗ T l - T k+l. In all other cases,

the composition is uniquely determined. It follows that TSph is a V-category,
using the associativity and unit coherence laws in V.
To elaborate on this definition, let us describe a V-functor π:TSph - V.
Define π to be the identity on objects. Concerning morphisms, it suffices to
give homπ

T m,T k+m :VTSph(Tm, T k+m) - V(Tm, T k+m) for k,m ≥ 0, which
we choose as

ik,m:T k ηT mT k

- V(Tm, T k ⊗ Tm)
V(T m,αk,m)- V(Tm, T k+m).

Associativity coherence and a calculation with adjoints imply that the compo-

sition T k⊗T l αk,l- T k+l ik+l,m- V(Tm, T k+l+m) is the same as the composition
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T k ⊗ T l ik,l+m⊗il,m- V(T l+m, T k+l+m) ⊗ V(Tm, T l+m)
comp- V(Tm, T k+l+m).

Hence π preserves composition, and it clearly preserves identites. In our cases
of interest, the maps ηT mT k are monomorphisms so that TSph can be regarded
as a sub-V-category.

Proposition 2.12. The categories Sp(V, T ) and [TSph,V] are isomorphic.

Proof. Let X:TSph - V be a V-functor. Define Ψ(X) to be the spectrum
with Ψ(X)n := X(Tn) and structure maps Ψ(X)n ⊗ T - Ψ(X)n+1 adjoint
to T = VTSph(Tn, Tn+1) - V(X(Tn),X(Tn+1)). If f :X - Y is a V-
natural transformation, let Ψ(f)n := f(Tn):X(Tn) - Y (Tn). The diagram

X(Tn) ⊗ T - X(Tn+1)

Y (Tn) ⊗ T

f(T n)⊗T
?

- Y (Tn+1)

f(T n+1)
?

commutes by V-naturality, and Ψ respects identities and composition.
Define Φ:TSph - V by Φ(E)(Tn) := En. If n = m + k, m ≥ 0 and

k ≥ 1, hom
Φ(E)
T m,T n :T k = VTSph(Tm, Tn) - V(Em, En) is the adjoint of

the composition Em ⊗ T k
α−1

Em,T,T k−1- (Em ⊗ T ) ⊗ T k−1 em⊗T k−1

- Em+1 ⊗

T k−1 - · · · - En. The maps hom
Φ(E)
T n,T n are determined by the property

that Φ(E) has to preserve identities. To prove that Φ(E) is a V-functor, it
remains to note that

T k ⊗ T l αk,l - T k+l

V(El+m, Ek+l+m) ⊗ V(Em, El+m)

hom
Φ(E)

T l+m,T k+l+m
⊗hom

Φ(E)

T m,T l+m

?
comp- V(Em, Ek+l+m)

hom
Φ(E)

T m,T k+l+m

?

commutes for m ≥ 0 and k, l ≥ 1. This uses ǫEm
(−⊗Em)◦ηEm

⊗Em = id−⊗Em
,

associativity coherence, and associativity of composition in V. If g is a map,
let Φ(g)(Tn) be gn. Then Φ(g) is V-natural, and functoriality of Φ follows.
Note that Φ(Ψ(X)) = X on objects, i.e. for all powers of T . The structure maps
of X and Φ(Ψ(X)) coincide, since the adjointness isomorphism that defines
the structure maps of Φ(Ψ(X)) is inverse to the adjointness isomorphism that
defines the structure maps of Ψ(X). The equality Φ(Ψ(f)) = f is obvious,
hence Φ ◦ Ψ is the identity functor. Likewise, one finds Ψ ◦ Φ = IdSp(V,T ).

Remark 2.13. In the following, we will identify Sp(V, T ) with [TSph,V] via
2.12. Then Sp(V, T ) is a closed V-module by 2.4. A consequence of A.1 is that
the functor “suspension with T” obtained from the action of V on Sp(V, T ) can
also be defined as the prolongation [8, 1.5] of the functor −⊗T :V - V using
the natural transformation t: (−⊗ T ) ◦ (−⊗ T ) - (−⊗ T ) ◦ (−⊗ T ), which
twists the factors. In detail, the latter is defined by the coherence isomorphism
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(A⊗T )⊗T
αA,T,T- A⊗(T ⊗T )

A⊗σT,T- A⊗(T ⊗T )
α−1

A,T,T- (A⊗T )⊗T. Another
functor “suspension with T” – which we denote by ΣT – is obtained as the
prolongation of −⊗T using the identity natural transformation id(−⊗T )◦(−⊗T ).
If X:TSph - V is a V-functor, then the nth structure map in the associated
spectrum of X ⊗ T is the left hand side composition in the following diagram.

(Xn ⊗ T ) ⊗ T

T ⊗ (Xn ⊗ T )
α
−1
T,Xn,T -

¾
σXn

⊗T,T

(T ⊗ Xn) ⊗ T

σ
X

n ,T ⊗T

-

V(Xn, Xn+1) ⊗ (Xn ⊗ T )

homX
n,n+1⊗(Xn⊗T )

? α
−1
V(Xn,Xn+1),Xn,T- (V(Xn, Xn+1) ⊗ Xn) ⊗ T

(homX
n,n+1⊗Xn)⊗T

?

V(Xn ⊗ T, Xn+1 ⊗ T ) ⊗ (Xn ⊗ T )

hom−⊗T
Xn,Xn+1 ?

ǫXn⊗T (Xn+1⊗T ) - Xn+1 ⊗ T

(ǫXn
Xn+1)⊗T

?

The right hand side composition is the structure map of the spectrum ΣT X.
The lower square commutes by A.1, the middle square commutes by naturality,
but the triangle does not commute in general. This will cause some complica-
tions in our comparison of stable model categories, cp. Section 6.

The monoidal product ⊗ defines a V-functor mon:V ⊗ V - V where

hommon
(A1,A2)(B1,B2):V(A1, B1) ⊗ V(A2, B2) - V(A1 ⊗ A2, B1 ⊗ B2)

is the adjoint of the composition

V(A1, B1) ⊗ V(A2, B2) ⊗ A1 ⊗ A2

V(A1, B1) ⊗ A1 ⊗ V(A2, B2) ⊗ A2

V(A1,B1)⊗ σV(A2,B2),A1
⊗A2

?

B1 ⊗ B2.

ǫA1
B1⊗ ǫA2

B2

?

Now suppose that the symmetric monoidal product in V induces a V-functor
mon:TSph ⊗ TSph - TSph. On objects we have that mon(T k, T l) =
T k ⊗ T l = T k+l, while for V-objects of morphisms there is a map f from
VTSph(Tm, T k⊗Tm)⊗VTSph(Tn, T l⊗Tn) to VTSph(Tm⊗Tn, T k⊗Tm⊗T l⊗Tn)
rendering the following diagram commutative.

T k ⊗ T l f - T k ⊗ T l

V(Tm, T k ⊗ Tm) ⊗ V(Tn, T l ⊗ Tn)

ηT mT k⊗ηT nT l

?
hommon

- V(Tm ⊗ Tn, T k ⊗ Tm ⊗ T l ⊗ Tn)

ηT m⊗T n (T k⊗T l)
?
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Reverting to adjoints, a straightforward calculation shows that the maps

T k+l+m+n = T k⊗T l⊗Tm⊗Tn
f⊗T m⊗T n

-
T k⊗σ

T l,T m⊗T n
- T k⊗Tm⊗T l⊗Tn = T k+l+n+m

must coincide. This is only possible if σT,T = idT 2 and f = id. In other words,
the product ⊗ does not necessarily restrict to a monoidal product of TSph via
π:TSph - V. In the next section, we show – following [11, 5.15] – how to
remedy this by enlarging TSph.

2.6 Symmetric spectra as enriched functors

For ease of notation, we will leave out associativity and unit isomorphisms
throughout this section. If n ≥ 1, let n be short for {1, · · · , n} and let 0 denote
the empty set. Let Inj be the category with objects the sets n for all n ≥ 0,
and injective maps as morphisms. If m ≤ n, define

Inj(m,n) :=
∐

SetInj(m,n)

T 0

where T 0 is the unit of V. Note that Inj(n, n) is a group object in V, the
symmetric group on n letters. By regarding Inj(n, n) as a V-category with a
single object, a left Inj(n, n)-action on A ∈ ObV is a V-functor Inj(n, n) - V
with value A. One gets a left Inj(n, n)-action on Tn = Tn ⊗ · · · ⊗T2 ⊗T1 using
iterations of the commutativity isomorphism σT,T .
A symmetric T -spectrum X in V as defined in [8, 7.2] consists of a sequence
X0,X1, · · · ,Xn, · · ·, where Xn is an object of V with a left Inj(n, n)-action, and
with structure maps Xn ⊗ T - Xn+1 such that the following composition
Xn ⊗ Tm - Xn+1 ⊗ Tm−1 - · · · - Xn+m is Inj(n, n) ⊗ Inj(m,m)-
equivariant. A map of symmetric T -spectra consists of maps Xn

- Yn that
are compatible with the Inj(n, n)-action and the structure maps. We will show
that the category SpΣ(V, T ) of symmetric T -spectra in V is isomorphic to a
category of V-functors with codomain V and domain TSphΣ.
The objects in TSphΣ are the objects in TSph, but the morphism objects are
different. If n = k + m with m ≥ 0, k ≥ 0, define the V-object VTSphΣ(Tm, Tn)

to be Inj(m,n)⊗T k. If n < m, define VTSphΣ(Tm, Tn) to be the initial object.
The unit map T 0 - Inj(n, n) = VTSphΣ(Tn, Tn) is the canonical map to the
summand corresponding to idn. Next, to describe the composition, identify
Inj(m, k + m) ⊗ T k indexed by β:m - k + m with Tiβ

1
⊗ · · · ⊗ Tiβ

k

= T k.

Here {iβ1 , iβ2 , · · · , iβk} is the reordering of k + m \β(m) which satisfies that iβ1 >

iβ2 > · · · > iβk . If n = k + l + m with k, l,m ≥ 0, we define the map

Inj(l + m,n) ⊗ T k ⊗ Inj(m, l + m) ⊗ T l - Inj(m,n) ⊗ T k+l

in two steps. First, we identify the source of the map with the coproduct∐
SetInj(l+m,n)×SetInj(m,l+m) T k+l. For the second step, consider the unique
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isomorphism T k+l - T k+l induced by the permutation that reorders the
set {iγ1 , iγ2 , · · · , iγk , γ(iβ1 ), γ(iβ2 ), · · · , γ(iβl )}, i.e. the set k + l + m \ (γ ◦ β)(m),

as {iγ◦β
1 , iγ◦β

2 , · · · , iγ◦β
k+l}. This isomorphism maps the summand Tiγ

1
⊗ Tiγ

2
⊗

· · · ⊗ Tiγ

k
⊗ Tiβ

1
⊗ Tiβ

2
⊗ · · · ⊗ Tiβ

l

= T k+l indexed by (γ, β) to the summand

Tiγ◦β
1

⊗ Tiγ◦β
2

⊗ · · · ⊗ Tiγ◦β

k+l

= T k+l indexed by γ ◦ β.

Lemma 2.14. TSphΣ is a symmetric monoidal V-category.

Proof. The composition in TSphΣ is clearly unital. Associativity follows,
since the permutation reordering the set {iγ1 , iγ2 , . . . , iγk , γ(iβ1 ), γ(iβ2 ), . . . , γ(iβl )}
is unique.
On objects, (T l, T k) - T k+l defines the monoidal product in TSphΣ. For
morphisms, consider injections β:n - l + n and γ:m - k + m. Define
β ⊲ γ:m + n - k + l + m + n by concatenation. That is, β ⊲ γ(i) is defined
as γ(i) for i ≤ m and as β(i−m)+ k +m for i > m. Note that the ordered set

iβ1 + k +m > · · · > iβl + k +m > iγ1 > · · · > iγk coincides with iβ⊲γ
1 > · · · > iβ⊲γ

k+l .
On V-objects of morphisms, the map

Inj(n, l + n) ⊗ T l ⊗ Inj(m, k + m) ⊗ T k - Inj(m + n, k + l + m + n) ⊗ T k+l

sends the summand T l ⊗ T k = Tiβ
1
⊗ · · · ⊗ Tiβ

l

⊗ Tiγ
1
⊗ · · · ⊗ Tiγ

k
indexed by

(n
β- l + n,m

γ- k + m) via the identity onto the summand T k+l in-
dexed by β ⊲ γ. To see this, one can rewrite the indices according to the above
equality of ordered sets, that is, changing Tiβ

1
⊗ · · · ⊗ Tiβ

l

⊗ Tiγ
1
⊗ · · · ⊗ Tiγ

k
into

Tiβ
1 +k+m ⊗ · · · ⊗ Tiβ

l
+k+m ⊗ Tiγ

1
⊗ · · · ⊗ Tiγ

k
.

Let us check that this defines a V-functor monΣ:TSphΣ⊗TSphΣ - TSphΣ.
The reason is essentially that concatenation ⊲: Inj × Inj - Inj is a func-
tor. Since idn ⊲ idm = idm+n, if follows that monΣ preserves identities. To

check compatibility with composition, fix four injective maps α:m - l + m,
β: l + m - k + l + m =: n, γ: r - q + r and δ: q + r - p + q + r. The
equality (δ ◦ γ) ⊲ (β ◦ α) = (δ ⊲ β) ◦ (γ ⊲ α) implies that it suffices to consider

only one summand, say M = {iδ1, · · · , i
δ
p, i

β
1 , · · · , iβk , iγ1 , · · · , iγq , iα1 , · · · , iαl }. First,

by rewriting M we find {iδ1, · · · , i
δ
p, δ(i

γ
1), · · · , δ(iγq ), iβ1 , · · · , iβk , β(iα1 ), · · · , β(iαl )},

and next by reordering we get {iδ◦γ
1 , · · · , iδ◦γ

p+q, i
β◦α
1 , · · · , iβ◦α

k+l }. The monoidal

product rewrites the latter as M ′ = {iδ◦γ
1 + n, · · · , iδ◦γ

p+q + n, iβ◦α
1 , · · · , iβ◦α

k+l }

and there is a bijection M
∼=- M ′. On the other hand, the monoidal product

rewrites M as {iδ1 +n, · · · , iδp +n, iβ1 , · · · , iβk , iγ1 + l+m, · · · , iγq + l+m, iα1 , · · · , iαl },

and composition rewrites this set as {iδ1 + n, · · · , iδp + n, iβ1 , · · · , iβk , δ ⊲ β(iγ1 + l +
m), · · · , δ ⊲ β(iγq + l + m), δ ⊲ β(iα1 ), · · · , δ ⊲ β(iαl ).} By definition of ⊲, this set
coincides with

{iδ1 + n, · · · , iδp + n, iβ1 , · · · , iβk , δ(iγ1) + n, · · · , δ(iγq ) + n, β(iα1 ), · · · , β(iαl )}
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which is then reordered as M ′ = {i
(δ⊲β)◦(γ⊲α)
1 , · · · , i

(δ⊲β)◦(γ⊲α)
k+l+p+q }. The corre-

sponding bijection M
∼=- M ′ is thus the same as above. Hence monΣ is a

V-functor.
By definition, monΣ(T 0, Tm) = Tm = monΣ(Tm, T 0). So T 0 is a strict unit in
TSphΣ. Similarly, strict associativity holds. The commutativity isomorphism
T 0 - VTSphΣ(Tm+n, Tm+n) is the canonical map on the summand indexed
by the permutation m + n - n + m which interchanges m and n. Next,
the coherence conditions [2, 6.3,6.4,6.5] follow by a straightforward calculation
with permutations of l + m + n. This ends the proof.

To explain the composition in TSphΣ more throughly, we will define V-functors
ν:TSph - TSphΣ and σ:TSphΣ - V such that σ ◦ ν = π:TSph - V.
Both ν and σ are the respectively identities on objects. The map

homν
T m,T l+m :T l - Inj(m, l + m) ⊗ T l ∼=

∐
SetInj(m,l+m)

T l

hits the summand indexed by the inclusion m ⊂ - l + m. It is then clear that
ν preserves identities. For the composition, consider

T
k
⊗ T

l id - T
k+l

Inj(l + m, k + l + m) ⊗ T
k
⊗ Inj(m, l + m) ⊗ T

l

homν

T l+m,T k+l+m ⊗homν

T m,T l+m?
comp- Inj(m, k + l + m) ⊗ T

k+l

homν

T m,T k+l+m?

and observe that the left vertical map hits the summand

(Tk+l+m ⊗ Tk+l+m−1 ⊗ · · · ⊗ Tl+m+1) ⊗ (Tl+m ⊗ Tl+m−1 ⊗ · · · ⊗ Tm+1)

indexed by the inclusions (l + m ⊂ - k + l + m,m ⊂ - l + m). Composition
in TSphΣ maps this summand by the identity to the summand Tk+l+m ⊗
· · · ⊗ Tm+1 indexed by the inclusion m ⊂ - l + m ⊂ - k + l + m, since the
indices are ordered in the prescribed way. So the diagram commutes and ν
is a V-functor. This also explains the ordering iβ1 > iβ2 > · · · > iβk of the set
k + m \ β(k).
The adjoint Inj(m, l + m) ⊗ T l ⊗ Tm ∼=

∐
SetInj(m,l+m) T l ⊗ Tm - T l+m

of homσ
T m,T l+m : Inj(m, l + m) ⊗ T l - V(Tm, T l+m) is defined as follows:

Consider the summand Tiβ
1
⊗ · · · ⊗ Tiβ

l

⊗ Tm ⊗ · · · ⊗ T1 indexed by β. First

rewrite the indices as Tiβ
1
⊗ · · · ⊗ Tiβ

l

⊗ Tβ(m) ⊗ · · · ⊗ Tβ(1), and then map

to Tl+m ⊗ · · · ⊗ T2 ⊗ T1 by the unique permutation which reorders the set
{iβ1 , · · · , iβl , β(m), · · · , β(1)}. To conclude that σ is a V-functor, one has to check

that reordering the set {iγ1 , · · · , iγk , γ(iβ1 ), · · · , γ(iβl ), γ(β(m)), · · · , γ(β(1))} is the

same as first reordering {iγ1 , · · · , iγl , iβ1 , · · · , iβk , β(m), · · · , β(1)} as {iγ1 , · · · , iγl , l+
m, · · · , 2, 1}, and then reordering {iγ1 , · · · , iγl , γ(l+m), · · · , γ(2), γ(1)}. However,
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the monoidal product monΣ on TSphΣ is such that the diagram

TSphΣ ⊗ TSphΣ σ⊗σ- V ⊗ V

TSphΣ

monΣ

?
σ - V

mon

?

commutes, so σ is in fact a strict symmetric monoidal V-functor.

Proposition 2.15. The category [TSphΣ,V] is isomorphic to the category of
symmetric T -spectra in V, and ν induces the forgetful functor from symmetric
T -spectra to T -spectra. The smash product on [TSphΣ,V] corresponds to the
smash product on SpΣ(V, T ).

Proof. This is similar to 2.12, and some details will be left out in the proof. The
functor Φ: [TSphΣ,V] - SpΣ(V, T ) maps X:TSphΣ - V to the sequence
XT 0,XT 1, · · ·. It is clear that XTn has a left Inj(n, n)-action. The adjoint of
the structure map XTn⊗T - XTn+1 is given by homX

T n,T n+1 ◦homν
T n,T n+1 .

More generally, the composition of structure maps XTn ⊗ T k - XTn+k is

the adjoint of T k
homν

T n,T k+n- Inj(n, k + n)⊗ T k
homX

T n,T k+n- V(XTn,XT k+n).

This proves the required equivariance. The definition of Φ on V-natural trans-
formations is clear, and also functoriality.

The inverse Ψ: SpΣ(V, T ) - [TSphΣ,V] is harder to define. If X0,X1, · · ·

is a symmetric T -spectrum with structure maps x1
n:Xn ⊗ T - Xn+1,

define Ψ(X):TSphΣ - V on objects by Tn - Xn. Since Xn

has a left Inj(n, n)-action, there is the map hom
Ψ(X)
T n,T n :VTSphΣ(Tn, Tn) =

Inj(n, n) - V(Xn,Xn). Choose an injection β:n - k + n, and define

hom
Ψ(X)

T n,T k+n :VTSphΣ(Tn, T k+n) = Inj(n, k + n) - V(Xn,Xk+n)

on the summand Tiβ
1
⊗· · ·⊗Tiβ

k

as the adjoint map of the following composition

Tiβ
1
⊗ · · ·⊗Tiβ

k

⊗Xn

σ
T k,Xn- Xn ⊗Tiβ

1
⊗ · · ·⊗Tiβ

k

xk
n- Xk+n

- Xk+n where

xk
n is defined by the structure maps. The right hand map is the isomorphism

associated to the permutation of the set k + n that changes {k +n, · · · , 2, 1} to

{iβ1 , · · · , iβk , β(n), · · · , β(1)} and reorders this as {k +n, · · · , 2, 1}. For the latter
we use the left Inj(k + n, k + n)-action on Xk+n.

The Inj(n, n)-action on Xn is unital, so Ψ(X) preserves identities. To prove

that Ψ(X):TSphΣ - V is a V-functor, pick injective maps β:m - l + m,
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γ: l + m - k + l + m and consider the following diagram.

Ti
γ
1
⊗ · · · ⊗ Ti

γ
k
⊗ T

i
β
1
⊗ · · · ⊗ T

i
β
l

⊗ Xm

T k
⊗(xl

m◦σ
T l,Xm

)
- Ti

γ
1
⊗ · · · ⊗ Ti

γ
k
⊗ Xl+m

T
i
γ◦β
1

⊗ · · · ⊗ T
i
γ◦β
k+l

⊗ Xm

f⊗Xm

?
Xk+l+m

¾
x
k
l+

m
◦σ T

k ,Xl+
m

xk+lm ◦σ
T k+l

,X
m

-
Ti

γ
1
⊗ · · · ⊗ Ti

γ
k
⊗ Xl+m

T k
⊗b

?

Xk+l+m

xk+l
m ◦σ

T k+l,Xm

?
Xk+l+m

f ′

?
Xk+l+m

xk
l+m◦σ

T k,Xl+m?

Xk+l+m

cb

?¾

ccb

-

Here b:Xl+m
- Xl+m is the isomorphism obtained from reordering the set

{iβ1 , · · · , iβk , β(m), · · · , β(1)} as {l+m, · · · , 2, 1}, and similarly for c and cb. The
isomorphism f :T k+l - T k+l is induced by the permutation

{iγ1 , · · · , iγk , γ(iβ1 ), · · · , γ(iβl )}
∼=- {iγ◦β

1 , · · · , iγ◦β
k+l}.

Similarly, f ′:Xk+l+m
- Xk+l+m is induced by the permutation

{iγ1 , · · · , iγk , γ(iβ1 ), · · · , γ(iβl ),m, · · · , 1}
∼=- {iγ◦β

1 , · · · , iγ◦β
k+l ,m, · · · , 1}.

Since xk+l
m is Inj(k + l, k + l) ⊗ Inj(m,m)-equivariant, the left parallelogram

commutes. The upper triangle commutes by commutativity coherence. Finally,
the right parallelogram commutes, because xk

l+m is Inj(k, k)⊗ Inj(l+m, l+m)-
equivariant, the Inj(k+l+m, k+l+m)-action on Xk+l+m is associative and the

permutation obtained from reordering {iγ1 , · · · , iγk , iβ1 , · · · , iβl , β(m), · · · , β(1)} as
{iγ1 , · · · , iγk , γ(l + m), · · · , γ(1)} and then as {k + l + m, · · · , 2, 1} equals the

permutation obtained from {iγ1 , · · · , iγk , γ(iβ1 ), · · · , γ(iβl ), γ(β(m)), · · · , γ(β(1))}.
The definition of Ψ on maps is clear and functoriality follows easily. The proof
of 2.12 shows that Φ ◦ Ψ = IdSpΣ(V,T ), but an extra argument is required to
prove the equality Ψ ◦ Φ = Id[TSphΣ,V]. The only point which is not obvious is

whether the maps homX
T m,T k+m : Inj(m, k+m)⊗T k - V(XTm,XTm+k) and

hom
Ψ(Φ(X))

T m,T k+m : Inj(m, k + m) ⊗ T k - V(XTm,XTm+k) coincide. To prove

this, we fix an injection β:m - k + m and let ι:m ⊂ - k + m denote the in-
clusion. The permutation γ: k + m - k + m obtained from rewriting the set
{k +m, · · · , 1+m,m, · · · , 1} as {iβ1 , · · · , iβk , β(m), · · · , β(1)} and reordering this
set as {k +m, · · · , 2, 1} has the property that γ ◦ ι = β. Since X is a V-functor,
the map homX

T m,T k+m is determined by its restriction to the summand indexed

by m ⊂ - k + m. This shows that homX
T m,T k+m = hom

Ψ(Φ(X))

T m,T k+m .

The claim concerning [ν,V]: [TSphΣ,V] - [TSph,V] is clear by the above. It

remains to prove compatibility of the smash products. The smash product ∧′
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of symmetric T -spectra satisfies FmT 0∧′FnT 0 ∼= Fm+nT 0 by the remark below
[8, 7.3]. On the other hand, the monoidal product in [TSphΣ,V] is determined
by representable functors, and from 2.7 there is the natural isomorphism

VTSphΣ(Tm,−) ∧ VTSphΣ(Tn,−) ∼= VTSphΣ(Tm+n,−).

This completes the proof.

Corollary 2.16. Let C be a full sub-V-category. Assume C is closed under
the monoidal product, and contains the unit and T . Then σ:TSphΣ - V
factors over C ⊂ - V, and the induced V-functor TSphΣ - C induces
a lax symmetric monoidal functor [C,V] - SpΣ(V, T ) which has a strict
symmetric monoidal left adjoint.

Proof. The factorization of σ is clear. Under the isomorphism in 2.15, the
closed symmetric monoidal product on [TSphΣ,V] coincides with the closed
symmetric monoidal product on symmetric T -spectra. For formal reasons, the
V-functor induced by the first factor of σ is lax symmetric monoidal. By
checking on representable functors, it follows that its left V-adjoint obtained
by an enriched Kan extension 2.5 is strict symmetric monoidal.

3 Model Categories

The term model category is to be understood in the sense of [7, 1.1.4]. We

denote weak equivalences by
∼- , fibrations by -- and cofibrations by

- - .

3.1 Types of model categories

The model structures we will consider on enriched functor categories require
a cofibrantly generated model category (C, I, J) as input. For a definition of
this type of model categories and related terminology, consider [7, 2.1]. Maps
in I = {i: si- - ti}i∈I are called generating cofibrations, and maps in J =

{j: sj-
∼- tj}j∈J are called generating acyclic cofibrations. The (co)domains

of I and J may have additional properties.

Definition 3.1. An object A ∈ Ob C is finitely presentable if the set-valued
Hom-functor SetC(A,−) commutes with all filtered colimits. If C is a V-
category, A ∈ Ob C is V-finitely presentable if the V-valued Hom-functor
VC(A,−) commutes with all filtered colimits.

A set is finitely presentable in the category of sets if and only if it is a finite
set. If the unit e in V is finitely presentable, any V-finitely presentable object
of V is finitely presentable. See [8, 4.1] for 3.2 and 3.3.

Definition 3.2. A cofibrantly generated model category C is finitely generated
if I and J can be chosen such that the (co)domains of the maps in I and J are
κ-small for a finite cardinal κ.
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Finitely generated model categories are not necessarily closed under Bousfield
localization, cf. [8, §4]. The following definition was suggested by Voevodsky.

Definition 3.3. The cofibrantly generated model category C is almost finitely
generated if I and J can be chosen such that the (co)domains of the maps in I
are κ-small for a finite cardinal κ, and there exists a subset J ′ of J for which

• the domains and the codomains of the maps in J ′ are κ-small for a finite
cardinal κ,

• a map f :A - B in C such that B is fibrant is a fibration if and only
if it is contained in J ′-inj.

The left Bousfield localization with respect to a set with sSet-small domains
and codomains preserves the structure of almost finitely generated cellular left
proper simplicial model categories [6, Chapters 3,4]. For almost finitely gener-
ated model categories, the classes of weak equivalences and fibrant objects are
closed under sequential colimits. We require these classes to be closed under
filtered colimits, which holds for model categories of the following type.

Definition 3.4. A cofibrantly generated model category V is weakly finitely
generated if I and J can be chosen such that the following conditions hold.

• The domains and the codomains of the maps in I are finitely presentable.

• The domains of the maps in J are small.

• There exists a subset J ′ of J of maps with finitely presentable domains
and codomains, such that a map f :A - B in V with fibrant codomain
B is a fibration if and only if it is contained in J ′-inj.

The choices of the sets I, J and J ′ will often be left implicit in the following. A
weakly finitely generated model category is almost finitely generated. Examples
include simplicial sets, simplicial sets with an action of a finite group, cp. 9.5,
and the category of pointed simplicial presheaves on the smooth Nisnevich site.
The latter will be discussed in [5].

Lemma 3.5. Assume V is a weakly finitely generated model category. Then the
following classes are closed under filtered colimits: weak equivalences, acyclic
fibrations, fibrations with fibrant codomain, and fibrant objects.

Proof. Since V is cofibrantly generated, [6, 11.6.1] shows that Fun(I,V) sup-
ports a cofibrantly generated model structure for any small category I. Fibra-
tions and weak equivalences are defined pointwise. Any weak equivalence in
Fun(I,V) factors as an acyclic cofibration g composed with an acyclic fibration
p:T -- B. Consider the induced factorization colimp ◦ colimg. Note that
colimg is an acyclic cofibration, since colim is a left Quillen functor. Therefore,
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the second claim will imply the first claim. If I is filtered, then colimp is an
acyclic fibration: Let

si
α- colimT

ti

i

?

?

β- colimB

colimp

?

be a lifting problem, where i ∈ I. The existence of a lift in this diagram for all
choices of α and β is equivalent to surjectivity of the canonical map

φ:SetV(ti, colimT ) - SetV(si, colimT ) ×SetV(si,colimB) SetV(ti, colimB).

Since si and ti are finitely presentable by assumption and filtered colimits
commute with pullbacks in Set, the canonical map φ is the filtered colimit of
the canonical maps

φd:SetV(ti, T (d)) - SetV(si, T (d)) ×SetV(si,B(d)) SetV(ti, B(d))

induced by composition with p(d) and pre-composition with i. Note that φd

is surjective since i is a cofibration and p is a pointwise acyclic fibration. It
follows that φ is surjective and colimp is an acyclic fibration. The proof of the
third claim – including the last claim as a special case – is analogous.

Definition 3.6. Let (V,⊗, e) be a closed symmetric monoidal category, and
C a right V-module with action (C,A) - C ⊘A. Consider, for f :C - D
a map in C and g:A - B a map in V, the diagram:

C ⊘ A
C⊘g- C ⊘ B

D ⊘ A

f⊘A

?
D⊘f- D ⊘ B

f⊘B

?

If C has pushouts, denote the induced map from the pushout of the diagram
to the terminal corner by f¤g:D ⊘ A ∪C⊘A C ⊘ B - D ⊘ B. This is the
pushout product map of f and g.

Note that 3.6 applies to (V,⊗, e) considered as a right V-module. Recall the
pushout product axiom [15, 3.1].

Definition 3.7. Let (V,⊗, e) be a closed symmetric monoidal category and a
model category. It is a monoidal model category if the pushout product f¤g
of two cofibrations f and g is a cofibration, which is acyclic if either f or g is
acyclic.

Monoidal model categories with a cofibrant unit are symmetric monoidal model
categories in the sense of [7, 4.2.6]. See [15, 3.3] for the following definition.
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Definition 3.8. Let V be a monoidal model category. For a class K of maps
in V, define K ⊗ V as the class of maps f ⊗ A, where f is a map in K and
A ∈ ObV. Let aCof(V) be the class of acyclic cofibrations in V. The monoid
axiom holds if every map in aCof(V) ⊗ V-cell is a weak equivalence.

In the proof of 4.2, we will use the monoid axiom to construct the pointwise
model structure on enriched functor categories. Let us end this section with
the definition of two other types of model categories.

Definition 3.9. Let V be a monoidal model category, C a closed V-module
and a model category. The action of V on C allows us to consider the pushout
product of a map in C and a map in V. Then C is a V-model category if the
pushout product of a cofibration f in C and a cofibration g in V is a cofibration
in C, which is acyclic if either f or g is acyclic.

Note that a simplicial model category is a sSet-model category.

Lemma 3.10. A simplicial homotopy equivalence in a sSet-model category is
a weak equivalence.

Proof. This follows from [6, 9.5.16]. Simplicial homotopy equivalences in 2.9
are also simplicial homotopy equivalences as defined in [6, 9.5.8].

Definition 3.11. Let F :V - W be a strict symmetric monoidal functor
of monoidal model categories. If F is a left Quillen functor, W is called a
monoidal V-model category .

A monoidal V-model category is clearly a V-model category.

3.2 Homotopy pullback squares

Homotopy pullback squares will be used to characterize fibrations. Definition
3.12 is equivalent to [7, 7.1.12].

Definition 3.12. Let C be a model category. A commutative diagram

A - B

C
?

g- D

f

?

in C is a homotopy pullback square if for any commutative diagram

C
g- D ¾f

B

C ′

∼
?

?

- D′

∼
?

?

¾¾ B′

∼
?

?

where C ′ and D′ are fibrant and B′ -- D′ is a fibration, the canonical map
A - C ′ ×D′ B′ is a weak equivalence.
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This definition seems to by asymmetric, but one of the squares

A
f- B A

g- C

or

C

g

?
i- D

h

?
B

f

?
h- D

i

?

is a homotopy pullback square if and only if the other is a homotopy pullback
square. We list some elementary properties.

Lemma 3.13. All diagrams below are commutative diagrams in C.

1. The diagram

A
f- B

C
?

∼- D
?

is a homotopy pullback square if and only if f is a weak equivalence.

2. Consider a natural transformation f :A - B of diagrams

A0
- A1 B0

- B1

and

A2

?
- A3

?
B2

?
- B3

?

which is a pointwise weak equivalence. That is, fi:Ai
- Bi is a weak

equivalence for all i ∈ {0, 1, 2, 3}. Then A is a homotopy pullback square
if and only if B is a homotopy pullback square.

3. Let

A0
- A1

- A2

(1) (2)

B0

?
- B1

?
- B2

?

be a diagram where (2) is a homotopy pullback square. Then the composed
square (12) is a homotopy pullback square if and only (1) is a homotopy
pullback square.

Lemma 3.14. Assume C is right proper. Then

A - B

C
?

- D

f

?
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is a homotopy pullback square if and only if for some factorization of f as a

weak equivalence B
∼- E followed by a fibration E -- D, the induced map

A - C ×D E is a weak equivalence.

Proof. Since C is right proper, the dual of the gluing lemma holds. The state-
ment follows easily.

3.3 Fibrant replacement functors

In every model category, any object may be replaced by a fibrant object in a
functorial way up to an acyclic cofibration. It is often desirable to explicate
fibrant replacement functors. Quillen’s small object argument is the classical
method 3.3.1. We place emphasis on enriched fibrant replacement functors
3.3.2. Another fibrant replacement functor is constructed in 3.3.3 as a certain
filtered colimit.

3.3.1 Classical

Fix a cocomplete category V and a set K = {sk - tk}k∈K of maps in V
with finitely presentable domains and finitely presentable codomains. The set
K gives rise to a natural transformation of endofunctors on V, namely

∐
k∈K

∐
f∈SetV(sk,−)

sk

∐
k∈K

∐
f∈SetV (sk,−)

k
-

∐
k∈K

∐
f∈SetV(sk,−)

tk.

Consider also

∐
k∈K

∐
f∈SetV(sk,−)

sk

∐
k∈K

∐
f∈SetV (sk,−)

f
-

∐
k∈K

∐
f∈SetV(sk,−)

IdV
codiagonal- IdV ,

and take the pushout of the two natural transformations. Let ιK1 : IdV
- FK

1

denote the canonically induced map. This construction can be iterated. Sup-
pose there is a natural transformation ιKn :FK

n−1
- FK

n of endofunctors of V.
Next, define FK

n+1 as the pushout of

∐
k∈K

∐
f∈SetV(sk,Fn(−))

tk ¾
∐
k∈K

∐
f∈SetV(sk,Fn(−))

sk - Fn.

The colimit of the sequence IdV = F0
ιK
1- FK

1

ιK
2- · · · is denoted as

FK :V - V, and ιK : IdV
- FK is the canonical natural transformation.

The following statement is a special case of [7, 2.1.14].

Lemma 3.15. For every object A in V, the map ιK(A):A - FK(A) is in
K-cell, and the map FK(A) - ∗ is in K-inj.
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Corollary 3.16. Suppose that V is a weakly finitely generated model category.
Then ιJ

′

: IdV
- F J ′

is a fibrant replacement functor, i.e. F J ′

(A) is fibrant
and the natural map ιJ

′

(A):A - F J ′

(A) is an acyclic cofibration for all
A ∈ ObV.

This fibrant replacement functor yields “big” objects. We will make this more
precise after recalling some definitions from [6, Chapter 10].

Definition 3.17. A relative K-cell complex f :A - B is called finite if f

is a composition A = B0
f1- B1

f2- · · ·
fn- Bn = B where each fm is

a cobase change of a map in K, i.e. f is obtained by attaching finitely many
cells from K.

Definition 3.18. A relative K-cell complex f :A - B is called presented
if there is an explicit choice of the data [6, 10.6.3]. In detail, one chooses a

limit ordinal λ, a λ-sequence A = B0
f1- B1

- · · ·
fβ+1- Bβ+1

- · · ·
whose sequential composition is f , and fβ+1:Bβ

- Bβ+1 is gotten from the
pushout of the following diagram for every β < λ:

∐
m∈Mβ

tim ¾
∐

im
∐

m∈Mβ

sim - Bβ

We omit the choice from the notation. Let f :A - B be a presented relative
K-cell complex. A subcomplex of f is a presented K-cell complex g:A - C
relative to A such that the explicit choice relevant for g is a subset of the explicit
choice for f , see [6, 10.6.7]. In particular, there exists a map h:C - B in
K-cell such that h ◦ g = f . A subcomplex is called finite if it is a finite K-cell
complex relative to A, using the explicit choice.

Any relative K-cell complex can be turned into a presented one. If we consider
ιK(A) as a presented relative K-cell complex, we will use the explicit choices
appearing in its construction.

Lemma 3.19. Let f :A - B be a finite relative K-cell complex. Then f has
the structure of a finite subcomplex of ιK(K):A - FK(A).

Proof. We will prove this by induction on the number of cells. By convention, a
map obtained by attaching no cells is an identity map. Suppose the following is
true. If f :A - B is obtained by attaching n cells from K, with n ≥ 0, then f
has the structure of a finite subcomplex of the presented relative K-cell complex

A
ιK
1 (A)- · · ·

ιK
n (A)- FK

n (A). Assume f :A - B is obtained by attaching n+1

cells from K. By definition, there is a factorization A
g- C

h- B where
g is obtained by attaching n cells from K and h is the cobase change of some
k ∈ K along a map α: sk - C. From the induction hypothesis, α induces a
map sk - C - FnA, hence an element in SetV(sk, FnA). It follows that
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there is a map β: tk - Fn+1A rendering the diagram

sk
α- C - FK

n (A)

tk

k ∼

?

?

β - FK
n+1(A)

ιK
n+1(A)

?

commutative. Since h is the cobase change of k along α, there is a unique
induced map B - FK

n+1(A) which gives f the structure of a subcomplex of

the complex A
ιK
1 (A)- · · ·

ιK
n+1(A)- FK

n+1(A).

3.3.2 Enriched

Suppose that V is a cocomplete and closed symmetric monoidal category, and
that K is a set of maps with finitely presentable domains and codomains. The
fibrant replacement functor defined in 3.3.1 is a priori not a V-functor, but one
can remedy this as follows. Each k in K induces a V-natural transformation
V(sk,−)⊗k:V(sk,−)⊗sk - V(sk,−)⊗tk of endo-V-functors. On the other
hand, the counit ǫsk:V(sk,−)⊗sk - IdV is also a V-natural transformation.
By taking the coproduct over all k ∈ K, one gets the diagram of V-functors

∐
k∈K

V(sk,−) ⊗ tk ¾
∐

V(sk,−)⊗k ∐
k∈K

V(sk,−) ⊗ sk - IdV .

Denote the pushout by RK
1 . It is clear that one can iterate this construction.

Given a V-natural transformation ρK
n :RK

n−1
- RK

n of endo-V-functors of V,
let RK

n+1 be the pushout of

∐
k∈K

V(sk,RK
n (−))⊗ tk ¾

∐
k∈K

V(sk,RK
n (−))⊗k ∐

k∈K

V(sk,RK
n (−))⊗ sk - RK

n .

The colimit of the diagram IdV = R0
ρK
1- RK

1

ρK
2- · · · is called RK :V - V.

Let ρK : IdV
- RK be the canonical V-natural transformation.

Lemma 3.20. Given any object A in V, the map ρK(A):A - RK(A) is in
K ⊗ V-cell, and the map RK(A) - ∗ is in K-inj.

Proof. The first statement is obvious. To prove that RK(A) - ∗ is in K-inj,
consider a lifting problem for k ∈ K:

sk
f- RK(A)

tk

k ∼

?

?

- ∗
?
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Note that f factors as sk
g- RK

n (A) - RK(A) for some n, since sk is
finitely presentable and R is a sequential colimit. The adjoint of g, tensored
with sk, induces the map h: sk - V(sk,RK

n (A))⊗sk such that the following
diagram commutes.

V(sk,RK
n (A)) ⊗ sk

sk
g -

h

-

RK
n (A)

ǫ
sk (R K

n (A
))-

Let h′ denote the canonical map to the coproduct given by h. Then the diagram

sk
h′

-
∐
k∈K

V(sk,RK
n (A)) ⊗ sk - RK

n (A)

tk

k ∼

?

?

-
∐
k∈K

V(sk,RK
n (A)) ⊗ tk

?
- RK

n+1(A)

?

shows that tk - ∐
k∈K V(sk,RK

n (A)) - RK
n+1(A) - RK(A) solves

the lifting problem above. This proves that RK(A) - ∗ is in K-inj.

Corollary 3.21. Let V be a weakly finitely generated monoidal model category
satisfying the monoid axiom. Then ρJ ′

: IdV
- RJ ′

is a fibrant replacement
V-functor, i.e. RJ ′

(A) is fibrant and ρJ ′

(A) is a weak equivalence for all A.

Proof. It remains to prove that the natural map ρJ ′

A :A - RJ ′

(A) is a weak

equivalence for every A ∈ ObV. Note that ρJ ′

A is contained in aCof(V)⊗V-cell.

The monoid axiom for V implies that ρJ ′

A is a weak equivalence.

Remark 3.22. The map ρJ ′

(A) is not a cofibration in general, even if A is
cofibrant. But if all objects in V are cofibrant, then ρJ ′

(A) is a cofibration.

3.3.3 Filtered

Let V denote a cocomplete closed symmetric monoidal category, and K a set of
maps with finitely presentable domains and codomains. We will define for each
object A of V three categories acK(A), acK(A,R) and acK(A,F ), and functors
UR: acK(A,R) - acK(A), UF : acK(A,F ) - acK(A).
Objects in acK(A) are finite K-cell complexes β:A - B relative to A.
The morphisms in acK(A) from β:A - B to γ:A - C are finite K-cell
complexes τ :B - C for which τ ◦β = γ. The identity idA is the initial object
of acK(A). Consider the functor ΨA: acK(A) - V which sends β:A - B
to B and τ :B - C to τ . The colimit of ΨA will define the desired fibrant
replacement of A, up to isomorphism.
Objects in acK(A,R) are pairs (β:A - B, β′:B - RK(A)) such that β
is a finite K-cell complex relative to A, and β′ ◦ β = ρK(A) holds. A map
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from (β:A - B, β′:B - RK(A)) to (γ:A- ∼- C, γ′:C
∼- RK(A)) is

a finite K-cell complex τ :B- - C such that

B

A

β
-

RK(A)

β ′

-

C

τ

?
γ
′

-
γ -

commutes. The initial object of acK(A,R) is (idA, ρA). Denote the forgetful
functor acK(A,R) - acK(A) which maps the pair (β, β′) to β by UR.
The category acK(A,F ) has objects finite subcomplexes of the relative K-cell
complex ιK(A):A - FK(A). Such a subcomplex β:A - B comes with a
map β′:B - FK(A) in K-cell such that β′ ◦β = ιK(A), whence the objects
in acK(A,F ) are also denoted (β, β′). Maps are defined as for acK(A,R).
Here (idA, ι(A)) is the initial object. Let UF : acK(A,F ) - acK(A) be the
forgetful functor. Recall from [12, IX.3] the notion of a final functor.

Lemma 3.23. If maps in K-cell are monomorphisms, then UR and UF are final
functors, and acK(A,F ) is a small filtered preorder for all A ∈ ObV.

Proof. To prove that UR is final, let β:A - B be an object of acK(A). Since
RK(A) - ∗ is in K-inj, there exists a lift in the following diagram.

A
ρK(A)- RK(A)

B

β

?
- ∗

?

Hence the comma category β ↓ UR is nonempty. Consider objects (γ, γ′) and
(δ, δ′) in acK(A,R), and maps σ:β - γ, τ :β - δ in acK(A). The pushout

B
τ - D

C

σ

?
- C ∪B D

?

yields a finite K-cell complex α:A - C ∪B D. The maps γ′ and δ′ induce a
map α′:C ∪B D - RK(A) turning (α, α′) into an object of acK(A,R). The
cobase changes of σ and τ are maps (γ, γ′) - (α, α′) and (δ, δ′) - (α, α′)
in acK(A,R). This implies that β ↓ UR is connected. Hence UR is final. Next
we consider UF . Let β:A - B be an object of acK(A). By 3.19, β ↓ UF is
nonempty. Since maps in K-cell are monomorphisms, the union of two finite
subcomplexes is again a finite subcomplex [6, 12.2.1]. Connectness follows.
A category is a preorder if there is at most one map between any two objects.
Suppose that there exist two different maps σ:B - C and τ :B - C
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from (β:A - B, β′:B - FK(A)) to (γ:A - C, γ′:C - FK(A)).
By definition, we have γ′ ◦ σ = β′ = γ′ ◦ τ . Since γ′ is a monomorphism by
assumption, it follows that σ = τ . Note that acK(A,F ) is nonempty, since it
contains the initial object (idA, ιA). Hence to prove that acK(A,F ) is filtered,
it remains to observe that any two objects have a common upper bound, given
by the union of subcomplexes, cf. [6, 12.2.1]

The colimits of ΨA, ΨA◦UR and ΨA◦UF are isomorphic via the canonical maps
colimΨA ◦ UR

- colimΨA
¾ colimΨA ◦ UF by Theorem 1 of [12, IX.3].

To have a natural comparison with the V-functor RK , we let ΦK(A) be the
colimit of the functor ΨA ◦ UR: acK(A,R) - V. There is a canonical map
ϕA:A - ΦKA induced by the object (idA, ρK(A)) of acK(A,R). Likewise
there is a canonical map ωA: ΦK(A) - RK(A) induced by the maps β′.

Proposition 3.24. Suppose that relative K-cell complexes are monomor-
phisms. Then ΦK(A) - ∗ is in K-inj, and ϕA:A - ΦK(A) is a fil-
tered colimit of finite relative K-cell complexes. Moreover, the assignment

A - ΦK(A) defines a functor ΦK , and the maps A
ϕA- ΦK(A) and

ΦK(A)
ωA- RK(A) are natural transformations IdV

ϕ- ΦK ω- RK such
that ω ◦ ϕ = ρK .

Proof. The object ΦK(A) is isomorphic to Ã := colimΨA ◦UF . Hence to prove
the first claim, it suffices to consider a lifting problem

sk
f- Ã

tk

k ∼

?

?

- ∗
?

The object sk is finitely presentable, and Ã is the colimit of a filtered diagram

by 3.23. Hence f factors as sk
g- a - Ã for some finite subcomplex

(β:A - B, β′:B - FK(A)) in acK(A,F ). Take the pushout of

sk
g- B

tk

k

?
h- C

τ

?

and define γ := τ ◦ β:A - C. Since τ is the cobase change of k ∈ K, 3.19
implies that γ:A - C is a finite subcomplex of ιA such that τ :β - γ is
a map in acK(A,F ). The canonical map C - Ã belongs to γ, and the map

tk
h- C - Ã solves the lifting problem. Hence Ã - ∗ is in K-inj.

To prove the second assertion, let acK(A,F ) - π0acK(A,F ) be the canonical
projection onto the set of connected components of acK(A,F ). This functor
is final, and the constant diagram cA: acK(A,F ) - V with value A fac-
tors it. Since acK(A,F ) is connected, it follows that colimcA

∼= A. There
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is a natural transformation of diagrams cA
- ΨA ◦ UF with value β at

(β, β′). The induced map colimcA
- ΦK(A) coincides with the canoni-

cal map ϕA:A - ΦK(A) up to the isomorphism above. The proof of the
remaining claim is clear and will be left to the reader.

Corollary 3.25. Let V be a weakly finitely generated monoidal model category
satisfying the monoid axiom. If relative J ′-cell complexes are monomorphisms,
then

A
ϕA- ΦJ ′

(A)
ωA- RJ ′

(A)

are weak equivalences with fibrant codomains.

If V is pointed by ∗, any endo-V-functor on V maps the point to the point. On
the other hand, ι∗ is not an isomorphism and there may be non-trivial finite
subcomplexes of ι∗. So ΦK is not a V-functor in general. To define the stable
model structure we need Φ to be “enriched with respect to spheres”. This
requires a natural map T ⊗ Φ(A) - Φ(T ⊗ A) for some finitely presentable
object T , such that

T ⊗ ΦK(A) - ΦK(T ⊗ A)

T ⊗ RK(A)

T⊗ωA

?
swR

T (A)- RK(T ⊗ A)

ωT⊗A

?

is commutative. Here the lower horizontal map is the adjoint of

T
ηA(T )- V(A, T ⊗ A)

homRK

A,T⊗A- V(RK(A), RK(T ⊗ A)).

More details can be found in Appendix A. Suppose T ⊗ − maps finite K-cell
complexes relative to A to finite K-cell complexes relative to T ⊗A, for all A ∈
ObV. Then tensoring with T defines a functor ΘA: acK(A,R) - acK(T ⊗
A,R) by sending (β:A - B, β′:B - RK(A)) to

(T ⊗ A
T⊗β- T ⊗ B, T ⊗ B

T⊗β′

- T ⊗ RK(A)
r(T,A)- RK(T ⊗ A)).

This functor induces a map

T ⊗ ΦK(A) = T ⊗ colimacK(A,R) ΨA ◦ UR

∼= colimacK(A,R) (T ⊗−) ◦ ΨA ◦ UR

= colimacK(A,R) ΨT⊗A ◦ UR ◦ ΘA

- colimac(T⊗A,R) ΨT⊗A ◦ UR

= ΦK(T ⊗ A)

via the identity natural transformation (T ⊗−)◦ΨA◦UR
- ΨT⊗A◦UR◦ΘA.
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Lemma 3.26. Let V be a monoidal model category satisfying the monoid ax-
iom. Suppose that V is weakly finitely generated, and that relative J ′-cell
complexes are monomorphisms. If A is an object of V, the map θA:T ⊗
ΦJ ′

(A) - ΦJ ′

(T ⊗ A) is a weak equivalence making the diagram

T ⊗ ΦJ ′

(A)
θA- ΦJ ′

(T ⊗ A)

T ⊗ RJ ′

(A)

T⊗ωA ?
r(T,A)- RJ ′

(T ⊗ A)

ωT⊗A?

commutative. Furthermore, θA is natural in A.

Proof. Commutativity and naturality follow by the construction of θA. Note
that ρT⊗A and T ⊗ρJ ′

A ∈ aCof(V)⊗V-cell are weak equivalences. It follows that

r(T,A) is a weak equivalence since r(T,A) ◦ T ⊗ ρJ ′

A = ρJ ′

T⊗A. The map ϕT⊗A

is a weak equivalence, and T ⊗ ϕA is a filtered colimit of weak equivalences.
Hence the vertical maps in the diagram are weak equivalences.

Finally, we relate V-functors and ΦK in the case where I: C ⊂ - V is a full
sub-V-category and all objects in C are V-finitely presentable.

Lemma 3.27. Suppose that relative K-cell complexes are monomorphisms. Let
X: C - V be a V-functor and let A ∈ Ob C. There is an isomorphism

I∗X(ΦK(A)) ∼= colim(X ◦ ΨA ◦ UR: acK(A,R) - V)

which is natural in X.

Proof. To prove this, use the canonical expression of a V-functor as a coend of
representables 2.3, 3.23 and V-finiteness of the objects in C. Then

I∗X(ΦK(A)) =

∫ Ob C

V(c,ΦK(A))⊗X(c) ∼= colim

∫ Ob C

V(c,ΨA ◦UR)⊗X(c),

and the claim follows.

4 The pointwise model structure

Let V be a weakly finitely generated monoidal model category. If C is a small
V-category and the monoid axiom holds in V, we introduce the pointwise model
structure on [C,V]. Of particular interest are the cases where C is a full sub-V-
category, and C satisfies the following properties.

f0 Every object of V is a filtered colimit of objects in C.

f1 Every object of C is V-finitely presentable.

f2 The unit e is in C, and C is closed under the monoidal product in V.
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4.1 The general case

Our pointwise notions of weak equivalences, fibrations and cofibrations are as
follows.

Definition 4.1. A morphism f in [C,V] is a

• pointwise weak equivalence if f(c) is a weak equivalence in V for all c ∈
Ob C,

• pointwise fibration if f(c) is a fibration in V for all c ∈ Ob C,

• cofibration if f has the left lifting property with respect to all pointwise
acyclic fibrations.

Theorem 4.2. Let V be a weakly finitely generated monoidal model category,
and let C be a small V-category. Suppose the monoid axiom holds in V. Then
[C,V], with the classes of maps in 4.1, is a weakly finitely generated model
category.

Proof. We will use [7, 2.1.19]. The category [C,V] is bicomplete by 2.2. The
class of pointwise weak equivalences is closed under retracts and satisfies the
“two out of three” or saturation axiom. Let I be the generating cofibrations
in V, and J the generating acyclic cofibrations in V. Let PI be the set of maps

{VC(c,−) ⊗ si
VC(c,−)⊗i- VC(c,−) ⊗ ti | i ∈ I, c ∈ Ob C}.

Likewise, let PJ denote the set of maps

{VC(c,−) ⊗ sj
VC(c,−)⊗j- VC(c,−) ⊗ tj | j ∈ J, c ∈ Ob C}.

Since V is cofibrantly generated, it follows from adjointness that PJ -inj coin-
cides with the class of pointwise fibrations, and PI -inj coincides with the class
of pointwise acyclic fibrations. If A is finitely presentable (small) in V, then
VC(c,−)⊗A is finitely presentable (small) in [C,V] for any c ∈ Ob C, since col-
imits are computed pointwise according to 2.2. Hence the smallness conditions
listed in 3.4 are satisfied. It remains to show that maps in PJ -cell are pointwise
weak equivalences. Every map in PJ -cell is pointwise a map in J ⊗V-cell, and
the latter class consists of weak equivalences by the monoid axiom.

We refer to the model structure in 4.2 as the pointwise model structure. Note
that the evaluation functor preserves fibrations and acyclic fibrations.

Lemma 4.3. Suppose the pointwise model structure exists. Then the functor
from V to [C,V] which maps A to VC(c,−) ⊗ A is a left Quillen functor, with
right adjoint Evc for all c ∈ Ob C.

If the unit in V is cofibrant, then the representable functors are cofibrant in
the pointwise model structure.
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Theorem 4.4. Consider V and C as in 4.2. Then the pointwise model struc-
ture gives [C,V] the structure of a V-model category. Likewise, [C,V] is a
monoidal V-model category provided C is a symmetric monoidal V-category,
and the monoid axiom holds.

Proof. Recall from 2.4 that [C,V] is a closed V-module. By [7, 4.2.5] it suffices
to check the following conditions.

• Let VC(c,−)⊗ i:VC(c,−)⊗ si- - VC(c,−)⊗ ti be a map in PI , and let
j: sj- - tj be a map in I. Then the pushout product (VC(c,−) ⊗ i)¤j
is a cofibration.

• If either i or j in the above sentence are generating acyclic cofibrations,
then (VC(c,−) ⊗ i)¤j is a pointwise acyclic cofibration.

Since VC(c,−) ⊗− is a left adjoint, the pushout product map in question is of
the form VC(c,−)⊗ (i¤j). Hence the conditions hold, because V is a monoidal
model category and 4.3 holds.
The monoidality statement is proven similarly using [7, 4.2.5]. Note from 2.7
and the compatibility of ∧ and ⊗, that the pushout product map of VC(c,−)⊗i
and VC(d,−) ⊗ j is isomorphic to VC(c ⋄ d,−) ⊗ (i¤j) where ⋄ denotes the
monoidal product in C. Let u be the unit of C. Then VC(u,−) ⊗ − is a strict
symmetric monoidal functor and a left Quillen functor by 4.3.
It remains to prove the monoid axiom. Abbreviate [C,V] by F . Since F is
cofibrantly generated, it suffices to check that every map in the class PJ ∧ F-
cell is a pointwise weak equivalence. Let c ∈ Ob C, j ∈ J and X: C - V a
V-functor. Then (V(c,−) ⊗ j) ∧ X coincides up to isomorphism with the map
(V(c,−)∧X)⊗ j. In particular, ((V(c,−)∧X)⊗ j)(d) = (V(c,−)∧X)(d)⊗ j is
contained in J ⊗V for every d ∈ Ob C, X ∈ ObF . For a map f in PJ ⊗F-cell,
f(d) belongs to J ⊗ V-cell because colimits are formed pointwise. Since the
monoid axiom holds in V, f is a pointwise weak equivalence.

Remark 4.5. Via 2.12, the pointwise model structure on T -spectra corresponds
to the pointwise model structure on [TSph,V].

For a discussion of properness of the pointwise model structure, we introduce
the following definition. Let Cof(V) denote the class of cofibrations in V.

Definition 4.6. A monoidal model category V is strongly left proper if the
cobase change of a weak equivalence along any map in Cof(V)⊗V-cell is again
a weak equivalence.

Strongly left proper monoidal model categories are left proper. If a model
category has only cofibrant objects, it is left proper. If a monoidal model
category has only cofibrant objects, it is strongly left proper. The relevance of
4.6 is explained by the following lemma.

Lemma 4.7. Consider V and C as in 4.2. If f is a cofibration in [C,V], then
f(c) is a retract of a map in Cof(V) ⊗ V-cell for every c ∈ Ob C.
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Proof. Any cofibration in [C,V] is a retract of a relative PI -cell complex, and
VC(d, c) ⊗ i is a map in I ⊗ V-cell for every c ∈ Ob C. The claim follows.

Corollary 4.8. The pointwise model structure on [C,V] is right proper if V
is right proper, and left proper if V is strongly left proper.

4.2 The subcategory case

The goal in this section is to develop conditions under which smashing with
cofibrant V-functors preserves pointwise weak equivalences. This fact will be
used to prove the monoid axiom for the stable model structure. Recall that
if C is a full sub-V-category of V, the left Kan extension along the inclusion
functor I: C ⊂ - V is

I∗X =

∫ Ob C

V(c,−) ⊗ X(c).

Lemma 4.9. Assume V is a weakly finitely generated monoidal model category,
and C is a small and full sub-V-category satisfying f0 and f1. If f is a pointwise
weak equivalence in [C,V], then so is I∗f .

Proof. We have to check that, for any A ∈ ObV, I∗f(A) is a pointwise weak
equivalence. Write A as the colimit of C: I - C for I filtering by f0. Since
coends commute with colimits and f1 holds, it follows that

I∗f(A) =

∫ Ob (C)

V(B,A) ⊗ f(B)

∼=

∫ Ob (C)

V(B, colimi∈IC) ⊗ f(B)

∼= colimi∈I

∫ Ob (C)

V(B,C(i)) ⊗ f(B)

∼= colimi∈I f ◦ C.

Note that, since f is a pointwise weak equivalence, I∗f(A) is a filtered colimit
of weak equivalences and hence a weak equivalence by 3.5.

Corollary 4.10. Let V and C be as in 4.9. If C satisfies f2 and f is a pointwise
weak equivalence in [C,V], then f ∧ V(c,−) is a pointwise weak equivalence for
all c ∈ Ob C.

Proof. Axiom f2 implies that the smash product of two enriched functors exists.
By 2.8, f ∧V(c,−) is isomorphic to I∗f ◦V(c,−). Since I∗f is a pointwise weak
equivalence by 4.9, I∗f(V(c, d)) is a weak equivalence for all d ∈ Ob C.

Theorem 4.11. Let V and C be as in 4.10. Assume V satisfies the monoid
axiom and is strongly left proper, and tensoring with the domains and the
codomains of the generating cofibrations in V preserves weak equivalences. Then
smashing with a cofibrant object in [C,V] preserves pointwise weak equivalences.
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Proof. Let f :X - Y be a pointwise weak equivalence, and let Z be a
cofibrant V-functor. Since Z is cofibrant, it is a retract of some V-functor Z ′,
such that ∗ - Z ′ is the sequential composition of a sequence

∗ = Z ′
0
- g0- Z ′

1
- g1- · · ·-

gn−1- Z ′
n
- gn- · · · ,

where gn is the cobase change of a coproduct of maps in PI . It suffices to
consider sequences indexed by the natural numbers, since the domains of the
maps in PI are finitely presentable. The map f ∧Z is a retract of f ∧Z ′, hence
it remains to prove that the latter is a pointwise weak equivalence. We will
prove this by induction on n. Consider the following diagram.

X ∧
∐

m∈M

V(cm,−) ⊗ tim ¾X∧
∐

V(cm,−)⊗im
X ∧

∐
m∈M

V(cm,−) ⊗ sim - X ∧ Zn

Y ∧
∐

m∈M

V(cm,−) ⊗ tim

f∧
∐

V(cm,−)⊗tim?
¾X∧

∐
V(cm,−)⊗im

Y ∧
∐

m∈M

V(cm,−) ⊗ sim

f∧
∐

V(cm,−)⊗sim?
- Y ∧ Zn.

f∧Zn

?

The map induced on the pushouts of the upper and lower row is f ∧ Zn+1.
Suppose f ∧ Z ′

n is a pointwise weak equivalence. By 4.10 and the hypothe-
sis on I, it follows that both of the other vertical maps are pointwise weak
equivalences. The horizontal maps on the left hand side are not necessarily
cofibrations. However, evaluation at any object gives maps in Cof(V) ⊗ V-
cell. Since V is strongly left proper, this implies that the map induced on the
pushouts – which is computed pointwise – is a pointwise weak equivalence.

Remark 4.12. Let V be a weakly finitely generated monoidal model category.
Suppose that − ⊗ si and − ⊗ ti preserve weak equivalences for every i ∈ I,
and V is strongly left proper. Then − ⊗ A preserves weak equivalences for
any cofibrant object A in V, cp. 4.11. We say a strongly left proper monoidal
model category is strongly monoidal if −⊗A preserves weak equivalences for A
either cofibrant or a domain or codomain of the generating cofibrations, if they
exist. A monoidal model category in which every object is cofibrant satisfies
this condition and also the monoid axiom.

5 The homotopy functor model structure

Suppose F : C - D is a functor of categories with chosen subclasses of weak
equivalences. If F maps weak equivalences to weak equivalences, then F is
called a homotopy functor. As a first step towards the stable model structure
on enriched functors, we define a model structure in which every enriched
functor is weakly equivalent to a homotopy functor.
Let V be a weakly finitely generated strongly monoidal sSet-model category.
Additionally, assume the following for V: the monoid axiom holds, the unit
is cofibrant, ∆1 is finitely presentable in V, filtered colimits commute with
pullbacks, and cofibrations are monomorphisms. The simplicial structure is
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used for the simplicial mapping cylinder construction. Let I: fV ⊂ - V be a
small full sub-V-category such that the following axioms hold.

f1 Every object of fV is V-finitely presentable.

f2 The unit e is in fV, and fV is closed under the monoidal product.

f3 If tj ¾∼ ¾sj - v is a diagram in V where v ∈ Ob fV and j ∈ J ′, then
the pushout tj ∪sj v is in fV.

Consider also the following additional axioms.

f0 Every object of V is a filtered colimit of objects in fV.

f4 All objects in fV are cofibrant.

f5 The simplicial mapping cylinder exists in fV.

Objects in fV will usually be denoted by small letters, since fV should be
thought of as a category of small objects. Let F be short for [fV,V]. Recall
the left Kan extension I∗X of X ∈ ObF along I: fV ⊂ - V, cp. 2.5.

5.1 Equivalences of homotopy functors

Let Φ: fV - V denote the functor induced by the fibrant replacement functor
ΦJ ′

from 3.3.3. In general it is not a V-functor. Denote by ~(X): fV - V
the composition I∗X ◦ Φ, and by ~:F - Fun(fV,V) the induced functor.
There is a natural transformation X - ~(X) induced by the canonical maps
ϕv: v - Φ(v) where v varies through the set of objects in fV.

Lemma 5.1. The functor ~ commutes with colimits and the action of V. The
natural transformations X - ~(X) define a natural transformation from the
forgetful functor F - Fun(fV,V) to ~.

Definition 5.2. A map f is an hf-equivalence if ~(f)(v) is a weak equivalence
in V for all v ∈ Ob fV.

Lemma 5.3. Any pointwise weak equivalences is an hf-equivalence. The class
of hf-equivalences is saturated.

Proof. The first statement follows as in 4.9, since ~(f)(v) = I∗(f)(Φ(v)) is a
filtered colimit of weak equivalences provided f is a pointwise weak equivalence.
The second statement follows from 5.1 and the analogous fact in V.

Lemma 5.4. Let f be a cofibration in F . Then ~(f)(v) is a retract of a map
in Cof(V) ⊗ V-cell for every v ∈ Ob fV.

Proof. If V(v,−) ⊗ i is a generating cofibration, then ~(V(v, w) ⊗ i) coincides
with V(v,Φ(w))⊗ i, which is in Cof(V)⊗V-cell. The general case follows since
~ commutes with colimits.
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5.2 Fibrations of homotopy functors

If φ: v - w is an acyclic cofibration in fV, the simplicial mapping cylinder
factors V(φ,−):V(w,−) - V(v,−) as a cofibration cφ:V(w,−)- - Cφ

followed by a simplicial homotopy equivalence. This uses that V(w,−) is a
cofibrant functor (since the unit in V is cofibrant), and that V (and hence F
by 4.4) is a sSet-model category. Take a generating cofibration i: si - ti in
V and form the pushout product

cφ¤i:V(w,−) ⊗ ti ∪V(w,−)⊗si Cφ ⊗ si - Cφ ⊗ ti.

Let H denote the set {cφ¤i}, where φ runs through the set of acyclic cofibra-
tions in fV and i runs through the set I of generating cofibrations in V.

Definition 5.5. A map is an hf-fibration if it is a pointwise fibration having
the right lifting property with respect to H.

Lemma 5.6. Let f :X - Y be a pointwise fibration. Then f is an hf-fibration
if and only if the following diagram is a homotopy pullback square in V for every

acyclic cofibration φ: v-
∼- w in fV.

X(v)
X(φ)- X(w)

Y (v)

f(v)
?

Y (φ)- Y (w)

f(w)
?

Proof. Let VF (X,Y ) denote the V-object of maps in F from X to Y . For a
map of V-functors f :X - Y , the square in the statement of the lemma is
naturally isomorphic, by the Yoneda lemma 2.1, to the square

VF (V(v,−),X)
VF (V(φ,−),X)- VF (V(w,−),X)

VF (V(v,−), Y )

VF (V(v,−),f)
?

VF (V(φ,−),Y )- VF (V(w,−), Y ).

VF (V(w,−),f)
?

The factorization of V(φ,−) as a cofibration cφ:V(w,−)- - Cφ followed by a
simplicial homotopy equivalence Cφ

- V(v,−) induces a factorization of the
square above into two squares. Since VF (−,X) preserves simplicial homotopy
equivalences by 2.11, which are pointwise weak equivalences by 3.10, the square
above is a homotopy pullback square if and only if

VF (Cφ,X)
VF (cφ,X)- VF (V(w,−),X)

VF (Cφ, Y )

VF (Cφ,f)
?

VF (cφ,Y )- VF (V(w,−), Y )

VF (V(w,−),f)
?
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is a homotopy pullback square. If f :X - Y is a pointwise fibration, the

induced map g:VF (Cφ,X) - VF (Cφ, Y ) ×VF (V(w,−),Y ) VF (V(w,−),X) is

a fibration in V. Here we use f2, so F is a monoidal model category when
equipped with the pointwise model structure, see 4.4. The square in 5.6 is
therefore a homotopy pullback square if and only if g has the right lifting
property with respect to the generating cofibrations in V. By adjointness, this
holds if and only if f has the right lifting property with respect to H.

Lemma 5.7. Let f :X - Y be an hf-fibration. Then

X(v) - ~(X)(v)

Y (v)

f(v)
?

- ~(Y )(v)

~(f)(v)
?

is a homotopy pullback square in V for every object v of fV.

Proof. Let f :X -- Y be a pointwise fibration of pointwise fibrant functors.
From 3.27, ~(f)(v) is a filtered colimit of fibrations of fibrant objects in V,
and therefore a fibration of fibrant objects by 3.5. This uses properties f1 and
f3. The square in the lemma is therefore a homotopy pullback square if and
only if X(v) - Y (v) ×colimY (a) colimX(a) is a weak equivalence in V. Up
to isomorphism, the colimit is taken over the category of finite subcomplexes

(α: v-
∼- a, α′: a-

∼- Fv) in Ob acJ ′

(v, F ). Note that the colimit is filtered
by 3.23. Filtered colimits commute with pullbacks in V by assumption, so the
map in question is a filtered colimit of maps X(v) - Y (v) ×Y (a) X(a) for

acyclic cofibrations α: v-
∼- a in fV. If f is an hf-fibration, then by 5.6 the

map in question is a filtered colimit of weak equivalences in V, and hence a
weak equivalence.
If f :X -- Y is any pointwise fibration, use the factorizations in the pointwise
model structure to construct a commutative square

X- ∼

g
- X ′

Y

f ??
- ∼

h
- Y ′

f ′

??

for f ′ a pointwise fibration of pointwise fibrant functors, and g and f pointwise
acyclic cofibrations. Note that f is an hf-fibration if and only f ′ is, see 3.13
and 5.6. The maps g and h are pointwise weak equivalences, hence ~(g)(v)
and ~(h)(v) are weak equivalences in V for every v. The square in question is
therefore a homotopy pullback square by the previous case.

Corollary 5.8. A map is an hf-fibration and an hf-equivalence if and only if
it is a pointwise acyclic fibration.
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Proof. If f is an hf-fibration, it is a pointwise fibration by definition. If f is
also an hf-equivalence, it is a pointwise weak equivalence by 3.13 and 5.7. A
pointwise acyclic fibration is an hf-fibration by 3.13 and 5.6.

5.3 The homotopy functor theorem

Before we prove the existence of the homotopy functor model structure, let us
first consider the maps in H-cell.

Lemma 5.9. The maps in H-cell are hf-equivalences.

Proof. Let φ: v-
∼- w be an acyclic cofibration in fV. Then the induced

map V(φ,−):V(w,−) - V(v,−) is an hf-equivalence, because ~(V(φ,−))(v)
is naturally isomorphic to V(φ,Φ(v)), φ is an acyclic cofibration and Φ(v) is
fibrant. Pointwise weak equivalences are hf-equivalences by 5.3, so the map
cφ:V(w,−)- - Cφ is an hf-equivalence.
Let i: si- - ti be a generating cofibration in V. Consider the diagram

V(w,−) ⊗ si
cφ⊗si- Cφ ⊗ si

V(w,−) ⊗ ti

V(w,−)⊗i
?

cφ⊗ti- Cφ ⊗ ti

Cφ⊗i

?

and the pushout product map cφ¤i. The functor ~ commutes with pushouts
and the action of V by 5.1, so ~(cφ¤i)(u) is the pushout product map obtained
from ~(cφ)(u) and i. Since V is strongly monoidal, it follows that ~(cφ)(u)¤i
is a weak equivalence. Hence the maps in H are hf-equivalences. The general
case of a map in H-cell follows using similar arguments and 5.4.

Theorem 5.10. Let V be a weakly finitely generated monoidal sSet-model cat-
egory, and let fV be a full sub-V-category satisfying f1, f2 and f3. Suppose the
monoid axiom holds in V, pullbacks commute with filtered colimits in V, and
∆1 is finitely presentable in V. Suppose also that V is strongly monoidal, and
that cofibrations in V are monomorphisms. Then F is a weakly finitely gener-
ated model category, with hf-equivalences as weak equivalences, hf-fibrations as
fibrations, and cofibrations as cofibrations.

Proof. Again we use [7, 2.1.19]. The set of generating cofibrations is PI , and
the set of generating acyclic cofibrations is the union PJ ∪H. It is clear that the
class of hf-equivalences is saturated and closed under retracts. It is also clear
that the domains of the maps in H are finitely presentable, because finitely
presentable objects are closed under pushouts and tensoring with finitely pre-
sentable objects. Here we use that ∆1 is finitely presentable in V. The other
properties which have to be checked are either obvious or follow from 5.8, 5.9
and the corresponding fact for the pointwise model structure 4.2.
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The model structure in 5.10 is called the homotopy functor model structure.
To emphasize the model structure, we use the notation Fhf . An hf-equivalence

is denoted by
∼hf- and an hf-fibration by

hf-- . Likewise, we use the

notations Fpt,
∼pt- and

pt-- for the pointwise model structure.

Lemma 5.11. The identity induces a left Quillen functor IdF :Fpt
- Fhf .

Lemma 5.12. Let V and fV be as in 5.10, and assume fV satisfies f4. Then
Fhf is a monoidal Fpt-model category.

Proof. Condition f2 is used to construct the smash product on F , and 4.4
holds. To prove that the homotopy functor model structure is monoidal, it
suffices to show that the pushout product map of a map cφ¤i in H (where

φ: v-
∼- w) and a generating cofibration V(u,−) ⊗ j is an hf-equivalence. It

is straightforward to check that this pushout product map coincides with the
pushout product map cφ⊗u¤f where f is the pushout product map in V of i and
j. Since V is a monoidal model category and fV satisfies f2 and f4, φ⊗u is an
acyclic cofibration in fV. Hence the map in question is an hf-equivalence.

Lemma 5.13. The homotopy functor model structure is left proper. If V is right
proper, then the homotopy functor model structure is right proper.

Proof. For left properness, let i:Y - Z ∪X Y be the cobase change of an

hf-equivalence g:X
∼hf- Z along a cofibration f :X- - Y . Factor g as a

cofibration h:X- - T , followed by a pointwise acyclic fibration p:T
∼-- Z.

Then g is an hf-equivalence, hence an acyclic cofibration in the homotopy func-
tor model structure. These maps are closed under cobase changes, so i factors
as an acyclic cofibration, followed by the cobase change of p. The latter is a
pointwise weak equivalence, since the cobase change of f along g is a cofibration
and the pointwise model structure is left proper by 4.8 provided V is strongly
left proper.

A slightly stronger property than right properness holds. Consider the maps

f :X
pt-- Z and g:Y

∼hf- Z. We claim the base change i of g along f is an
hf-equivalence. Let us shorten the notation by setting R = RJ ′

. To prove that

i is an hf-equivalence, factor Rf :RX - RZ as h:RX-∼ pt- T followed by

p:T
pt-- RZ. Then ~(p)(v) is a fibration of fibrant objects for any v by 3.5.

Moreover, ~(h)(v) and ~(ρZ(v)): ~(Z)(v) - ~(RZ)(v) are weak equivalences
for any v. Hence the base change of the weak equivalence ~(ρZ(v)) ◦ ~(g)(v)
along ~(b)(v) is a weak equivalence, using that V is right proper. Note that the
base change map factors as ~(h)(v) composed with the base change of ~(g)(v)
along ~(f)(v), i.e. ~(i)(v) since pullbacks commute with filtered colimits. It
follows that i is an hf-equivalence.
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5.4 Homotopy functors

We end this section with a discussion of homotopy functors. If f4 and f5 hold,
then a fibrant V-functor X in Fhf is a homotopy functor for the following
reasons: By 5.6, X maps acyclic cofibrations to weak equivalences. Using f4

and f5, every weak equivalence in fV can be factored as an acyclic cofibration
in fV, followed by a simplicial homotopy equivalence in fV. It follows from 2.11
that X preserves arbitrary weak equivalences in fV. Conversely, any V-functor
which is pointwise fibrant and a homotopy functor is fibrant in Fhf . Therefore
we regard the expressions “pointwise fibrant homotopy functor” and “fibrant
in Fhf” as synonymous. Next we define a fibrant replacement functor in Fhf

which allows to replace our definition of hf-equivalence by a better one.

Definition 5.14. For X ∈ ObF , define Xh as the composition I∗X ◦R, where
I: fV ⊂ - V is the inclusion and R := RJ ′

is the fibrant replacement V-functor
constructed in 3.3.2.

For pointed simplicial sets, Lydakis [11, 8.6] uses the singular complex applied
to the geometric realization as an enriched fibrant replacement functor. This
functor preserves fibrations, weak equivalences and finite limits.

Lemma 5.15. The map X - Xh is a V-natural transformation of V-
functors, and extends to a natural transformation IdF

- (−)h. The functor
(−)h commutes with colimits and the action of V.

Proof. The first two statements follow from 3.25 and properties of enriched
Kan extension. For the last statement, use that coends commute with colimits
and the action of V, which are pointwise constructions.

Lemma 5.16. Assume f4 and let X ∈ ObF be cofibrant. For every object v

in fV, the weak equivalence ωv: Φ(v)
∼- R(v) induces a weak equivalence

~(X)(v) - Xh(v).

Proof. Since V is monoidal, f4 implies that V(w,Φv) - V(w,Rv) induced

by the canonical weak equivalence ωv: Φv
∼- R(v) is a weak equivalence for

every w ∈ fV. Now express X as a retract of a PI -cell complex. The lemma
follows then by induction, because V is strongly monoidal.

Corollary 5.17. Assume f4 holds and X is cofibrant. Then R ◦ Xh is a
pointwise fibrant homotopy functor and X - R◦Xh is an hf-equivalence. A
map f of cofibrant functors is an hf-equivalence if and only if fh is a pointwise
weak equivalence.

Proof. The second claim follows directly from 5.16, while the first claim requires
just a slight variation of the proof of 5.16.

Lemma 5.18. Suppose C satisfies f0 and f4. For any X ∈ ObV, the canonical

map ~(X)(v) - Xh(v) induced by the weak equivalence ωv: Φ(v)
∼- R(v)

is then a weak equivalence for all v ∈ Ob fV.

Documenta Mathematica 8 (2003) 409–488



Enriched Functors and Stable Homotopy Theory 449

Proof. Note that 4.9 holds. Hence, by a cofibrant replacement in Fpt, it suffices
to consider cofibrant functors. This case follows from 5.16.

Corollary 5.19. Assume f0 and f4 hold. A map f is then an hf-equivalence if
and only if fh is a pointwise weak equivalence. Furthermore, for any X ∈ ObF ,
the functor R◦Xh is a pointwise fibrant homotopy functor and the natural map
X - R ◦ Xh is an hf-equivalence.

Proof. As in 5.17, using 4.9.

Remark 5.20. If ρ: IdV
- R has the property that its restriction to fV

takes values in cofibrant objects, then Xh is always a homotopy functor. The
reason is that in a sSet-model category, any weak equivalence of fibrant and
cofibrant objects is a simplicial homotopy equivalence, and V-functors preserve
them.

6 The stable model structure

We will construct the stable model structure on the category F = [fV,V] with
respect to some cofibrant object T of fV. For this, assume V and fV are as
in 5.10. In addition, V has to be right proper and cellular. We also require
that fV satisfies f4, in order to have a well-behaved fibrant replacement in Fhf .
Finally, we assume the adjoint pair (−⊗T,V(T,−)) is a Quillen equivalence on
the stable model structure on spectra described in 6.16. Since T is contained
in fV and f2 holds, the canonical functor π:TSph - V factors over the
inclusion as i:TSph - fV. Let (i∗, ev) denote the corresponding adjoint
pair of functors.

6.1 Stable equivalences

We start by describing the stabilization process. For every object v in fV,
the composition of the counit ǫTV(v,−):V(T,V(v,−)) ⊗ T - V(v,−) and
the natural isomorphism V(T,V(v,−)) ∼= V(T ⊗ v,−) define a morphism
τv:V(T ⊗ v,−) ⊗ T - V(v,−) which is natural in v. If X is a V-functor,
then the induced map VF (τv,X):VF (V(v,−),X) - VF (V(T ⊗v,−)⊗T,X)
is natural in v and X. Using the enriched Yoneda lemma 2.1, one obtains a
map tX(v):X(v) - V(T,X(T ⊗ v)). Let Sh:F - F denote the ‘shift’
functor obtained by pre-composing with the V-functor T ⊗−: fV - fV. De-
fine T:F - F to be the composition V(T,−) ◦ Sh, so that T(X)(v) =
V(T,X(T ⊗ v)). The collection of the maps tX(v) is a V-natural trans-
formation tX :X - T(X). Let T

∞(X) denote the colimit of the se-

quence X
t(X)- T(X)

T(t(X))- T(T(X)) - · · ·. The canonical map
t∞X :X - T

∞(X) yields a natural transformation t∞: IdF
- T

∞.
The definition of stable weak equivalences uses the fibrant replacement functor
ΦJ ′

considered in 3.3.3. Let Φ be short notation for ΦJ ′

, and similarly for the
other fibrant replacement functors R and F . Recall that ~(X) is not necessarily
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a V-functor for every X ∈ ObF . But it can be stabilized, since there are
natural weak equivalences θv:T ⊗ Φ(v) - Φ(T ⊗ v) according to 3.26. Let
T
′: Fun(fV,V) - Fun(fV,V) be the functor that maps X to the composition

V(T,−) ◦ X ◦ (T ⊗−): fV - V. Define the map t′
~(X): ~(X) - T

′(~(X))
pointwise as the adjoint of

I∗X(Φ(v)) ⊗ T - I∗X(T ⊗ Φ(v)) - I∗X(Φ(T ⊗ v)).

The map on the left hand side in this composition is adjoint to the composition

T
ηΦ(v)(T )- V(Φ(v), T ⊗Φ(v))

homI∗X

Φ(v),T⊗Φ(v)- V(I∗X(Φ(v)), I∗X(T ⊗Φ(v))), and
the map on the right hand side is I∗X(θv)

Lemma 6.1. There is a natural transformation t′
~
: ~ - T

′ ◦ ~. The natu-
ral transformation u:U - ~, where U :F - Fun(fV,V) is the forgetful
functor, makes the following diagram commutative.

U ◦ IdF
U◦t- U ◦ T = T

′ ◦ U

~

u

?
t′

~ - T
′ ◦ ~.

T
′◦u

?

Proof. The claim follows since tX(v):X(v) - T(X)(v) can be defined as the
adjoint (under tensoring with T ) of the adjoint (under tensoring with X(v)) of
homX

v,T⊗v ◦ ηv(T ):T - V(v, T ⊗ v) - V(X(v),X(T ⊗ v)), cp. A.8.

Denote the colimit of ~(X)
t′

~(X)- T
′(~(X))

T
′(t′

~(X))- T
′(T′(~(X))) - · · · by

T
′∞(~(X)), and let t′

∞
~(X) be the canonical map ~(X) - T

′∞(~(X)).

Definition 6.2. A map f in F is a stable equivalence if T
′∞(~(Rf))(v) is a

weak equivalence in V for every object v of fV.

Lemma 6.3. Every hf-equivalence is a stable equivalence. The class of stable
equivalences is saturated.

There are canonical maps X(v) - RX(v) - ~(RX)(v) for all v ∈ Ob fV.

Consider the induced map T
∞(X) - T

′∞(~(RX)). The latter is sometimes

a pointwise weak equivalence.

Lemma 6.4. Assume X ∈ ObF is a pointwise fibrant homotopy functor. Then

T
∞(X)(v) - T

′∞(~(RX))(v) is a weak equivalence in V for all v ∈ Ob fV.

Proof. Note that X(v) - ~(RX)(v) is a weak equivalence of fibrant objects.
V(T,−) preserves weak equivalences of fibrant objects since T is cofibrant and
V is a monoidal model category. The map is question is hence a sequential
colimit of weak equivalences, so 3.5 concludes the proof.

Corollary 6.5. A map f between pointwise fibrant homotopy functors is a
stable equivalence if and only if T

∞(f) is a pointwise weak equivalence.
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6.2 Stable fibrations

Let τv:V(T ⊗ v,−) ⊗ T - V(v,−) be the canonical map of V-functors de-
scribed in section 6.1. The simplicial mapping cylinder factors τv as a cofibra-
tion dv:V(T⊗v,−)⊗T- - Dv followed by a simplicial homotopy equivalence.
Take a generating cofibration i: si- - ti ∈ I in V and form the pushout prod-
uct dv¤i. The set D of generating acyclic cofibrations for the class of stable
equivalences is {dv¤i}, where v ∈ Ob fV and i ∈ I.

Definition 6.6. A map is called a stable fibration if it is an hf-fibration having
the right lifting property with respect to the set D.

Lemma 6.7. An hf-fibration f :X - Y is a stable fibration if and only if

X(v)
tX(v)- T(X)(v)

Y (v)

f(v)
?

tY (v)- T(Y )(v)

T(f)(v)
?

is a homotopy pullback square in V for every object v of fV.

Proof. The proof is formally the same as for 5.6.

The rest of this section is devoted to prove that a stable fibration which is also
a stable equivalence is a pointwise weak equivalence.

Lemma 6.8. Assume V is right proper, and that filtered colimits commute with
pullbacks in V. Let f :X - Y be a stable fibration. Then

~(RX)(v)
t′

~(RX)(v)- T
′(~(RX))(v)

~(RY )(v)

~(Rf)(v)
? t′

~(RY )(v)- T
′(~(RY ))(v)

T
′(~(Rf))(v)

?

is a homotopy pullback square in V for all v ∈ Ob fV.

The proof of 6.8 uses 6.10, 6.11 and 6.12. We start with a general fact about
model categories.

Lemma 6.9. Let G: C - D be a functor between right proper model categories
which preserves pullbacks, fibrations and acyclic fibrations. Suppose

A
∼- B

C

f ??
∼- D

?

is a commutative diagram in C, such that the horizontal maps are weak equiva-
lences with fibrant targets, and such that f :A -- C is a fibration. Then the
image of this square under G is a homotopy pullback square.

Documenta Mathematica 8 (2003) 409–488



452 B. I. Dundas, O. Röndigs, P. A. Østvær

Proof. By Ken Brown’s lemma, we can assume that the horizontal maps are
in fact acyclic cofibrations. Factor the composition A - D as an acyclic

cofibration i:A- ∼- E followed by a fibration p:E -- D. Then the map

B - D factors as B
∼- E

p-- D, by choosing a lift in the diagram

A- ∼

i
- E

B

∼

?

?

- D.

p??

Define P to be the pullback of C
∼- D ¾¾p

E and call the map induced by

f and i h:A - P . Since C
∼- D and i are weak equivalences and C is

right proper, h is a weak equivalence. Using the assumptions on G and right
properness of D (3.14), we have to prove that G(h) is a weak equivalence.

Let Q be the pullback of A
f-- C ¾¾p′

P , where p′ is the base change
of p. The maps idA and h induce a map A - Q which can be factored as

A- s

∼
- W

q-- Q. After all, we have a factorization of h as A- s

∼
- W

f ′◦q-- P ,

where f ′ is the base change of the fibration f . The map h is a weak equivalence,
thus f ′ ◦ q is an acyclic fibration. In particular, G(f ′ ◦ q) is an acyclic fibration.
The map p′′ ◦ q:W - A is a fibration (where p′′ is the base change of the

fibration p′) and has s:A- ∼- W as a section. Hence p′′ ◦ q is an acyclic
fibration, and so is G(p′′ ◦ q). Now G(s) is a section of G(p′′ ◦ q), implying that
G(s), and therefore G(h = (f ′ ◦ q) ◦ s), is a weak equivalence.

Corollary 6.10. Let f :X - Y be a pointwise fibration, and assume V
is right proper. Then the following is a homotopy pullback square in V for all
v ∈ Ob fV.

V(T,X(v))
V(T,ρX(v))- V(T,RX(v))

V(T, Y (v))

V(T,f(v))
?

V(T,ρY (v))- V(T,RY (v))

V(T,Rf(v))
?

Proof. Follows from 6.9, since V(T,−):V - V is a right Quillen functor.

Corollary 6.11. Suppose V is right proper and f :X - Y is a stable
fibration. Then the following is a homotopy pullback square for all v ∈ Ob fV.

RX(v)
tRX(v)- T(RX)(v)

RY (v)

Rf(v)
?

tRY (v)- T(RY )(v)

T(Rf)(v)
?
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Proof. Consider the following commutative diagram.

X(v)
tX(v) - T(X)(v)

RX(v)
tRX(v) -

ρ
X(v) -

T(f)(v)

T(RX)(v)

T(ρ
X(v) )

-

Y (v)

f(v)

?
tY (v) - T(Y )(v)

?

RY (v)

Rf(v)

?
tRY (v) -

ρ
Y (v) -

T(RY )(v)

T(Rf)(v)

?

T(ρ
Y (v) )

-

The right hand square of the cube is a homotopy pullback square by 6.10.
Likewise for the square in the back using the assumption on f . In the left
hand square the horizontal maps are weak equivalences. Hence the square in
question is a homotopy pullback square by 3.13.

Lemma 6.12. Assume f :X - Y is a stable fibration of pointwise fibrant
functors, and filtered colimits commute with pullbacks in V. Then

~(X)(v)
t′

~(X)(v)- T
′(~(X))(v)

~(Y )(v)

~(f)(v)
? t′

~(Y )(v)- T
′(~(Y ))(v)

T
′(~(f))(v)

?

is a homotopy pullback square for all v ∈ Ob fV.

Proof. Up to isomorphism, the square above decomposes into two squares:

colimac(v,R)X(a)
colimtX(a)- colimac(v,R)T(X)(a)

cX- colimac(T⊗v,R)V(T,X(b))

colimac(v,R)Y (a)

colimf(a)
?

colimtY (a)- colimac(v,R)T(Y )(a)

colimT(f)(a)
?

cY- colimac(T⊗v,R)V(T, Y (b))

colim V(T,f(b))
?

Recall from 3.3.3 that the objects in ac(T⊗v,R) are T⊗v-
∼- b - R(T⊗v).

The maps cX and cY are obtained from Θv: ac(v,R) - ac(T ⊗ v,R) which

maps v-
∼- a - R(v) to T⊗v-

∼- T⊗a - T⊗R(v) - R(T⊗v), and
the natural transformation V(T,X(T ⊗ Φv)) - V(T,X(ΦT⊗v ◦ Θv)) which
consists of identity maps. From 3.23, one can replace the indexing categories
ac(v,R) and ac(T ⊗ v,R) by filtered ones, namely ac(v, F ) and ac(T ⊗ v, F ).
Then all the vertical maps are fibrations of fibrant objects, because f is a
pointwise fibration of pointwise fibrant functors and 3.5 holds. It follows that
the left hand square is a homotopy pullback square if and only if the canonical
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map g from colimac(v,F )X(a) to the pullback is a weak equivalence. Filtered
colimits commute with pullbacks, so g is the filtered colimit of the canonical
maps induced by the squares

X(a)
tX(a)- T(X)(a)

Y (a)

f(a)
?

tY (a)- T(Y )(a)

T(f)(a)
?

for finite sub-complexes v-
∼- a of v-

ιv- Fv. These squares are all homotopy
pullback squares: f is a stable fibration, and the vertical maps are fibrations
of fibrant objects. It follows that g is a filtered colimit of weak equivalences,
so the left hand square is a homotopy pullback square.
That the right hand square is a homotopy pullback depends on whether f is
an hf-fibration. We claim that

X(T ⊗ a) - colimac(T⊗v,R)X(b)

Y (T ⊗ a)

f(T⊗a)
?

- colimac(T⊗v,R)Y (b)

colimac(T⊗v,R)f(b)
?

is a homotopy pullback square for all v-
∼

α
- a - R(v) in ac(v,R). Denote

the full subcategory of ac(T ⊗ v,R) consisting of T ⊗ v-
∼

β
- b - R(T ⊗ v),

where β factors as T ⊗ v-
T⊗α- T ⊗ a- - b, by ac(T ⊗ v,R)a. This category

is a final subcategory of ac(T ⊗ v,R). Hence we may assume the colimit in the
square above is indexed by ac(T ⊗v,R)a. As in the proof of 5.7, it follows that

the square above is a homotopy pullback square for all v-
∼

α
- a - R(v) in

ac(v,R). Here we use that f is an hf-fibration. The right hand square in the
main diagram is then a homotopy pullback square, using the by now standard
argument for filtered colimits of homotopy pullback squares.

A proof of 6.8 follows:

Proof. By 6.11, we may assume f is a stable fibration of pointwise fibrant
functors. The result is therefore a consequence of 6.12.

Lemma 6.13. Suppose that V is right proper and filtered colimits commute with
pullbacks in V. Let f :X - Y be a stable fibration. Then

X(v) - T
′∞(~(RX))(v)

Y (v)

f(v)
?

- T
′∞(~(RY ))(v)

T
′∞(~(Rf))(v)

?

is a homotopy pullback square in V for all v ∈ Ob fV.
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Proof. Let f :X - Y be a stable fibration. Factor Rf as RX-∼ pt- Z

followed by g:Z
pt-- RY . Here g is a stable fibration of pointwise fibrant

functors by 5.6 and 6.11. The claim in 6.13 is equivalent to the statement that

Z(v) - T
′∞(~(Z))(v)

RY (v)

g(v)
?

- T
′∞(~(RY ))(v)

T
′∞(~(g))(v)

?

is a homotopy pullback square. The vertical maps are fibrations of fibrant
objects, and there is the decomposition

Z(v) - ~(Z)(v) - T
′∞(~(Z))(v)

RY (v)

g(v)
?

- ~(RY )(v)

~(g)(v)
?

- T
′∞(~(RY ))(v)

T
′∞(~(g))(v)

?

The left hand square is a homotopy pullback square by 5.7. The functor V(T,−)
preserves homotopy pullback squares provided the vertical maps are fibrations
of fibrant objects. It follows, using 6.8, that the right hand square is a homotopy
pullback square.

Corollary 6.14. A map is a stable fibration and a stable equivalence if and
only if it is a pointwise acyclic fibration.

Proof. Let f :X - Y be a stable fibration and a stable equivalence. Stable
fibrations are in particular pointwise fibrations, so it remains to prove that f
is a pointwise weak equivalence. By 6.13, the following diagram is a homotopy
pullback square in V for all v ∈ Ob fV.

X(v) - T
′∞(~(RX))(v)

Y (v)

f(v)
?

- T
′∞(~(RY ))(v)

T
′∞(~(Rf))(v)

?

Since f is a stable equivalence, the right hand vertical map is a weak equiv-
alence. It follows that f is a pointwise weak equivalence. Consider the other
implication.
A pointwise acyclic fibration f :X - Y is a stable equivalence according to
6.3. So 5.8 implies that f is an hf-fibration. By 6.7, it remains to prove that

X(v)
t(X)(v)- T(X)(v)

Y (v)

f(v)
?

t(Y )(v)- T(Y )(v)

T(f)(v)
?

is a homotopy pullback square in V for all v ∈ fV. The maps f(v) and f(T ⊗v)
are acyclic fibrations and V(T,−) preserves acyclic fibrations. This implies that
T(f)(v) is an acyclic fibration.
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6.3 Comparison with T -spectra

To proceed with the stable model structure we will compare the stabilizations
of enriched functors 6.1 and spectra [8, §4]. Recall the “suspension with T”
functors − ⊗ T and ΣT on Sp(V, T ) from 2.13. Let Evn := EvT n denote the
functor evaluating a spectrum on Tn. If n ≥ 0, there is the commutative
diagram:

Sp(V, T )
−⊗T- Sp(V, T )

Sp(V, T )

ΣT

?
Evn - V

Evn

?

Hence, for any spectrum E, E⊗T and ΣT E differ only in their structure maps.
This statement carries over to the adjoints V(T,−): Sp(V, T ) - Sp(V, T ) and

ΩT : Sp(V, T ) - Sp(V, T ). The composition TSph ⊂ - V
T⊗−- V does not

factor over the inclusion TSph ⊂ - V. Hence the shift functor Sh:F - F
does not have a compatible analog in the category of spectra. But there is the
shift sh: Sp(V, T ) - Sp(V, T ) where (sh(E))n: = En+1. The nth structure
map of sh(E) is en+1, and the following diagram commutes for all n ≥ 0.

F
Sh - F

ev- Sp(V, T )

Sp(V, T )

ev
?

sh- Sp(V, T )
Evn - V

Evn

?

The stabilization for spectra uses that the structure maps of a spectrum E de-
fine a natural map s(E):E - sh(ΩT E). Let us abbreviate the composition
sh◦ΩT by S: Sp(V, T ) - Sp(V, T ). Then s(E)n:En

- S(E)n = ΩT En+1

is the adjoint of en. The stabilization S∞(E) of a spectrum E is the colimit of

the diagram E
s(E)- S(E)

S(s(E))- S(S(E)) - · · ·. Let s∞:E - S∞(E)
be the canonical map. In [8, §4], the notation ι: IdSp(V,T )

- Θ is
used instead of s: IdSp(V,T )

- S, and j: IdSp(V,T )
- Θ∞ instead of

s∞: IdSp(V,T )
- S∞.

Definition 6.15. A map f :E - F of spectra is a stable equivalence if
S∞(R ◦ f) is a pointwise weak equivalence, and a stable fibration if f is a
pointwise fibration and

E - R ◦ E
s∞(R◦E)- S∞(R ◦ E)

F

f

?
- R ◦ F

R◦f

?
s∞(R◦F )- S∞(R ◦ F )

S∞(R◦f)
?

is a homotopy pullback square in the pointwise model structure.
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We summarize the results [8, 4.12, 4.14, 6.5].

Theorem 6.16 (Hovey). Let V be an almost finitely generated, pointed,
proper, and cellular monoidal model category. Let T be some cofibrant and
V-finitely presentable object of V. Assume sequential colimits commute with
pullbacks in V. Then Sp(V, T ) is an almost finitely generated proper V-model
category with stable equivalences as weak equivalences, stable fibrations as fi-
brations and cofibrations as cofibrations.

The condition that V be cellular might be weakened according to the remark
after [8, 4.12]. An important input in the proof of 6.16 is the following lemma.

Lemma 6.17. If E is pointwise fibrant, then s∞(E) is a stable equivalence with
a stably fibrant codomain.

The natural maps ev(t∞(X)) and s∞(ev(X)) do not coincide. Compatibility
of the two stabilization processes is therefore an issue, see 6.18 and 6.19 below.

Lemma 6.18. If v is an object of fV, let v∗:F - F be the functor where
X - X ◦ (v ⊗−) and let γv,n be short for the coherence isomorphism

T ⊗ (v ⊗ Tn)
αT,V,T n- (T ⊗ v) ⊗ Tn σT,v⊗T n

- (v ⊗ T ) ⊗ Tn
α−1

v,T,T n- v ⊗ Tn+1.

Then the next diagram is commutative and natural in X.

X(v ⊗ Tn)
t(X)(v⊗T n)- V(T,X(T ⊗ (v ⊗ Tn))) = T(X)(v ⊗ Tn)

V(T,X(v ⊗ Tn+1))

V(T,X(γv,n))
?

s(ev(v∗
(X)))n -

Proof. By definition, t(X)(v ⊗ Tn) is the adjoint of

T
ηv⊗T n (T )- V(v ⊗ Tn, T ⊗ (v ⊗ Tn))

homX

- V(X(v ⊗ Tn),X(T ⊗ (v ⊗ Tn))).

Likewise, the map s(ev(v∗(X)))n is the adjoint of

T
ηT n (T )- V(Tn, Tn+1)

hom
v∗(X)

T n,T n+1- V(X(v ⊗ Tn),X(v ⊗ Tn+1)).

Note that hom
v∗(X)
T n,T n+1 = hom

X◦(v⊗−)
T n,T n+1 = homX

v⊗T n,v⊗T n+1 ◦ homv⊗−
T n,T n+1 . The

claim follows from A.2.

Corollary 6.19. For all X ∈ ObF and v ∈ Ob fV, there exists an iso-
morphism γ: T∞(X)(v ⊗ Tn) - S∞(ev(v∗(X)))n and the diagram below is
commutative and natural in X.

X(v ⊗ Tn)
t∞(X)(v⊗T n)- T

∞(X)(v ⊗ Tn)

S∞(ev(v∗(X)))n

γ
?

s∞
(ev(v ∗

(X)))n
-
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Proof. The maps γ and s∞(ev(v∗(X)))n are the vertical sequential composi-
tions in the following commutative diagram.

X(v ⊗ Tn)
idX(v⊗T n) - X(v ⊗ Tn)

T(X)(v ⊗ Tn)

t(X)(v⊗T n)
?

V(T,X(γ1)) - V(T,X(v ⊗ Tn+1))

s(ev(v∗(X)))n

?

T(T(X))(v ⊗ Tn)

T(t(X))(v⊗T n)
?

V(T,V(T,X(γ2)))- V(T,V(T,X(v ⊗ Tn+2)))

V(T,s(ev(v∗(X)))n+1)
?

...

?
...

?

Here γ1 is the map γv,n in 6.18. Note that the second square above is V(T,−)
applied to the diagram

X(T ⊗ (v ⊗ Tn))
t(X)(t⊗(v⊗T n))- T(X)(T ⊗ (v ⊗ Tn))

X(v ⊗ Tn+1)

V(T,X(γ1))
?

s(ev(v∗(X)))n+1- V(T,X(v ⊗ Tn+1)).

V(T,X(γ2))
?

Let γ2 be defined as T ⊗ (T ⊗ (v⊗Tn))
T⊗γv,n- T ⊗ (v⊗Tn+1)

γv,n+1- v⊗Tn+1.
Then the lower square commutes because of naturality and 6.18. Likewise one
constructs γn inductively, and puts γ to be colimnγn. The result follows.

If v ∈ Ob fV, the composition I∗X ◦Φ ◦ (v ⊗−) = ~(X) ◦ (v ⊗−) determines a
T -spectrum v∗X for every V-functor X. The nth term of v∗X is I∗X(Φ(v⊗Tn))
and the structure map v∗Xn ⊗ T - v∗Xn+1 is the composition

I∗X(Φ(v ⊗ Tn))⊗ T
swI∗X

T- I∗X(Φ(v ⊗ Tn)⊗ T )
I∗X(θv⊗T n )- I∗X(Φ(v ⊗ Tn+1))

up to an associativity isomorphism. This construction is functorial and com-
mutes with colimits and the closed V-module structures.

Lemma 6.20. A map f :X - Y in F is a stable equivalence if and only if
v∗f : v∗X - v∗Y is a stable equivalence of T -spectra for all v ∈ Ob fV.

Proof. Let f :X - Y be a stable equivalence, and pick v ∈ Ob fV. The map
T
′∞(~(R◦f))(v⊗Tn) is a weak equivalence in V by definition. The isomorphism

mentioned in 6.19 implies that this map is isomorphic to S∞(v∗(R◦f)′)n. Thus
v∗(R ◦ f) is a stable equivalence of T -spectra. Since this is a pointwise fibrant
replacement of v∗f in Sp(V, T ), it follows that v∗f is a stable equivalence. The
converse holds by running the argument backwards.
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If additional conditions are satisfied, the characterization of stable equivalences
can be improved in that ~ becomes redundant. Note that the last characteri-
zation uses the axiom f4.

Corollary 6.21. A map f :X - Y of pointwise fibrant homotopy functors
is a stable equivalence if and only if ev(v∗(f)) is a stable equivalence of spectra
for every object v of fV.

Proof. By 6.4, f is a stable equivalence if and only if T
∞(f)(w) is a weak

equivalence in V for every w. The proof proceeds as in 6.20.

Corollary 6.22. A map f of cofibrant functors is a stable equivalence if and
only if ev(v∗(fh)) is a stable equivalence of spectra for all v ∈ Ob fV.

Proof. Consider the diagram

X
∼hf- RXh

Y

f

?
∼hf- RY h.

Rfh

?

¿From 5.17 – which uses f4 – and 6.3 we have that f is a stable equivalence if
and only if Rfh is a stable equivalence. Corollary 6.21 shows that f is a stable
equivalence if and only if ev(v∗(Rfh)) is a stable equivalence in Sp(V, T ) for all
v ∈ Ob fV. Since ev(v∗(Rfh)) = R ev(v∗(fh)) and pointwise weak equivalences
of spectra are stable equivalences, it follows that f is a stable equivalence if
and only if ev(v∗(fh)) is a stable equivalence of spectra.

6.4 The generating stable equivalences

Recall the stable model structure on Sp(V, T ) from 6.16. In this structure,
(ΣT ,ΩT ) is a Quillen equivalence by [8, 3.9]. In general, it is not clear whether
(−⊗ T,V(T,−)) – which is more natural to consider when viewing spectra as
V-functors – is a Quillen equivalence. As explained in [8, 10.3], this holds if T
is symmetric, which roughly means that the cyclic permutation on T ⊗ T ⊗ T
is homotopic to the identity. We formulate a working hypothesis.
Hypothesis: The adjoint functor pair (−⊗T,V(T,−)) is a Quillen equivalence
for the model category Sp(V, T ) described in 6.16.

Lemma 6.23. The maps in D are stable equivalences.

Proof. A map dv¤i in D is a cofibration of cofibrant functors, and by 6.22 a
stable equivalence if and only if ev(w∗(dv¤i)h) = ev(w∗(dv)h)¤i is a stable
equivalence of spectra for all w ∈ Ob fV. We claim the latter holds if f :=
ev(w∗(dv)h) is a stable equivalence.
Factor f as a cofibration g followed by a pointwise acyclic fibration p. The
stable model structure on spectra is a V-model structure by 6.16, hence f¤i
factors as a cobase change of the stable acyclic cofibration g¤i, followed by the
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map p¤i. Since V is assumed to be strongly monoidal, p¤i is a pointwise weak
equivalence.
It remains to prove that dv is a stable equivalence. This condition is equivalent
to τv being a stable equivalence. The latter factors by definition as

V(T ⊗ v,−) ⊗ T
∼=- V(T,V(v,−)) ⊗ T

ǫT V (v,−)- V(v,−)

where ǫT is the counit (− ⊗ T ) ◦ V(T,−) - IdF . We are reduced to prove
that ǫT V (v,−) is a stable equivalence. By 6.22, this map is a stable equivalence
if and only if ev(w∗(ǫTV(v,−))h) is a stable equivalence of spectra for every
w. Since ev commutes with the action and coaction of V, ev(w∗(ǫTV(v,−))h)
coincides with ǫT ev(w∗(V(v,−))h).
Let q:Q - IdSp(V,T ) be a cofibrant replacement functor in the category of
spectra, so q(E)n is an acyclic fibration in V for every spectrum E and n ≥ 0.
Consider the following diagram, where the notation is simplified.

(QV(T, ev(V(v,R(w ⊗−))))) ⊗ T
q⊗T- V(T, ev(V(v,R(w ⊗−)))) ⊗ T

Qev(V(v,R(w ⊗−)))

QǫT

?
q - ev(V(v,R(w ⊗−)))

ǫT

?

The composition

s∞ ◦ q ◦ QǫT : (QV(T, ev(V(v,R(w ⊗−))))) ⊗ T - S∞(ev(V(v,R(w ⊗−))))

is a stable equivalence of spectra by the hypothesis. The target of s∞ ◦ q ◦QǫT

is stably fibrant, and its domain is cofibrant. Recall that V(T,−) commutes
with filtered colimits. Up to an isomorphism, the stable weak equivalence

s∞ ◦ q:QV(T, ev(V(v,R(w ⊗−)))) - S∞(V(T, ev(V(v,R(w ⊗−)))))

is an adjoint of s∞ ◦ q ◦ QǫT . Thus q ◦ QǫT is a stable equivalence. The map
q ⊗ T is a pointwise weak equivalence since V is strongly monoidal. Hence ǫT

is a stable equivalence of spectra. This ends the proof.

To consider maps in D-cell, we need to record a property of the stable model
structure of spectra.

Lemma 6.24. Let f :E - F be a stable equivalence of spectra such that fn is
a retract of a map in Cof(V)⊗V-cell for every n ≥ 0. Then any cobase change
of f is a stable equivalence.

Proof. Let g:E - G be a map of spectra. Factor g as i:E- - T followed

by p:T
∼pt-- G, and consider the diagram:

E- i - T
p

∼pt
-- G

F

f

?
- - F ∪E T

f ′

?
p′

- F ∪E G

f ′′

?
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The stable model structure on spectra is left proper by 6.16, hence f ′ is a
stable equivalence. Pushouts are formed pointwise, so f ′

n is a retract of a map
belonging to Cof(V) ⊗ V-cell for every n ≥ 0. By the assumption that V is
strongly left proper, the cobase change p′ of the pointwise weak equivalence p
along f ′ is again a pointwise weak equivalence. Hence f ′′ is a stable equivalence.

Lemma 6.25. The maps in D-cell are stable equivalences.

Proof. Let f :X - Y be a map in D-cell. First suppose that X is cofi-
brant. Then Y is automatically cofibrant. By 6.22, it suffices to prove that
ev(v∗fh) is a stable equivalence of spectra for every v. The functors ev, v∗

and (−)h preserve colimits, hence ev(v∗fh) is in ev(v∗(Dh))-cell. Every map
in ev(v∗(Dh)) is of the form considered in 6.24, so cobase changes of these are
stable equivalences of spectra. The stable model structure on spectra is almost
finitely generated, which implies that stable equivalences of spectra are closed
under sequential compositions. This proves the lemma for maps in D-cell with
cofibrant domain.

For f arbitrary, we will construct a commutative diagram

X ′ f ′

- Y ′

X

∼pt

?
f- Y

∼pt

?

where X ′ is cofibrant and f ′ is a map in PJ ∪ D-cell. It allows to finish
the proof using the special case treated above. Without loss of generality,

f is the sequential composition of X = X0
f0- X1

f1- · · ·, where fn

is the cobase change of a coproduct of maps in D. We construct f ′ as a

sequential composition. Consider a cofibrant replacement g0:X
′
0 = X ′ ∼pt-- X.

Assume f0 is the cobase change of z0: sZ0
- tZ0, and let a0: sZ0

- X
be the attaching map. The functor sZ0 is cofibrant, so a0 lifts to a map
a′
0: sZ0

- X ′
0. Taking pushouts in the commutative diagram

tZ0
¾z0

sZ0
a′
0- X ′

0

tZ0

id

?
¾z0

sZ0

Id

?
a0- X0

g0

?

gives a pointwise weak equivalence tZ0∪sZ0
X ′

0

∼pt- X1. It factors as a map in

PJ -cell followed by say X ′
1

∼pt-- X1. By iterating this construction one finds

pointwise acyclic fibrations gn:X ′
n

∼pt-- Xn for all n ≥ 0. Taking the colimit
gives f ′:X ′ - Y := colimnX ′

n.
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6.5 The main theorem

Before stating our main theorem, we summarize the list of assumptions. First,
V is a weakly finitely generated monoidal sSet-model category for which the
monoid axiom holds. Moreover, V is strongly monoidal as defined in 4.12, right
proper and cellular. Assume that filtered colimits commute with pullbacks in V,
that ∆1 is finitely presentable in V, and that cofibrations are monomorphisms.
We require fV to satisfy

f1 Every object of fV is V-finitely presentable.

f2 The unit e is in fV, and fV is closed under the monoidal product.

f3 If tj ¾∼ ¾sj - v is a diagram in V where v ∈ Ob fV and j ∈ J ′, then
the pushout tj ∪sj v is in fV.

f4 All objects in fV are cofibrant.

In what follows, T is a cofibrant object of fV with the property that (− ⊗
T,V(T,−)) is a Quillen equivalence in the stable model structure on Sp(V, T ).

Theorem 6.26. Under the assumptions above, the classes of stable equiva-
lences, stable fibrations and cofibrations give F = [fV,V] the structure of a
weakly finitely generated model category.

Proof. The proof is analogous to the proof of 5.10, using 6.14 and 6.25. Nev-
ertheless we give some details. The set of additional generating acyclic cofi-
brations is the set D, and the domains and codomains of the maps in D are
finitely presentable. Lemma 6.25 then shows that relative cell complexes built
from the generating acyclic cofibrations are stable equivalences. By 6.14 and
4.2, the stable acyclic fibrations are detected by the generating cofibrations.
With 6.3 we get that all criteria of [7, 2.1.19] are satisfied.

We refer to the model structure in 6.26 as the stable model structure. If F
is equipped with the stable model structure, we indicate this by the subscript
“st”.

Lemma 6.27. The model category Fst is a monoidal Fhf-model category.

Proof. Axiom f4 implies that the homotopy functor structure is monoidal. Let
dv¤i be a map in D, and let V(w,−) ⊗ j be a map in PI . Then the pushout
product map in F is isomorphic to dv⊗w¤(i¤j), i.e. a stable equivalence.

Lemma 6.28. The stable model structure is proper.

Proof. Left properness follows since the pointwise model structure is left
proper. To prove right properness, it remains by 5.13 to check that the base
change of a stable equivalence of pointwise fibrant homotopy functors along
an hf-fibration of pointwise fibrant homotopy functors is a stable equivalence.
This follows from 6.5 since T

∞ preserves pullbacks and pointwise fibrations of
pointwise fibrant functors, and Fpt is right proper.
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In the stable structure we have the following important result, analogous to
and in fact an easy a consequence of Theorem 4.11.

Theorem 6.29. If fV satisfies f0, then smashing with a cofibrant V-functor in
F preserves stable equivalences.

Proof. Factor a stable equivalence f as a stable acyclic cofibration followed
by a stable acyclic fibration, i.e. a pointwise acyclic fibration. By 4.11, we
may assume f is a stable acyclic cofibration. The claim follows since Fst is
monoidal.

Lemma 6.30. Suppose fV satisfies f0. Then the monoid axiom holds in Fst.

Proof. The domains of the generating acyclic cofibrations D′ := PJ ∪H∪D for
the stable model structure on F are cofibrant. Because f0 holds, 4.11 implies
that every map in D′∧F is a stable equivalence. The case of a map in D′∧F-cell
follows similarly as in the proof of 6.25.

7 A Quillen equivalence

In this section, we will discuss two natural choices for the domain category
fV. One of the choices gives a Quillen equivalence between the stable model
structure Sp(V, T )st on spectra and Fst.

7.1 The choices

Let fVmax be the category of all cofibrant V-finitely presentable objects, and
fVmin the full subcategory of fVmax given by the objects v for which there

exists an acyclic cofibration Tn- ∼- v for some n ≥ 0. In the applications,
the category of V-finitely presentable objects is equivalent to a small category,
hence its subcategories are valid domain categories. Axioms f1, f2 and f4 hold
in both cases. If the domains and codomains of the maps in J ′ are V-finite,
then f3 holds. The minimal choice satisfies a property which does not hold for
the maximal choice in general.

Lemma 7.1. A map f of pointwise fibrant homotopy functors in [fVmin,V] is
a stable equivalence if and only if ev(f) is a stable equivalence of spectra.

Proof. This follows by definition of fVmin.

The evaluation functor is a right Quillen functor for both choices.

Lemma 7.2. Evaluation ev:Fst
- Sp(V, T )st is a right Quillen functor.

Proof. Pointwise fibrations and pointwise acyclic fibrations are preserved by ev.
The characterizations of stable fibrations using homotopy pullback squares can
be compared using 6.19, which implies that ev preserves stable fibrations.

To deduce that ev is the right adjoint of a Quillen equivalence for the minimal
choice, we prove a property of the stable model structure of spectra which is
independent of the choice of fV.
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7.2 The unit of the adjunction

The following lemma is a crucial observation which depends on the hypotheses
on T and the stabilization functor of spectra 6.17. Recall that i∗ is the left
adjoint of ev.

Lemma 7.3. The canonical map

VTSph(Tn,−) - (V(Tn,−))h = ev((i∗VTSph(Tn,−))h)

is a stable equivalence of T -spectra for all n ≥ 0.

Proof. By 6.17, this follows if VTSph(Tn,−) - S∞((V(Tn,−))h) is a sta-
ble equivalence. The canonical map VTSph(Tn,−) ⊗ Tn - VTSph(T 0,−)
consists of isomorphisms in degree n and on, so it is a stable equivalence.

Note that the map VTSph(T 0,−) - V(T 0,−) is the identity, and that

V(T 0,−) - (V(T 0,−))h is even a pointwise weak equivalence. 6.17 shows
that V(T 0,−)h - S∞((V(T 0,−))h) is a stable equivalence whose codomain
is a stably fibrant T -spectrum. This uses that (V(T 0,−))h is pointwise fibrant:
T 0 is cofibrant and the input is fibrant. Hence the composition

VTSph(Tn,−) ⊗ Tn - VTSph(T 0,−) - V(T 0,−)h - S∞(V(T 0,−)h)

is a stable equivalence from the n-fold T -suspension of a cofibrant T -spectrum
to a stably fibrant T -spectrum. The functor −⊗ T is assumed to be a Quillen

equivalence. Thus its adjoint VTSph(Tn,−) - V(Tn, S∞((V(T 0,−))h)) is a

stable equivalence. Since T is V-finite, the latter T -spectrum is isomorphic to
S∞((V(Tn,−))h). It is straightforward to check that these observations imply
the claim.

Corollary 7.4. The canonical map cE :E - ev((i∗E)h) is a stable equiv-
alence for every cofibrant T -spectrum E.

Proof. For any T -spectrum E and A ∈ ObV, the map cE⊗A is isomor-
phic to cE ⊗ A. Tensoring with the domains and codomains of the gener-
ating cofibrations preserves stable equivalences of spectra since the analogues
statement holds for V. The cofibrant T -spectra are precisely the retracts of
Sph(I)-cell complexes, where Sph(I) denotes the set of generating cofibrations
{VTSph(Tn,−) ⊗ i}n≥0,i∈I from [8, 1.8]. So it suffices to consider Sph(I)-cell
complexes. Recall that ev, i∗ and (−)h preserve colimits, and stable equiva-
lences of T -spectra are closed under sequential compositions. This allows to
use transfinite induction. The induction step follows from the diagram:

VTSph(Tn,−) ⊗ ti ¾¾VTSph(Tn,−) ⊗ si - E

V(Tn,−)h ⊗ ti

∼
?

¾ f
V(Tn,−)h ⊗ si

∼
?

- ev((i∗E)h)

∼
?
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The right hand vertical map is a stable equivalence by the induction hypothesis,
and likewise for the other vertical maps by 7.3 and the argument given above.
Note that f is not necessarily a cofibration of spectra, but it is pointwise in
Cof(V) ⊗ V. Finally, strong left properness of V implies that the map induced
on the pushouts of the rows in the diagram is a stable equivalence.

Corollary 7.5. The functor ev: [fVmin,V] - Sp(V, T ) is the right adjoint
in a Quillen equivalence.

Proof. Use 7.1 and 7.4.

Let V be the usual model category sSet∗ = S of pointed simplicial sets, and
let T be the circle S1 = ∆1/∂∆1. The n-sphere Sn is the n-fold smash product
of S1. Then fSmax is the full subcategory given by the finitely presentable
pointed simplicial sets, and fSmin is the full subcategory of pointed simplicial

sets K for which there exists an acyclic cofibration Sn- ∼- K for some n ≥ 0.

By [11] implies that the canonical functor [fSmax,S] - [fSmin,S] is the right

adjoint in a Quillen equivalence of stable model categories. This uses that all
pointed simplicial sets are generated by spheres.
In general, one needs to distinguish between using fVmin and fVmax. For exam-
ple, if V = S and T is the coproduct S0∨S0, we claim the corresponding stable
model categories are different. In this case, fSmax is as above, while fSmin is the
full subcategory of finitely presentable pointed simplicial sets which are weakly
equivalent to a discrete pointed simplicial set with 1+2n points for some n ≥ 0.
To show that the resulting stable model structures are not Quillen equivalent
via the restriction functor, we will describe a map f :X - Y of S0∨S0-stably
fibrant functors in SF := [fSmax,S] that is not a weak equivalence, although
f(K) is a weak equivalence for every discrete pointed simplicial set. Let Y be
the constant functor with value ∗. Let X be the stably fibrant replacement of
X ′, which maps K to the connected component of K containing the basepoint.
Since X ′(K ∧ ∆n

+) = X ′(K) ∧ ∆n
+, X ′ is enriched over S. Clearly, X ′ is a ho-

motopy functor, so using an enriched fibrant replacement functor R:S - S,
the S0 ∨ S0-stably fibrant replacement X of X ′ maps K to

X(K) = colimnS((S0 ∨ S0)n, RX ′((S0 ∨ S0)n ∧ K)).

If K is discrete, X(K) = ∗, hence the map X - ∗ is a weak equivalence in
[fSmin,S]. However, X(S1) is weakly equivalent to a countable product of a
countable coproduct of S1 with itself, and hence not contractible.

8 Algebraic structure

This section recalls the important algebraic structures which Fst supports if the
monoid axiom holds. Recall that Fst satisfies the monoid axiom if fV satisfies
f0, cp. 6.30. Fix a V which satisfies the conditions listed in the beginning
of Section 5, and a small full sub-V-category I: fV ⊂ - V which satisfies the
axioms f1–f4.
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8.1 Recollections

In a symmetric monoidal category like (F ,∧, I) there are notions of algebras
and modules over the algebras. Recall that an I-algebra is a monoid in (F ,∧, I)
or just an F-category with only one object.
If A is an I-algebra, a (left) A-module M is an object in F with an appropriate
action of A. It can alternatively be described as an F-functor from A to F .
The category of A-modules modA is then an F-category. There is a smash
product ∧A:modAop ∧ modA

- F . If M ∈ modAop and N ∈ modA, then
M ∧A N is the coequalizer of M ∧ A ∧ N -- M ∧ N . Likewise, for A-
modules M and N the function object modA(M,N) in F is the equalizer of
F(M,N)

-- F(A ∧ M,N).
If k is a commutative I-algebra, recall that modk

∼= modkop and modk is a
closed symmetric monoidal category under ∧k with internal morphism object
modk(M,N). A k-algebra is a monoid in (modk,∧k, k) or a modk-category
with one object. With this notation, notice that modI is F .

8.2 The model structures

Definition 8.1. If A is an I-algebra and k is a commutative I-algebra, then
a map in modA or algk is called a weak equivalence (resp. fibration) if it is so
when considered in Fst. Cofibrations are defined by the left lifting property.

Remark 8.2. Note that we chose the stable model structure as our basis. This
is fixed in the following (at least on the top level), so the missing prefix “stable”
from fibrations and weak equivalences should not be a source of confusion.

The next result is due to Schwede and Shipley [15, 4.1].

Theorem 8.3. Suppose that Fst satisfies the monoid axiom. With the struc-
tures described above, the following is true.

• Let A ∈ F be an I-algebra. Then the category modA of (left) A-modules
is a cofibrantly generated model category.

• Let k ∈ F be a commutative I-algebra. Then the category of k-modules
is a cofibrantly generated monoidal model category satisfying the monoid
axiom.

• Let k ∈ F be a commutative I-algebra. Then the category algk of k-
algebras is a cofibrantly generated model category.

Note that we did not state the hypothesis that all objects in F are small. Since
V is weakly finitely generated, Fst is so too. The smallness of the domains and
codomains of the generating cofibrations and generating acyclic cofibrations
in Fst carries over to the relevant smallness conditions needed to prove the
theorem. See also [15, 2.4].
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Lemma 8.4. Suppose that fV satisfies f0. Let A be an I-algebra. Then for any
cofibrant A-module N , the functor −∧A N takes weak equivalences in modAop

to weak equivalences in Fst.

Proof. Given a weak equivalence in modA, factor it as an acyclic cofibration
followed by an acyclic fibration. The only trouble is with the acyclic fibration,
but this is a pointwise acyclic fibration, and the argument can be phrased in
the analogous theory for A-modules built on the pointwise structure Fpt. In

this case, the generating cofibrations in modA are of the form A∧S
A∧i- A∧T

where S-
i- T is a generating cofibration in Fpt. The argument of 4.11 goes

through verbatim: smashing commutes with colimits and A ∧A S ∼= S.

Lemma 8.4 and [15, 4.3] imply:

Corollary 8.5. Suppose that fV satisfies the axiom f0. Let f :A
∼- B be a

weak equivalence of I-algebras. Then extension and restriction of scalars define
the Quillen equivalence

modA

B∧A−-¾
f∗

modB .

If A and B are commutative, there is the Quillen equivalence

algA

B∧A−-¾
f∗

algB .

9 Equivariant Stable Homotopy Theory

Let S be the category of pointed simplicial sets, or spaces for short. The
finitely presentable spaces are the ones with only finitely many non-degenerate
simplices, thus we may call these finite. A simplicial functor in the sense
of [11, 4.5] is an S-functor from the category of finite spaces to the category
of all spaces. In [11], Lydakis showed how simplicial functors give rise to a
monoidal model category which is Quillen equivalent to the model category of
spectra. Thus simplicial functors model the stable homotopy category. The
purpose of this section is to use the machinery developed in the main part of
the paper to give a functor model for the equivariant stable homotopy category.
For technical reasons we will only consider finite groups. Fix a finite group G
with multiplication µ:G × G - G.

9.1 Equivariant spaces

The category GS of G-spaces consists of pointed simplicial sets with a basepoint
preserving left G-action. Note that G+ is a S-category with only one object and
composition G+ ∧ G+

- G+ induced by µ. One can identify GS with the
category [G+,S] of S-functors K : G+

- S. We will often write (uK, aK)
for K to stress the underlying space uK ∈ ObS, i.e. the value of K at the single
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object, and the left G-action aK :G+ ∧ uK - uK. Note that aK is adjoint
to homK :G+

- S(uK, uK), where g - g:uK - uK. According to
2.4, GS is a closed S-module. The functor u:GS - S has a left S-adjoint
G+ ∧ −:S - GS by 2.5. Consider the G-space G+ ∧ K:G+

- S. Its
underlying space is G+ ∧ K, with left G-action

G+ ∧ (G+ ∧ K)
∼=- (G × G)+ ∧ K

µ+∧K- G+ ∧ K.

Similarly, the right S-adjoint of u is given by K - ×g∈GKg, the G-fold prod-
uct of K where h ∈ G sends Kg to Khg via the identity. Let (−)∧G:S - GS
be the functor whose value on K is the G-fold smash product K∧G = ∧g∈GKg

of K, where G acts by permuting the factors as above. Another functor we
consider is ct:S - GS. The G-space ctK is constant, i.e. the underlying
space is K and homctK :G+

- S(K,K) sends g to either the identity map
or the trivial map.
Let ∆G:G - G×G be the diagonal map. The smash product K ∧L of two
G-spaces K,L : G+

- S is given by the composition

G+
∆G+- (G × G)+ ∼= G+ ∧ G+

K∧L- S ∧ S
∧- S.

The right hand smash product uses [2, 6.2.9]. In other words, the smash prod-
uct of G-spaces is defined on the underlying spaces and G acts diagonally. For
this reason we denote the smash product of G-spaces by ∧. If G is commutative,
another closed symmetric monoidal product of G-spaces exists by 2.6.

Proposition 9.1. The category (GS,∧, ctS0) is closed symmetric monoidal.
The functors u, ct and (−)∧G are strict symmetric monoidal, and G+ ∧ − is
lax symmetric monoidal.

Lemma 9.2. Let K:G+
- S be a G-space. The following are equivalent.

1. K is GS-finitely presentable.

2. K is finitely presentable.

3. uK is finite.

Proof. Let Fix(G,−) be the S-functor that maps a G-space (uK, aK) to the
subspace Fix(G,K) = {x ∈ uK | aK(g, x) = x for all g ∈ G} fixed under the ac-
tion of G. Equivalently, Fix(G,K) is lim(K:G+

- S). Note that Fix(G,−)
commutes with filtered colimits since G+ is a finite index category. Fix(G,−) is
the right S-adjoint of ct:S - GS. In particular, the G-space ctS0 is finitely
presentable. This proves the implication 1 ⇒ 2. Likewise, the right adjoint of
u commutes with filtered colimits, thus 2 ⇒ 3.
It remains to prove 3 ⇒ 1. Let D: I - GS be a functor where I is filtered,
and consider the canonical map fK : colimIGS(K,D) - GS(K, colimID).
Since colimits in GS are formed on underlying spaces, u(fK) is the canonical
map colimIS(uK, u ◦D) - S(uK, colimIu ◦D). If uK is finite, u(fK) is an
isomorphism, which implies that fK is an isomorphism since the G-action on
the domain coincides with the G-action on the codomain. We are done.
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The full subcategory of finitely presentable G-spaces is equivalent to a small
category, which can be chosen to be closed under the smash product of 9.1.
Often we will refer to finite G-spaces instead of finitely presentable ones.

Lemma 9.3. Any G-space is the filtered colimit of its finite sub-G-spaces.

9.2 Unstable equivariant homotopy theory

Theorems 4.2 and 4.4 give GS the coarse model structure, with weak equiva-
lences and fibrations defined on underlying spaces. A cofibration is an injective
map f :K - L where G acts freely on the complement of f(K) in L. Hence,
the cofibrant G-spaces are the G-spaces with a free G-action away from the
basepoint. In the following, we will consider another model structure on GS.
If H is a subgroup of G, let G/H+ be the pointed G-space with action g ·g′H :=
(gg′)H. Consider the S-functor G/H+∧:S+

- GS+, K - G/H+ ∧ K,
with trivial action on K. Its right S-adjoint is Fix(H,−):GS+

- S+ which
maps L to the space of fixed points under the action of H on L. Note that
Fix(H,−) coincides with SGS(G/H+,−). If H and H ′ are two subgroups of
G, there is a natural isomorphism Fix(H ′, G/H+ ∧ K) ∼= Fix(H ′, G/H+) ∧ K.

Definition 9.4. A map f in GS is a G-weak equivalence if Fix(H, f) is a weak
equivalence in S for every subgroup H of G. Likewise for G-fibrations.

Theorem 9.5. There is a proper monoidal model structure on GS with G-weak
equivalences as weak equivalences and G-fibrations as fibrations. Cofibrations
are the injective maps. One can choose generating acyclic cofibrations and
generating cofibrations with finitely presentable domains and codomains.

Proof. This result is well-known. A proof is included for completeness. To
prove the existence of the model structure, we will apply [7, 2.1.19]. Let

IG := {G/H+ ∧ (∂∆n ⊂ - ∆n)+}n≥0, H subgroup of G

and
JG := {G/H+ ∧ (Λn

i
⊂ - ∆n)+}n≥1, 0≤i≤n, H subgroup of G.

It is clear by adjointness that a map is a G-fibration if and only if it is in JG-inj,
or a G-fibration and a G-weak equivalence if and only if it is in IG-inj. From
9.2, the domains and codomains of the maps in IG and JG are finite. The
natural isomorphism Fix(H ′, G/H+ ∧K) ∼= Fix(H ′, G/H+)∧K for subgroups
H and H ′ of G, shows that maps in JG are G-weak equivalences. The existence
of the model structure follows, if every map in JG-cell is a G-weak equivalence.
Since Fix(H ′,−) commutes with sequential colimits, it suffices to check that
the cobase change of a map in JG is a G-weak equivalence. Fix a subgroup H ′

and consider the pushout diagram:

A := (G/H × Λn
i )+ - K

B := (G/H × ∆n)+

?

∩

- L
?

∩
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The induced map Fix(H ′, B)∪Fix(H′,A)Fix(H ′,K) - Fix(H ′, L) is injective.
Surjectivity follows since Fix(H ′,−) preserves injective maps. Thus any cobase
change of a map in JG is a G-weak equivalence, and the model structure exists.
Any map in IG-cell is clearly injective. Conversely, by considering fixed point
spaces it follows that any injective map is contained in IG-cell. The statement
about the cofibrations follows, and also left properness. Right properness holds
since Fix(H,−) commutes with pullbacks and S is right proper.
The pushout product map of injective maps is again injective, so consider the
pushout product map

G/H+ ∧ (∂∆n ⊂ - ∆n)+)¤G/H ′
+ ∧ (Λm

i
⊂ - ∆m)+ ∼= (G/H × G/H ′)+ ∧ i,

where i is a weak equivalence of spaces. Since there is an isomorphism of spaces
Fix(H ′′, (G/H × G/H ′)+ ∧ i) ∼= Fix(H ′′, (G/H × G/H ′)+) ∧ i, the pushout
product map of a generating cofibration and a generating acyclic cofibration is
again acyclic. Hence the model structure is monoidal. The monoid axiom then
holds, since all G-spaces are cofibrant.

We will refer to the model structure in 9.5 as the fine model structure. The
regular representation S∧G is the G-fold smash product of S1 = ∆1/∂∆1 where
G acts by permuting the factors. Its geometric realization is homeomorphic –
as a G-space – to the one-point compactification of the real vector space R

G of
maps G - R. The G-space S∧G is finite, since G is a finite group.

9.3 Stable equivariant homotopy theory

Let fGS denote the full sub-GS-category given by the finite G-spaces. It is
equivalent to a small GS-category. Objects of the enriched functor category
GF = [fGS, GS] will be called G-simplicial functors. If G is the trivial group,
then GF is Lydakis’ category of simplicial functors [11, 4.4]. Let ∧ denote
the smash product of G-simplicial functors. The unit of ∧ is the inclusion
S

G = I: fGS ⊂ - GS. All G-spaces are cofibrant in the fine model structure.

Definition 9.6. A map f :X - Y in GF is a

• pointwise weak equivalence if f(K) is a G-weak equivalence for all finite
G-spaces K,

• pointwise fibration if f(K) is a G-fibration for all finite G-spaces K,

• cofibration if f has the left lifting property with respect to all pointwise
acyclic fibrations.

Theorem 9.7. The category GF , equipped with the classes described in 9.6,
is a monoidal proper model category satisfying the monoid axiom. Generat-
ing cofibrations and generating acyclic cofibrations can be chosen with finitely
presentable domains and codomains. Finally, smashing with a cofibrant G-
simplicial functor preserves pointwise weak equivalences.
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Proof. ¿From 4.2, PIG
= {GS(K,−) ∧ i}i∈IG, K finite are the generating cofi-

brations, and PJG
= {GS(K,−) ∧ j}j∈JG, K finite are the generating acyclic

cofibrations. The model structure is monoidal and satisfies the monoid axiom
by 4.4. Properness holds by 4.8. The functor − ∧ X preserves pointwise weak
equivalences for cofibrant X since 4.11 holds, cp. 9.3.

Let us write GFpt for the pointwise model structure. To define the homotopy
functor model structure on GF , let ρ: IdGS

- R denote the enriched fibrant
replacement functor from 3.3.2 applied to the set JG. Denote by I∗X the
enriched left Kan extension of X: fGS - GS along I: fGS ⊂ - GS, and by
Xh the composition I∗X ◦ R ◦ I. Then Xh defines an endofunctor of GF and
there is a natural transformation IdGF

- (−)h.

Definition 9.8. A map f :X - Y in GF is an

• hf-equivalence if fh is a pointwise weak equivalence.

• hf-fibration if f is a pointwise fibration and there is a homotopy pullback
square in GS

XK - XL

Y K

f(K)

?
- Y L

f(L)

?

for every G-weak equivalence K
∼- L of finitely presentable G-spaces.

Lemma 9.9. A map of G-simplicial functors is a pointwise acyclic fibration if
and only if it is an hf-fibration and an hf-equivalence.

Proof. The definition of hf-equivalences in 5.2 uses the filtered fibrant replace-
ment functor ΦJG from 3.3.3. All G-spaces are cofibrant, so the canonical
map ωK : ΦJGK - RK is a G-weak equivalence of fibrant G-spaces, hence
a simplicial homotopy equivalence. Recall that ~(X) = I∗X ◦ ΦJG . If K is fi-
nite, the induced map I∗X(ωK): ~(X)(K) - XhK is a simplicial homotopy
equivalence by 2.11, in particular a G-weak equivalence. It follows that fh is
a pointwise weak equivalence if and only if ~(f)(K) is a G-weak equivalence
for every finite G-space K. The arguments in 5.4 show that the hf-fibrations
in 9.8 allow the same characterization as general hf-fibrations, cp. 5.6. Since
every G-space is cofibrant, any G-weak equivalence of finite G-spaces can be
factored as an acyclic cofibration of finite G-spaces and a simplicial homotopy
equivalence. The lemma follows from 5.8.

Theorem 9.10. The category GF , equipped with the classes of hf-equivalences,
hf-fibrations and cofibrations, is a proper monoidal model category satisfying
the monoid axiom. Smashing with a cofibrant G-simplicial functor preserves
hf-equivalences. One can choose generating cofibrations and generating acyclic
cofibrations with finitely presentable domains and codomains.
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Proof. The model structure exists according to 5.10, is monoidal by 5.12 and
proper by 5.13. A factorization argument and 9.7 imply the claim concerning
cofibrant G-simplicial functors. The monoid axiom follows easily.
The generating acyclic cofibrations are HG ∪PJG

. It remains to define HG. A
G-weak equivalence of finite G-spaces w:K - L induces an hf-equivalence
GS(w,−):GS(L,−) - GS(K,−). The simplicial mapping cylinder gives
a cofibration cw : GS(L,−)- - Cw. Let i ∈ IG. Then HG is the set of
pushout product maps {cw¤i}, cp. Subsection 5.2. It is also possible, without
changing the model structure, to consider for w only acyclic cofibrations of
finite G-spaces.

Denote the model category in 9.10 by GFhf . In this category, X - R ◦ Xh

is a fibrant replacement of X. Recall the functor S:GF - GF mapping
X to GS(S∧G,X(S∧G ∧ −)) and the natural transformation s: IdGF

- S

obtained pointwise as the adjoint of swX
S∧G(K):XK ∧ S∧G - X(S∧G ∧K).

This map is the adjoint of

S∧G ηKS∧G

- GS(K,S∧G ∧ K)
homX

K,S∧G∧K- GS(XK,X(S∧G ∧ K)).

Let S
∞(X) denote the colimit of X

s(X)- S(X)
S(s(X))- S(S(X)) - · · ·, and

write s: IdGF
- S

∞ for the canonically induced natural transformation.

Definition 9.11. A map f :X - Y in GF is a

• stable equivalence if S
∞(R ◦ fh) is a pointwise weak equivalence,

• stable fibration if f is an hf-fibration and

X
s(X)- S(X)

X

f

?
s(X)- S(X)

S(f)
?

is a homotopy pullback square in GFpt.

Lemma 9.12. A map of G-simplicial functors is a stable fibration and a stable
equivalence if and only if it is a pointwise acyclic fibration.

Proof. ¿From the proof of 9.9, one sees that the definition of stable equivalences
in 9.11 agrees with 6.2. The result follows from 6.14.

The definition of stable fibrations leads to a set of generating stable acyclic
cofibrations as in section 6.4. Recall the definition of S∧G-spectra in GS.

Definition 9.13. A G-spectrum E consists of a sequence E0, E1, · · · of G-
spaces, together with structure maps En∧S∧G - En+1. A map f :E - F
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of G-spectra is a sequence of maps fn:En
- Fn making the diagram

En ∧ S∧G - En+1

Fn ∧ S∧G

fn∧S∧G

?
- Fn+1

fn+1

?

commutative for every n ≥ 0.

By 2.12, Sp(GS, S∧G) is isomorphic to the enriched category [S∧GSph, GS] of
G-simplicial functors from the category of S∧G-spheres S∧GSph to GS. Thus
4.2 gives Sp(GS, S∧G) a pointwise model structure. A fibrant replacement
functor in this model structure is E - R ◦ E, where R is defined in 3.3.2.
Recall that the adjoints of the structure maps of a G-spectrum E can be
viewed as a natural map E - ΩGshE, where the nth structure map of
the G-spectrum ΩGshE is GS(S∧G, En+1

- GS(S∧G, En+2)), the S∧G-
loops of the n + 1-th structure map of E. Denote this natural transformation
by st: Id - St = ΩG ◦ sh, and let st∞: Id - St∞ be the colimit of

Id
st- St

St(st)- St2 - · · ·.

The stable model structure on G-spectra, which has the same cofibrations as
the pointwise model structure, is defined as follows.

Definition 9.14. A map f :E - F of G-spectra is a stable equivalence if
St∞(R ◦ f) is a pointwise weak equivalence, and a stable fibration if f is a
pointwise fibration such that

E
st- St(E)

F

f

?
st- St(F )

St(f)
?

is a homotopy pullback square in the pointwise model structure.

¿From now on, we consider G-spectra with the stable model structure. Note
that geometric realization induces a functor from Sp(GS, S∧G) to the category
of G-prespectra, cf. [3, 3.2]. It is plausible that this functor induces an equiv-
alence of homotopy categories. Hence the homotopy category of Sp(GS, S∧G)
is the G-equivariant stable homotopy category. Let us illustrate this by intro-
ducing spectra which are indexed on more general representations.
A G-representation is a finite-dimensional euclidean vector space on which G
acts via linear isometries. A G-representation V is irreducible if zero and V are
the only sub-G-representations. Let IrrG = {W1, . . . ,Wr} be a complete set of
pairwise non-isomorphic irreducible G-representations. Every G-representation
is isomorphic to a direct sum of representations in IrrG. That is, given a G-
representation V , there exist unique natural numbers (n1, . . . , nr) such that V
is isomorphic to W⊕n1

1 ⊕ · · · ⊕ W⊕nr
r .
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If V is a G-representation, let SV
top denote the one-point compactification of V ,

with ∞ as the (G-fixed) basepoint. This is a finite G-CW -complex. One has
SV ⊕W

top
∼= SV

top ∧ SW
top. Furthermore, one can choose a finite G-space SV such

that the geometric realization |SV | is homeomorphic to SV
top. Let Rep be the

GS-category with objects smash products

Sn1,...,nr := SW1 ∧ · · · ∧ SW1 ∧ SW2 ∧ · · · ∧ SWr

and morphisms GSRep(Sn1,...,nr , Sn1+k1,...,nr+kr) := Sk1,...,kr . Hence Rep con-
tains essentially all G-representations. The G-sphere S∧G does not reside in
this category, but it contains a G-space S̃∧G with homeomorphic realization.
Consequently, the stable model categories [S∧G, GS] and [S̃∧G, GS] are Quillen

equivalent, and there are inclusions S̃∧G ⊂
j- Rep ⊂ - fGS inducing functors

GF = [fGS, GS] - [Rep, GS]
j∗

- [S̃∧G, GS].

Note that j is a full inclusion.
It is straightforward to define the stabilization St∞RepX of a pointwise fibrant
GS-functor X: Rep - GS. Since every G-representation is a direct sum-
mand of a direct sum of copies of the regular representation R

G, j∗(St∞RepX) is
equivalent to St∞j∗X. This shows that the stable model structure on [Rep, GS]
is Quillen equivalent to the stable model structure on G-spectra. In partic-
ular, smashing with SV is a Quillen equivalence of G-spectra for every G-
representation V .
Let us turn to the last ingredient needed in the proof of 9.16.

Proposition 9.15. The functor − ∧ S∧G: Sp(GS, S∧G) - Sp(GS, S∧G) is
a Quillen equivalence.

Proof. We will show that S∧G is G-weakly equivalent to a symmetric G-space.
The result follows then by [8, 10.3]. A G-space K is symmetric if there exists a
map H such that the following diagram commutes, where cyc:K∧3 - K∧3

is the cyclic permutation map.

K∧3 ∧ ctS0 K∧3∧cti0- K∧3 ∧ ct∆1
+

¾K
∧3∧cti1

K∧3 ∧ ctS0

K∧3 ∧ ctS0

H
? ¾ cyc

∧ctS
0id

K∧3∧ctS 0 -

Consider first the trivial group. The cyclic permutation map on the geometric
realization |S1|∧3 is homotopic to the identity. Thus the singular complex
K := sing|S1| is a symmetric space and there is a weak equivalence S1 - K.
We claim the induced map S∧G - K∧G of G-fold smash products is a
G-weak equivalence. To see this, choose a subgroup H of G and write the
underlying set of G as the union of the cosets gH. Fix a space L, and an
element x = xg1

∧ · · · ∧ xgn
of L∧G where n is the order of G and xgk

∈ L for
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every k. Note that x is invariant under the action of all h ∈ H if and only
if xgk

= xgj
for all gk, gj in the same coset of H. Thus Fix(H,L∧G) is – up

to a natural isomorphism – the G/H-fold smash product of L. In particular,
we get an expression of the “diagonal” dL: ctL - L∧G as the adjoint of the
isomorphism L - Fix(G,L∧G).
We will use essentially three maps to define a homotopy from the identity
map to the cyclic permutation map on K∧G ∧ K∧G ∧ K∧G: (1) the natural
isomorphism, cp. 9.1, of G-spaces fK,L:K∧G ∧ L∧G - (K ∧ L)∧G which
rearranges the factors, (2) the diagonal d = d∆1

+
: ct∆1

+
- (∆1

+)∧G, and (3)

the homotopy F : K∧K∧K∧∆1
+

- K∧K∧K from the cyclic permutation
map to the identity map. Consider now the composition

K∧G ∧ K∧G ∧ K∧G ∧ ct∆1
+

K∧G ∧ K∧G ∧ K∧G ∧ (∆1
+)∧G

id∧d
?

(K ∧ K ∧ K)∧G

∼=
?

(K ∧ K ∧ K ∧ ∆1
+)∧G

F∧G

?

K∧G ∧ K∧G ∧ K∧G.

∼=
?

This is the homotopy which shows that K∧G is a symmetric G-space.

Theorem 9.16. The category GF and the classes of stable equivalences, stable
fibrations and cofibrations, is a proper monoidal model category satisfying the
monoid axiom. One can choose generating cofibrations and generating acyclic
cofibrations with finite domains and codomains. Smashing with a cofibrant G-
simplicial functor preserves stable equivalences.

Proof. The results above allow us to apply 6.26, 6.27, 6.28, 6.29 and 6.30.

Let GFst refer to the stable model category in 9.16. We end this section by
comparing GFst with the stable model category of G-spectra. By Section 2.5,
S∧GSph is a sub-GS-category of fGS. Let i∗ be the enriched left Kan extension
along the corresponding inclusion i. It is left adjoint to pre-composition with
i, which we denote by ev. The next result follows from 7.2.

Lemma 9.17. ev:GFst
- Sp(GS, S∧G) is a right Quillen functor.

Lemma 7.4 implies that the unit of the adjunction has the following property.
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Lemma 9.18. The canonical map E - ev(i∗E)h is a stable equivalence of
G-spectra for every cofibrant G-spectrum E.

If G is the trivial group, Lydakis proved that a map of homotopy functors is a
stable equivalence if and only its evaluation is a stable equivalence of spectra.
The proof uses the Blakers-Massey theorem. We will extend this result to any
finite group using Spanier-Whitehead duality, cp. [14, 17.6].

Proposition 9.19. Let K and L be finitely presentable G-spaces. The canon-
ical map

ev(GS(K,R(−)) ∧ L) - ev(GS(K,R(L ∧ −)))

of G-spectra is a stable equivalence.

Proof. Let E⋆F denote the (closed) symmetric monoidal product in the equiv-
ariant stable homotopy category SH(G), with unit S, and let Hom(E,−) denote
the right adjoint of − ⋆ E. A G-spectrum D is dualizable if the canonical map
Hom(D, S) ⋆ D - Hom(D,D) is an isomorphism in SH(G). It follows that
the canonical map Hom(D,E) ⋆ F - Hom(D,E ⋆ F ) is an isomorphism for
all E,F ∈ ObSH(G) if D is dualizable [10, II, Section 1],
Suspension G-spectra of finite G-spaces are dualizable in SH(G) [3, 2.C], [10,
II, 2.7]. In particular, given finite G-spaces K and L, the canonical map

Hom(ev(−∧K), evR(−))⋆ev(−∧L) - Hom(ev(−∧K), evR(−)⋆ev(−∧L))

is an isomorphism in SH(G). In this special situation, a map of G-spectra
lifting this isomorphism can be given as

St∞(R(GS(K, evR(−)) ∧ L - GS(K, evR(L ∧ −)))).

In particular, this map is a stable equivalence. This finishes the proof, because
the above is a stably fibrant replacement of the map in question.

Corollary 9.20. Let X be a G-simplicial functor and L be a finite G-space.
The canonical map evXh ∧ L - evXh(L ∧ −) is a stable equivalence of
G-spectra. In particular, ev reflects stable equivalences of homotopy functors.

Proof. We sketch a proof, following the script for the trivial group [11, 11.7].
Consider the first statement. If X is a cofibrant G-simplicial functor, use 9.19
by attaching cells. If X is arbitrary, use a cofibrant replacement Xc. The
second statement then follows from 6.21.

Corollary 9.21. The stable model structure on G-simplicial functors is
Quillen equivalent to the stable model structure on G-spectra via the right
Quillen functor ev.

The Quillen equivalence from 9.21 factors through a Quillen equivalence to
the category of symmetric G-spectra. In fact, the work [8] of Hovey shows
that G-spectra and symmetric G-spectra are Quillen equivalent via a zig-zag
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of Quillen equivalences, but not necessarily via the canonical forgetful functor.
In this case, however, it is possible to conclude this by extending results of [9]
to G-spaces. Here are the details.

Theorem 9.22. The forgetful functor from symmetric G-spectra to G-spectra
is the right adjoint of a Quillen equivalence.

Proof. In both the categories of G-spectra and symmetric G-spectra, a map of
fibrant objects is a weak equivalence if and only if it is a pointwise weak equiva-
lence. Hence the forgetful functor U preserves and reflects weak equivalence of
fibrant objects. Its left adjoint V preserves cofibrations and pointwise acyclic
cofibrations. Further, if L resp. LΣ is the set of maps of G-spectra resp. sym-
metric G-spectra that Hovey uses to localize the pointwise model structures,
then V maps L to LΣ (up to isomorphism). Hence V also preserves stable
acyclic cofibrations by properties of Bousfield localization [6] and is thus a left
Quillen functor.
It remains to prove that the canonical map

E - U(V (E)f )

is a stable equivalence of G-spectra for E cofibrant. Here (−)f denotes a fi-
brant replacement in the stable model structure of symmetric G-spectra. In
fact, since both U and V preserve colimits and homotopy pushouts, it suffices
to prove this for E varying through the domains and codomains of the gen-
erating cofibrations. To do so, we use the functors Fix(H,−) on (symmetric)
spectrum level. This means the following. If E is a G-spectrum, the sequence
(Fix(H,E0),Fix(H,E1), . . .) is a Fix(H,S∧G) = S|G/H|-spectrum of spaces.
That is, it has structure maps

Fix(H,S∧G) ∧ Fix(H,En) ∼= Fix(H,S∧G ∧ En) - Fix(H,En+1).

The same construction works on the level of symmetric G-spectra, so we have
a commutative diagram

SpΣ(GS, S∧G)
Fix(H,−)- SpΣ(S, S|G/H|)

Sp(GS, S∧G)

U
?

Fix(H,−)- Sp(S, S|G/H|).

UH?

The domains and codomains of the generating cofibrations of G-spectra are of
the form Frn(K) (representable ∧K) for K in a certain set of G-spaces, and
similarly for the S|G/H|-spectra of spaces. Since Fix(H,−):GS - S com-
mutes with the smash product (up to natural isomorphism), we get a natural
isomorphism

VH(Frn(Fix(H,K))) ∼= VH(Fix(H,Frn(K))) ∼= Fix(H,V (Frn(K))).
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This isomorphism is compatible with the units of the adjunctions (V,U) and
(VH , UH), so that

Fix(H,Frn(K) - UV Frn(K)) ∼= FrnFix(H,K) - UHVH(FrnFix(H,K)).

The categories of (symmetric) S|G/H|-spectra of spaces are just slight variations
of the categories of (symmetric) spectra of spaces, which implies that (VH , UH)
is a Quillen equivalence. To conclude the same for (V,U), it is sufficient, by
the above, to prove the following two facts.

• A map f of G-spectra is a stable equivalence if so is Fix(H, f) for every
subgroup H.

• If jE :E- ∼- Ef is a stably fibrant replacement of the symmetric G-

spectrum E, then Fix(H, jE :E- ∼- Ef ) is a stably fibrant replacement
of Fix(H,E).

Concerning the first fact: a map f of G-spectra is clearly a pointwise weak
equivalence if and only if so is Fix(H, f) for every subgroup H. Since a
stable equivalence of stably fibrant G-spectra is a pointwise weak equiva-
lence, it suffices to prove that Fix(H,−) preserves stably fibrant replace-
ments for G-spectra. For this purpose, we apply the small object argument
to the following set. Let Jpt := {Frn(∧(G/H × (Λm

i
⊂ - ∆m))+}n,H,m,i

be the set of generating pointwise acyclic cofibrations. Obtain J̃st from
L = {Frn+1S

∧G - Frn(S0)}n by applying the simplicial mapping cylin-
der, and let Jst be the set

J̃st¤{(G/H × (∂∆m ⊂ - ∆m))}H,m

of pushout product maps. Finally, J = Jpt ∪ Jst is the set we may use for
a fibrant replacement1. Note first that Fix(H,Frn+1S

∧G - Frn(S0)) ∼=
Frn+1S

|G/H| - Frn(S0). Further, Fix(H,−) is compatible with the simpli-
cial mapping cylinder construction, since it commutes with the smash product
and with pushouts of diagrams containing a monomorphism. The latter fact
was already used in the proof of 9.5. It follows that Fix(H,−) maps J to the
corresponding set JH in the category Sp(S, S|G/H|). In particular, Fix(H,−)
maps sequential compositions of cobase changes of maps in J to stable equiv-
alences.
To conclude that Fix(H,−) preserves the fibrant replacement, we have to show
that it preserves stably fibrant objects. One can see this by arguing that
it is in fact a right Quillen functor, whose left adjoint lH is determined by
the requirement that lHFrn(K) = Frn(G/H+ ∧ K) for any n and any space
K. Using this description, one can see that lH preserves generating (acyclic)
cofibrations, hence is a left Quillen functor. It follows that Fix(H,−) preserves
the fibrant replacement. This proof translates to the category of symmetric

1The set J is in fact a set of generating acyclic cofibrations.

Documenta Mathematica 8 (2003) 409–488



Enriched Functors and Stable Homotopy Theory 479

G-spectra, which justifies the second fact in the list above. This finishes the
proof.

Since the resulting Quillen equivalence (j∗, j
∗) between G-simplicial functors

and symmetric G-spectra has nice monoidal properties according to 2.16, the
closed symmetric monoidal structure induced by the smash product of G-
simplicial functors is the correct one. Given the above, comparisons of modules
and algebras along the lines of [14] are possible. Note, however, that at present
it is not clear how to compare commutative algebras [14, 0.9].

Corollary 9.23. The model categories of symmetric ring G-spectra and of
I-algebras in GF are Quillen equivalent via the canonical adjoint pair (ι∗, ι

∗).
If R is a cofibrant I-algebra, the model categories of R-modules and of ι∗R-
modules are Quillen equivalent. If Q is a cofibrant symmetric ring G-spectrum,
the model categories of Q-modules and of j∗Q-modules are Quillen equivalent.

Proof. First we observe that the model category of symmetric G-spectra satis-
fies the monoid axiom. Here are some details. A pushout diagram

X - Y

Z

f

?
- Z ∪X Y

g

?

of symmetric G-spectra in which f is a pointwise cofibration is a homotopy
pushout square. This, the fact that stable equivalences of symmetric G-spectra
are closed under sequential colimits (see 3.5) and general arguments from [15]
show that it suffices to prove the following. Let X be a symmetric G-spectrum

and j: sj-
∼- tj a generating acyclic cofibration, then X ∧ j is a stable equiv-

alence and a pointwise cofibration. To see that the latter holds, note that the
pushout product map of a pointwise cofibration and a cofibration is a pointwise
cofibration, by comparing with the smash product of symmetric sequences of
G-spaces as in [9, section 5.3]. Now one can use that the stable model struc-
ture on symmetric G-spectra is stable in the sense that suspension with S1

is a Quillen equivalence. So X ∧ j will be a stable equivalence if and only if
X ∧ (tj/sj) is stably equivalent to a point. Note that tj/sj is cofibrant. Hence
it suffices to prove that the smash product of a cofibrant symmetric G-spectrum
and a pointwise weak equivalence is a pointwise weak equivalence. By argu-
ments which already appeared in this proof, one can reduce to the case of the
domains and codomains of the generating cofibrations (which are cofibrant).
These, however, are gotten directly from symmetric sequences of G-spaces. A
comparison like [9, proof of 5.3.7] of the smash products of symmetric G-spectra
and these sequences concludes the proof of the monoid axiom.
The hard work is done. Let S denote the unit in the category of symmetric
G-spectra, and recall that the unit in GF is the inclusion I. By 2.16, the
canonical adjoint pair (j∗, j

∗) induced by the inclusion j:S∧GSphΣ ⊂ - fGS
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induces an adjoint pair
ι∗: algS

¾- algI: ι
∗.

Since the forgetful functors with domain algS resp. algI detect weak equivalences
and fibrations, (ι∗, ι

∗) is a Quillen adjunction. Moreover, since j∗ preserves
and detects weak equivalences of fibrant G-simplicial functors, ι∗ detects weak
equivalences of fibrant I-algebras. To conclude that (ι∗, ι

∗) is a Quillen equiv-
alence, it suffices to note that a cofibrant S-algebra is in particular a cofibrant
symmetric G-spectrum [15, 4.1].
The other two cases are similar, modulo an application of 8.4.

It is desirable to compare the stable model category of G-simplicial functors also
with the stable model category of orthogonal G-spectra [13]. As an intermediate
step, we will use symmetric spectra of topological G-spaces. Let T denote the
(closed symmetric monoidal) model category of pointed compactly generated
topological spaces [7, 2.4.21], and let GT be the category of G-objects in T. The
latter is closed symmetric monoidal by an analog of 9.1, and it is a monoidal
model category by transferring the model structure from 9.5 to the topological
situation (see [13, II.1.8 and II.1.22]). The (strict symmetric monoidal) Quillen
equivalence | − |:S - T given by geometric realization extends to a (strict
symmetric monoidal) Quillen equivalence | − |:GS - GT. In particular, we
can regard GT as a GS-model category. As one can check using results from [13,
II.1], the model structure on GT is cellular, so the stable model category of
symmetric spectra in GT with respect to |S∧G| exists by [8]. Further, we can
apply [8, 9.3] to conclude that

| − |: SpΣ(GS, S∧G) - SpΣ(GT, |S∧G|)

is a Quillen equivalence. By inspection, this Quillen functor is strict sym-
metric monoidal, and its right adjoint is lax symmetric monoidal. Thus to
obtain a variant of 9.23, it suffices to note that the stable model category
SpΣ(GT, |S∧G|) satisfies the monoid axiom. A proof can be obtained by trans-
lating the proof of the monoid axiom for SpΣ(GS, S∧G) to the topological
situation. It remains to relate orthogonal G-spectra to symmetric G-spectra
of topological spaces. For the definition of an orthogonal G-spectrum, which
we take to be indexed on all G-representations, consider [13]. Any orthogo-
nal G-spectrum X gives rise to a symmetric G-spectrum of topological spaces
uX by neglect of structure, or rather – since both objects are simply enriched
functors on certain domain GT-categories – restriction. The restriction takes
place both on objects (from all G-representations to direct sums of the regu-
lar representation R

G) and morphisms (from orthogonal groups to symmetric
groups). See [14, 4.4] (for the non-equivariant case) and [13, II.4]. Viewed as a
restriction, u has a left adjoint v by enriched Kan extension.

Theorem 9.24. The adjoint pair (v, u) is a Quillen equivalence. It induces
Quillen equivalences between orthogonal ring G-spectra and symmetric ring G-
spectra of topological spaces. If R is a cofibrant symmetric ring G-spectrum and
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P is a cofibrant orthogonal ring G-spectrum, (v, u) induces Quillen equivalences

modR
¾- modvR moduP

¾- modP .

Proof. The forgetful functor UT: SpΣ(GT, |S∧G|) - Sp(GT, |S∧G|) has a
left adjoint VT fitting into a commutative diagram

Sp(GS, S∧G)
|−|- Sp(GT, |S∧G|)

SpΣ(GS, S∧G)

V
?

|−|- SpeΣ(GT, |S∧G|)

VT

?

in which the left vertical functor resp. the lower horizontal functor are Quillen
equivalences by 9.22 resp. [8, 9.3]. The upper horizontal functor is a Quillen
equivalence by [8, 5.7], hence the right vertical functor is a Quillen equivalence.
Thus to conclude that (v, u) is a Quillen equivalence, it suffices to prove that
the forgetful functor from orthogonal G-spectra to Sp(GT, |S∧G|) is a Quillen
equivalence.
By [13, III.4.16], the forgetful functor from orthogonal G-spectra to G-
prespectra as defined in [13, II.1.2] is a Quillen equivalence. The category of
G-prespectra so far is indexed on all G-representations. However, as observed
in [13, II.2.2 and V.1.10], one can index both orthogonal G-spectra and G-
prespectra on a collection of G-representations with is both closed under direct
sum and cofinal in the collection of all G-representations without changing the
homotopy theory. An acceptable candidate is the collection of direct sums of
the regular representation. Hence the restriction from orthogonal G-spectra to
Sp(GT, |S∧G|) is a Quillen equivalence. This proves the first statement. The
other statements then follow as in the proof of 9.23, since the monoid axiom
holds for orthogonal G-spectra [13, III.7.4].

Hence for the purpose of studying the homotopy theory of algebras and mod-
ules, the category of G-simplicial functors is as good as the category of orthogo-
nal G-spectra for a finite group G. Another comparison functor can be obtained
as in [14, 19.11] by passing from GF to GT-functors from an appropriate do-
main category (say, finite G-CW-complexes) to GT via geometric realization,
and then restricting to orthogonal G-spectra. Up to geometric realization, this
functor amounts to a neglect of structure.

A Calculations

This appendix looks into the proofs of the remaining claims in the main part
of the paper. The structure map hom−⊗T

A,B :V(A,B) - V(A ⊗ T,B ⊗ T ) of
the V-functor −⊗ T :V - V is defined as the adjoint of the composition

V(A,B) ⊗ (A ⊗ T )
α−1

V(A,B),A,T

∼=
- (V(A,B) ⊗ A) ⊗ T

(ǫAB)⊗T- T ⊗ A
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where α−1
V(B,T ),B,A is the associativity isomorphism. The next lemma shows

that there are in general two different suspension functors for T -spectra.

Lemma A.1. The following diagram commutes.

V(A,B) ⊗ (A ⊗ T )
hom−⊗T

A,B
⊗(A⊗T )- V(A ⊗ T,B ⊗ T ) ⊗ (A ⊗ T )

(V(A,B) ⊗ A) ⊗ T

α−1
V(A,B),A,T ?

(ǫAB)⊗T - B ⊗ T

ǫA⊗T (B⊗T )

?

Proof. Use naturality and the triangular identity

ǫA⊗T (V(A,B) ⊗ (A ⊗ T )) ◦ (ηA⊗TV(A,B)) ⊗ (A ⊗ T ) = idV(A,B)⊗(A⊗T ).

A similar statement is used to show that the stabilization of enriched functors
and the stabilization of spectra can be compared.

Lemma A.2. The following diagram commutes.

A
ηBA - V(B,A ⊗ B)

V(B ⊗ T,A ⊗ (B ⊗ T ))

ηB⊗T A
? V(B⊗T,α−1

A,B,T
)- V(B ⊗ T, (A ⊗ B) ⊗ T )

hom−⊗T

B,A⊗B

?

Proof. Similar to A.1, using ǫB(A ⊗ B) ◦ (ηBA) ⊗ B = idA⊗B .

Next we start the proof of: the two natural stabilization maps X - T (X)
described in 6.1 coincide. It is lengthy and perhaps not very illuminating. The

map hom
V(T,−)
A,B : V(A,B) - V(V(T,A),V(T,B)) is given as the adjoint of

comp:V(A,B) ⊗ V(T,A) - V(T,B) which, up to an associativity isomor-

phism, is adjoint to V(A,B)⊗ (V(T,A)⊗T )
V(A,B)⊗ǫT A- V(A,B)⊗A

ǫAB- B.

Lemma A.3. The following diagram commutes.

V(A,B)
hom

V(T,−)

A,B - V(V(T,A),V(T,B))

V(V(T,A) ⊗ T,B)

∼=

f

-
V(ǫ

T A,B)
-

Proof. Here, f is V(ηTV(T,A),V(T,B)) ◦ hom
V(T,−)
V(T,A)⊗T,B . The diagram

V(A,B)
hom

V(T,−)

A,B - V(V(T,A),V(T,B))

V(V(T,A) ⊗ T,B)

V(ǫT A,B)
? hom

V(T,−)

V(T,A)⊗T,B- V(V(T,V(T,A) ⊗ T ),V(T,B))

V(V(T,ǫT A),V(T,B))
?
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commutes, because V(T,−) is a V-functor. Therefore, f ◦V(ǫT (A), B) coincides

with V(ηTV(T,A),V(T,B))◦V(V(T, ǫT (A)),V(T,B))◦hom
V(T,−)
V(T,A)⊗T,B and the

triangular identity V(T, ǫT (A))◦ηTV(T,A) = idV(T,A) completes the proof.

Let C be a full sub-V-category closed under ⊗. If v ∈ Ob C and X: C - V
is a V-functor, one can consider the adjoint X(c) ⊗ v - X(v ⊗ c) of the

map v
ηcv- V(c, v ⊗ c)

homX
c,v⊗c- V(X(c),X(v ⊗ c)). It defines a V-natural

transformation swX
v :X ⊗ v - X ◦ (v ⊗ −) (X swallows v). One of the

maps X - T(X) is defined using the map swX
T . Using a commutativity

isomorphism, one can define a map v ⊗X - X ◦ (v ⊗−) which will also be

denoted swX
v . An interesting case is V(T,−):V - V. Then sw

V(T,−)
A (B):A⊗

V(T,B) - V(T,A ⊗ B) is the adjoint of (A ⊗ V(T,B)) ⊗ T
αA,V(T,B)- A ⊗

(V(T,B) ⊗ T )
A⊗ǫT B- A ⊗ B.

Lemma A.4. Let A,B, T ∈ ObV. The following diagram commutes.

A
ηV(T,B)A- V(V(T,B), A ⊗ V(T,B))

V(B,A ⊗ B)

ηBA
? hom

V(T,−)

B,A⊗B- V(V(T,B), V (T,A ⊗ B))

V(V(T,B),sw
V(T,−)

A
(B))

?

Proof. Using the definition of homV(T,−) and the description of sw
V(T,−)
A from

above, one gets a large diagram which commutes by naturality and the trian-
gular identity ǫB(A ⊗ B) ◦ (ηBA) ⊗ B = idA⊗B .

Lemma A.5. Let A,B, T ∈ ObV. The following diagram commutes.

V(A,B) ⊗ V(T,A)
sw

V(T,−)

V(A,B)
(A)

- V(T,V(A,B) ⊗ A)

V(V(T,A),V(T,B)) ⊗ V(T,A)

hom
V(T,−)

A,B
⊗V(T,A)

?
ǫV(T,A)V(T,B) - V(T,B)

V(T,ǫAB)
?

Proof. This is similar to the proof of A.4; the relevant triangular identity is
ǫV(T,A)(V(A,B)⊗V(T,A))◦(ηV(T,A)V(A,B))⊗V(T,A) = idV(A,B)⊗V(T,A).

Lemma A.6. Let A,B, T ∈ ObV. The following diagram commutes.

A ⊗ V(T,B)
ηT A⊗V(T,B)- V(T,A ⊗ T ) ⊗ V(T,B)

V(T,A ⊗ B)

sw
V(T,−)

A
(B)

?
V(T,V(T,B) ⊗ (A ⊗ T ))

sw
V(T,−)

V(T,B)
(A⊗T )

?

V(T,B ⊗ A)

V(T,σA,B)
?

¾V(T,(ǫT B)⊗A)
V(T, (V(T,B) ⊗ T ) ⊗ A)

V(T,c)
?

Here c is the composition of an associativity and a commutativity isomorphism.
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Proof. Insert the description of swV(T,−) and use naturality, associativity and
commutativity coherence, and ǫT (A ⊗ T ) ◦ (ηT A) ⊗ T = idA⊗T .

Lemma A.7. Let C be a full sub-V-category closed under ⊗, X: C - V a
V-functor, and f :V(T,V(v, w)) - V(T ⊗v, w) the adjointness isomorphism,
with T, v, w ∈ Ob C. The following diagram commutes.

V(T,V(v, w)) ⊗ (T ⊗ Xv)
α−1

- (V(T,V(v, w)) ⊗ T ) ⊗ Xv

V(T ⊗ v, w) ⊗ X(T ⊗ v)

f⊗swX
T (v)

?
V(v, w) ⊗ Xv

(ǫT V(v,w))⊗Xv
?

V(X(T ⊗ v),Xw) ⊗ X(T ⊗ v)

homX
T⊗v,w⊗X(T⊗v)

?
V(Xv,Xw) ⊗ Xv

homX
v,w⊗Xv

?

Xw
¾ ǫX

v
Xw

ǫ
X

(T⊗v)Xw
-

Proof. The proof is divided into two steps. First we note that

V(T,V(v, w)) ⊗ (T ⊗ Xv)
α−1

- (V(T,V(v, w)) ⊗ T ) ⊗ Xv

V(T,V(Xv,Xw)) ⊗ (T ⊗ Xv)

V(T,homX
v,w)⊗(T⊗Xv)

?
V(v, w) ⊗ Xv

(ǫT V(v,w))⊗Xv
?

V(T ⊗ Xv,Xw) ⊗ (T ⊗ Xv)

g⊗(T⊗Xv)
?

V(Xv,Xw) ⊗ Xv

homX
v,w⊗Xv

?

Xw
¾ ǫX

v
Xw

ǫT⊗X
v Xw -

commutes, where g is the adjointness isomorphism

V(T ⊗ Xv, ǫXvXw) ◦ hom−⊗Xv
T,V(Xv,Xw).

Commutativity of the diagram follows from the definition of hom−⊗Xv, natu-
rality and the triangular identity ǫT⊗Xv(−⊗(T⊗Xv))◦(ηT⊗Xv)⊗(T⊗Xv) = id
applied to V(T,V(Xv,Xw)) ⊗ (T ⊗ Xv). In the second step, we prove that

V(T,V(v, w)) ⊗ T ⊗ Xv
V(T,homX

v,w)⊗T⊗Xv- V(T,V(Xv,Xw)) ⊗ T ⊗ Xv

V(T ⊗ v, w) ⊗ X(T ⊗ v)

f⊗swX
T

?
V(T ⊗ Xv,Xw) ⊗ T ⊗ Xv

g⊗T⊗Xv
?

V(X(T ⊗ v),Xw) ⊗ X(T ⊗ v)

homX
T⊗v,w ⊗X(T⊗v)

?
ǫX(T⊗v)Xw - Xw

ǫT⊗XvXw

?
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commutes. The adjoint of ǫX(T⊗v)Xw ◦ (homX
T⊗v,w ⊗ swX

T ) coincides with the

composition comp ◦ (homX
T⊗v,w ⊗ homX

v,T⊗v) ◦ V(T ⊗ v, w) ⊗ ηvT . Because X

is a V-functor, this map is the same as homX
v,w ◦ comp ◦ V(T ⊗ v, w) ⊗ ηvT .

Hence the diagram above commutes if and only if

V(T,V(v, w)) ⊗ T ⊗ Xv
V(T,homX

v,w)⊗T⊗Xv- V(T,V(Xv, Xw)) ⊗ T ⊗ Xv

V(T ⊗ v, w) ⊗ V(v, T ⊗ v) ⊗ Xv

f⊗ηvT⊗Xv

?
V(T ⊗ Xv, Xw) ⊗ T ⊗ Xv

g⊗T⊗Xv

?

V(v, w) ⊗ Xv

comp⊗Xv

?
Xw

ǫT⊗XvXw

?

V(Xv, Xw) ⊗ Xv

ǫXv
Xw

-
homX

v,w ⊗Xv
-

commutes. The shortest composition is homX
v,w ⊗ Xw ◦ (ǫTV(v, w)) ⊗ Xw, as

the triangular identity ǫT⊗Xv(−⊗(T⊗Xv))◦(ηT⊗Xv)⊗(T⊗Xv) = id−⊗(T⊗Xv)

evaluated at V(T,V(Xv,Xw)) shows. Therefore it remains to prove that the
map comp ◦ (f ⊗ ηvT ) coincides with the map ǫTV(v, w). It is equivalent to
switch to the adjoints (under tensoring with v), and here naturality and the
triangular identity ǫT⊗v(−⊗ (T ⊗v))◦ (ηT⊗v)⊗ (T ⊗v) = id−⊗(T⊗v) evaluated
at V(T,V(v, w)) give the desired identification.

In the proof of 6.1, we used the next result.

Proposition A.8. The two maps X - T(X) coincide.

Proof. Most for notational convenience, we will often leave out associativity
and commutativity constraints. The two maps in question are determined

by Xv
ηT Xv- V (T,Xv ⊗ T )

V (T,swX
T (v))- V(T,X(T ⊗ v)) and (up to Yoneda

isomorphism) τv(w):V(T ⊗ v, w)⊗ T
f⊗T- V(T,V(v, w))⊗ T

ǫT V(v,w)- V(v, w).
The Yoneda isomorphism

Xv
∼=-

∫
Ob C

V(V(v, w),Xw)

is induced by the natural transformation yX
v (w):Xv - V(V(v, w),Xw), that

is, the composition

Xv
ηV(v,w)Xv - V(V(v, w),Xv ⊗ V(v, w))

V(V(v,w),Xv⊗homX
v,w)- V(V(v, w),Xv ⊗ V(Xv,Xw))

V(V(v,w),σXv,V(Xv,Xw))- V(V(v, w),V(Xv,Xw) ⊗ Xv)

V(V(v,w),ǫXvXw) - V(V(v, w),Xw).
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Hence it suffices to prove that, for every w ∈ Ob C, the composition

a(w) := y
V(T,X)
T⊗v (w) ◦ V(T, swX

T (v)) ◦ ηT Xv

coincides with the composition b(w) := h ◦ V(τv,Xw) ◦ yX
v (w). Here h de-

notes the adjointness isomorphism V(V(T ⊗ v, w) ⊗ T,Xw) - V(V(T ⊗
v, w),V(T,Xw)). The isomorphism f :V(T,V(v, w)) - V(T ⊗ v, w) will be
used in the proof. The diagram

V(V(v, w),Xw)
homV(T,−)

- V(V(T,V(v, w)),V(T,Xw))

V(V(T ⊗ v, w)) ⊗ T,Xw)

V(τv,Xw)
?

V(f⊗T,Xw)
- V(V(T,V(v, w)) ⊗ T,Xw)

∼=
6

commutes by A.3, where the vertical map on the right hand side is the ad-
jointness isomorphism. Then by naturality and A.4, b(w) coincides with the

composition V(V(T,V(v, w)),V(T, ǫXvXw◦homX
v,w)◦sw

V(T,−)
Xv )◦ηV(T,V(v,w))Xv.

The diagram

Xv
ηV(T,V(v,w))Xv - V(V(T,V(v, w)),Xv ⊗ V(T,V(v, w)))

V(T,Xv ⊗ T )

ηT Xv
?

V(V(T,V(v, w)),V(T,Xv ⊗ T ) ⊗ V(T,V(v, w)))

V(V(T,V(v,w)),(ηT Xv) ⊗V(T,V(v,w)))
?

V(T,X(T ⊗ v))

V(T, swX
T (v))

?
ηV(T,V(v,w))- V(V(T,V(v, w)),V(T,X(T ⊗ v)) ⊗ V(T,V(v, w)))

V(V(T,V(v,w)),V(T,swX
T (v)) ⊗V(T,V(v,w)))

?

commutes by naturality. Hence the maps a(w) and b(w) coincide if

V(T,V(v, w)) ⊗ Xv
V(T,V(v,w))⊗ηT Xv - V(T,V(v, w)) ⊗ V(T, Xv ⊗ T )

V(T, Xv ⊗ V(v, w))

sw
V(T,−)
Xv

?
V(T,V(v, w)) ⊗ V(T, X(T ⊗ v))

V(T,V(v,w))⊗ V(T,swX
T (v))

?

V(T, Xv ⊗ V(Xv, Xw))

V(T,Xv⊗ homX
v,w)

?
V(T ⊗ v, w) ⊗ V(T, X(T ⊗ v))

f⊗ V(T,X(T⊗v))

?

V(T,V(Xv, Xw) ⊗ Xv)

V(T,σ)

?
V(X(T ⊗ v), Xw) ⊗ V(T, X(T ⊗ v))

homX
⊗ V(T,X(T⊗v))

?

V(T, Xw)

V(T,ǫXvXw)

?
¾ ǫV(T,X(T⊗v))

V(V(T, X(T ⊗ v)), V (T, Xw)) ⊗ V (T, X(T ⊗ v))

homV(T,−)
⊗ V(T,X(T⊗v))

?

commutes for all w. Now use A.5 (with A = X(T⊗v) and B = Xw), naturality
of the map swV(T,−) and the isomorphism f to replace the composition from
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the upper corner on the right hand side to the lower corner on the left hand
side. The result is the diagram

V(T,V(v, w)) ⊗ Xv
V(T,V(v,w))⊗ηT Xv - V(T,V(v, w)) ⊗ V(T,Xv ⊗ T )

V(T,Xv ⊗ V(v, w))

sw
V(T,−)

Xv

?
¾V(T,Xv⊗ǫT V(v,w))

V(T,V(T,V(v, w)) ⊗ X(T ⊗ v))

sw
V(T,−)

V(T,V(v,w))?

V(T,Xv ⊗ V(Xv,Xw))

V(T,Xv⊗ homX
v,w)

?
V(T,V(T ⊗ v, w) ⊗ X(T ⊗ v))

V(T,f⊗X(T⊗v))
?

V(T,V(Xv,Xw) ⊗ Xv)

V(T,σ)
?

V(T,V(X(T ⊗ v),Xw) ⊗ X(T ⊗ v))

V(T,homX ⊗X(T⊗v))
?

V(T,Xw).
¾ V(T,ǫX(T⊗v)X

w)V(T,ǫX
v Xw)

-

The upper part commutes by A.6 (with A = Xv and B = V(v, w)), the lower
part is V(T,−) applied to a diagram which commutes by A.7. This completes
the proof.
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