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Abstract. We study spectral and scattering properties of the Lapla-
cian H(σ) = −∆ in L2(R

2
+) corresponding to the boundary condition

∂u
∂ν + σu = 0 for a wide class of periodic functions σ. The Floquet
decomposition leads to problems on an unbounded cell which are an-
alyzed in detail. We prove that the wave operators W±(H(σ),H(0))
exist.
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Introduction

0.1 Setting of the problem

The present paper studies the Laplacian

H(σ)u = −∆u on R
2
+ (0.1)

on the halfplane together with a boundary condition of the third type

∂u

∂ν
+ σu = 0 on R × {0}, (0.2)

where ν denotes the exterior unit normal and where the function σ : R → R is
assumed to be 2π-periodic. Moreover, let

σ ∈ Lq,loc(R) for some q > 1.
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Under this condition H(σ) can be defined as a self-adjoint operator in L2(R
2
+)

by means of the closed and lower semibounded quadratic form

∫

R2
+

|∇u(x)|2 dx +

∫

R

σ(x1)|u(x1, 0)|2 dx1, u ∈ H1(R2
+).

This is the first part of a paper where we analyze the spectrum of H(σ) and
develop a scattering theory viewing H(σ) as a (rather singular) perturbation of
H(0), the Neumann Laplacian on R

2
+. (For the abstract mathematical scatter-

ing theory see, e.g., [Ya].)
The main result of the present paper is that the wave operators

W
(σ)
± := W±(H(σ),H(0))

exist.

0.2 Physical interpretation

In the physical interpretation, H(σ) is the Hamiltonian of a two-dimensional
quantum-mechanical system which consists of a particle in the upper halfplane
and a crystal that fills the lower halfplane. The particle can not enter the
crystal but interacts non-trivially with the surface of the crystal, described by
the function σ. The existence of the wave operators means that every particle

which is described by a state u ∈ R
(

W
(σ)
±

)

behaves like a free particle in the

distant future and the distant past. We emphasize that there may also exist

particles which are described by a state u ∈ R
(

W
(σ)
±

)⊥

. These are surface

states which propagate along the boundary and decay exponentially away from
the boundary. Such surface states will be investigated in the second part [FrSh]
of the paper.

0.3 Outline of the paper

Let us explain some of the mathematical ideas involved. A precise definition
of the operator H(σ) in terms of a quadratic form is given in Subsection 1.4.
By means of the Bloch-Floquet theory we represent H(σ) in Subsection 2.2 as
a direct integral

∫ 1/2

−1/2

⊕

H(σ)(k) dk

with fiber operators H(σ)(k) acting in L2(Π) where Π := (−π, π) × R+ is the
halfstrip. Functions in the domain of H(σ)(k) satisfy the third type condition
(0.2) on (−π, π)×{0} (at least if σ is smooth), so H(σ)(k) differs from H(0)(k)
by a relatively compact form perturbation. This makes a rather detailed anal-
ysis of the operators H(σ)(k) possible.
Our approach leans on a quadratic form version of the resolvent identity which

Documenta Mathematica 8 (2003) 547–565



The Laplacian with a periodic boundary condition 549

we present in Subsection 3.2 following [Ya]. A similar approach has been suc-
cessfully applied to study periodic Schrödinger operators (cf. [BShSu]). In
our case it allows to show that the difference of resolvents of H(σ)(k) and
H(0)(k) belongs to the trace class, and from the Birman-Krĕın theorem (which
is sometimes called Birman-Kuroda theorem, unaware of [BKr]) we deduce in
Subsection 3.4 the existence and completeness of the wave operators on the
halfstrip. Using the same representation we can prove a limiting absorption
principle in Subsection 3.6, which implies the absence of singular continuous
spectrum.

The existence of the wave operators W
(σ)
± on the halfplane is derived from the

existence of the wave operators on the halfstrip.
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1 Setting of the problem. The main result

1.1 Notation

We introduce the halfplane

R
2
+ := {x = (x1, x2) ∈ R

2 : x2 > 0} = R × R+,

and the halfstrip

Π := {x = (x1, x2) ∈ R
2
+ : −π < x1 < π, x2 > 0} = (−π, π) × R+,

where R+ := (0,+∞). Moreover, we need the lattice 2πZ. Unless stated
otherwise, periodicity conditions are understood with respect to this lattice.
We think of the corresponding torus T := R/2πZ as the interval [−π, π] with
endpoints identified.
We use the notation D = (D1,D2) = −i∇ in R

2.
For an open set Ω ⊂ R

d, d = 1, 2, the index in the notation of the norm
‖.‖L2(Ω) is usually dropped. The space L2(T) may be formally identified with
L2(−π, π). We define the (discrete) Fourier transformation F : L2(T) → l2(Z)
by

(Ff)n = f̂n :=
1√
2π

∫ π

−π

f(x1)e
−inx1 dx1. n ∈ Z,
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Next, for an open set Ω ⊂ R
d, d = 1, 2, Hs(Ω) is the Sobolev space of order

s ∈ R (with integrability index 2). By Hs(T) we denote the closure of C∞(T)
in Hs(−π, π). Here C∞(T) is the space of functions in C∞(−π, π) which can be
extended 2π-periodically to functions in C∞(R). The space Hs(T) is endowed
with the norm

‖f‖2
Hs(T) :=

∑

n∈Z

(1 + n2)s|f̂n|2, f ∈ Hs(T).

By H̃s(Π) we denote the closure of C̃∞(Π)∩Hs(Π) in Hs(Π). Here C̃∞(Π) is
the space of functions in C∞(Π) which can be extended 2π-periodically with
respect to x1 to functions in C∞(R2

+).
Statements and formulae which contain the double index ”±” are understood
as two independent assertions.

1.2 Scattering theory

Here we summarize the definitions and basic results on scattering theory. For
proofs we refer to [Ya].
Let H0, H be self-adjoint operators in a Hilbert space H. The projection onto
the absolutely continuous subspace of H0 and the unitary group of H0 are

denoted by P0 and U0(t) := exp(−itH0), respectively. We put H
(ac)
0 := R(P0).

For the similar objects related to the operator H we omit the index ”0”.
In case of existence, the limit

W±(H,H0) := s − lim
t→±∞

U(−t)U0(t)P0

is called the wave operator for the pair H, H0 and the sign ±. Thus the elements

u = W±(H,H0)u
±
0 ∈ R(W±(H,H0)), u±

0 ∈ H
(ac)
0 , satisfy

lim
t→±∞

‖U(t)u − U0(t)u
±
0 ‖ = 0.

The wave operators are partial isometries with initial subspace H
(ac)
0 . One

easily establishes the intertwining property

W±(H,H0)H0 = H W±(H,H0).

It follows that the subspace R(W±(H,H0)) and its orthogonal complement are
invariant under H and that the wave operator provides a unitary equivalence
between the part of H on R(W±(H,H0)) and the absolutely continuous part
of H0. In particular,

R(W±(H,H0)) ⊂ H
(ac). (1.1)

The wave operator W±(H,H0) is said to be complete if equality holds in (1.1).
It is easy to see that the completeness of W±(H,H0) is equivalent to the ex-
istence of W±(H0,H). Thus, if the wave operator W±(H,H0) exists and is
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complete, then the absolutely continuous parts of H0 and H are unitarily equiv-
alent.
Let us conclude this brief overview with a convenient sufficient condition for
the existence and completeness of the wave operators due to Birman and Krĕın
(cf. [BKr]).

Proposition 1.1. Let H0, H be self-adjoint operators on a Hilbert space H

such that (H − zI)−1 − (H0 − zI)−1 belongs to the trace class for some z ∈
ρ(H0) ∩ ρ(H). Then the wave operators W±(H,H0) exist and are complete.

1.3 Multiplication on the boundary

Here we present auxiliary statements related to Sobolev embedding theorems.
Let σ be a periodic function satisfying

σ ∈ Lq(T) for some q > 1. (1.2)

It follows from the compactness of the embedding H1/2(−π, π) ⊂ L2q′(−π, π)
(with 1

q + 1
q′

= 1) that the form
∫ π

−π
|σ(x1)||f(x1)|2 dx1, f ∈ H1/2(−π, π), is

compact in H1/2(−π, π). This implies

Lemma 1.2. Assume (1.2) and let ǫ > 0. Then there exists a constant
C1(ǫ, σ) > 0 such that

∫ π

−π

|σ(x1)||f(x1)|2 dx1 ≤ ǫ‖f‖2
H1/2(−π,π) +C1(ǫ, σ)‖f‖2, f ∈ H1/2(−π, π).

Now let us pass to the situation on the halfstrip and on the halfplane. The
trace operator u 7→ u(., 0) is bounded from H1(Π) to H1/2(−π, π). Hence the
form

∫ π

−π
|σ(x1)||u(x1, 0)|2 dx1, u ∈ H1(Π), is compact in H1(Π) and we obtain

Lemma 1.3. Assume (1.2) and let ǫ > 0. Then there exists a constant
C2(ǫ, σ) > 0 such that

∫ π

−π

|σ(x1)||u(x1, 0)|2 dx1 ≤ ǫ‖u‖2
H1(Π) + C2(ǫ, σ)‖u‖2, u ∈ H1(Π).

Now let u ∈ H1(R2
+). For each n ∈ Z we apply Lemma 1.3 to the function

Π ∋ x 7→ u(x1 + 2πn, x2) and then sum over all n ∈ Z. This yields

Lemma 1.4. Assume (1.2) and let ǫ > 0. Then there exists a constant
C2(ǫ, σ) > 0 such that

∫

R

|σ(x1)||u(x1, 0)|2 dx1 ≤ ǫ‖u‖2
H1(R2

+
) + C2(ǫ, σ)‖u‖2, u ∈ H1(R2

+).

Documenta Mathematica 8 (2003) 547–565



552 Rupert L. Frank

Our treatment in Section 3 needs a more precise, quantitative result on the
embedding H1/2(−π, π) ⊂ L2q′(−π, π). We begin by recalling the definition of
the weak lp-spaces

lp,w(Z) = {(αn)n∈Z : sup
t>0

tρ1/p
α (t) < ∞}, 0 < p < ∞,

where ρα(t) := ♯{n ∈ Z : |αn| > t} for t > 0. lp,w(N) is defined in a similar
way. Further, recall (cf. Section 11.6 in [BS]) that Σp(H1,H2), 0 < p < ∞, is
the class of compact operators K from a Hilbert space H1 to a Hilbert space H2

for which (sn(K))n∈N ∈ lp,w(N), where (sn(K))n∈N is the sequence of singular
numbers of K. One puts Σp(H1) := Σp(H1,H1). The dependence on H1, H2 is
usually dropped in the notation if this does not lead to confusion.
The connection with the well-known Schatten class Sp of order p (which con-
sists of compact operators K for which (sn(K))n∈N ∈ lp(N)) can be seen from
the inclusions

Σr ⊂ Sp ⊂ Σp, r < p.

We will often use the fact that K1 ∈ Σp1
, K2 ∈ Σp2

implies

K1K2 ∈ Σ( 1
p1

+ 1
p2

)−1 . (1.3)

For a more general statement as well as for the proof of the following Cwikel-
type estimate we refer to Theorem 4.8 in [BKaS].

Proposition 1.5. Let β ∈ Lp(T) and α ∈ lp,w(Z) for some p > 2. Then
βF∗α ∈ Σp(l2(Z), L2(T)).

Let us consider the sequence α given by

αn := (1 + n2)−1/4, n ∈ Z, (1.4)

and a function β as above. We write βF∗α =
(

βF∗α2/p
)

α(p−2)/p. Clearly,

the operator of multiplication by α(p−2)/p belongs to Σ2p/(p−2)(l2(Z)), and by

Proposition 1.5 βF∗α2/p ∈ Σp(l2(Z), L2(T)). Thus, taking into account (1.3),
we obtain

Corollary 1.6. Let β ∈ Lp(T) for some p > 2 and α be given by (1.4). Then
βF∗α ∈ Σ2(l2(Z), L2(T)).

This is the desired embedding result. Note that F∗αF maps L2(T) unitarily
onto H1/2(T).

1.4 Definition of the operators H(σ) on the halfplane

Let σ be a real-valued periodic function satisfying (1.2). In the Hilbert space
L2(R

2
+) we consider the quadratic form

D[h(σ)] := H1(R2
+),

h(σ)[u] :=

∫

R2
+

|Du(x)|2 dx +

∫

R

σ(x1)|u(x1, 0)|2 dx1.
(1.5)
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According to Lemma 1.4 the form h(σ) is lower semibounded and closed, so it
generates a self-adjoint operator which will be denoted by H(σ). By construc-
tion

(H(σ)u, v) = h(σ)[u, v], u ∈ D(H(σ)), v ∈ H1(R2
+),

so it follows that the distributional Laplacian ∆u of u ∈ D(H(σ)) belongs to
L2(R

2
+) and that

H(σ)u = −∆u.

The case σ = 0 corresponds to the Neumann Laplacian on the halfplane,
whereas the case σ 6= 0 implements a (generalized) boundary condition of the
third type. More precisely, we have

Remark 1.7. Under the condition that σ is absolutely continuous with σ′ ∈
Lq(T) for some q > 1 it can be proved that

D(H(σ)) =

{

u ∈ H2(R2
+) : − ∂u

∂x2
+ σu = 0 on R × {0}

}

.

1.5 Main result

First we remark that the spectrum of the ”unperturbed” operator H(0) coin-
cides with [0,+∞) and is purely absolutely continuous of infinite multiplicity.
This can be seen easily by applying a Fourier transformation with respect to
the variable x1 and a Fourier cosine transformation with respect to the variable
x2.
We turn now to the ”perturbed” operator H(σ). We have recalled the abstract
definition of the wave operators in Subsection 1.2. In case of existence we will
use the notation

W
(σ)
± := W±(H(σ),H(0)).

The main result of the present paper is

Theorem 1.8. Assume that σ satisfies (1.2). Then the wave operators W
(σ)
±

exist and satisfy R(W
(σ)
+ ) = R(W

(σ)
− ).

We note that the equality R(W
(σ)
+ ) = R(W

(σ)
− ) implies the unitarity of the

scattering matrix.

It follows from Theorem 1.8 that the part of H(σ) on R(W
(σ)
± ) is unitarily

equivalent to H(0), and so σac

(

H(σ)
)

⊃ [0,+∞).
In the second part [FrSh] we supplement this theorem with the following re-
sults. The operator H(σ) has purely absolutely continuous spectrum. In general,
σ

(

H(σ)
)

may contain (apart from [0 + ∞)) additional bands, so the wave op-

erators W
(σ)
± may be not complete. The spectral subspaces corresponding to

the additional bands of H(σ) are additional channels of scattering. However,
under the additional assumption

σ ≥ 0 a.e. (1.6)
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the wave operators W
(σ)
± turn out to be complete and unitary.

Remark 1.9. The statement of Theorem 1.8 holds with obvious changes when
the role of the comparison operator H0 is played by the Dirichlet Laplacian
on the halfplane or the Laplacian on the whole plane. This follows easily
from the chain rule for wave operators and the fact, that the wave operators
W±(H(0),H0) exist and are complete. Indeed, they can be calculated easily.
(Clearly, if H0 is the Laplacian on the whole plane one has to use an identifi-
cation operator.)

Remark 1.10. A time-dependent characterization of the range of the wave oper-
ators and its orthogonal complement can be established by standard methods
(see [DaSi], [Sa]): With the notation U (σ)(t) := exp(−itH(σ)) for t ∈ R it
follows that

R(W
(σ)
± ) = {u ∈ L2(R

2
+) : lim

t→±∞

∫

R×(0,a)

|U (σ)(t)u(x)|2 dx = 0, a ∈ R+},

R(W
(σ)
± )⊥ = {u ∈ L2(R

2
+) : lim

a→+∞
sup
t∈R

∫

R×(a,+∞)

|U (σ)(t)u(x)|2 dx = 0}.

Thus, the additional channels of scattering correspond to ”surface states”, i.e.,
states concentrated near the boundary for all time.

2 Direct integral decomposition

2.1 Definition of the operators H(σ)(k) on the halfstrip

Let σ be a real-valued periodic function satisfying (1.2) and let k ∈ [− 1
2 , 1

2 ]. In
the Hilbert space L2(Π) we consider the quadratic form

D[h(σ)(k)] := H̃1(Π),

h(σ)(k)[u] :=

∫

Π

(

|(D1 + k)u(x)|2 + |D2u(x)|2
)

dx +

∫ π

−π

σ(x1)|u(x1, 0)|2 dx1.

(2.1)

According to Lemma 1.3 the form h(σ)(k) is lower semibounded and closed, so
it generates a self-adjoint operator which will be denoted by H(σ)(k). Similarly
as above one finds

H(σ)u = (D1 + k)2u + D2
2u = −∆u + 2kD1u + k2u, u ∈ D(H(σ)).

In addition to the Neumann (if σ = 0) or third type (if σ 6= 0) boundary
condition at {x2 = 0} the functions in D(H(σ)) satisfy periodic boundary
conditions at {x1 = ±π}. A statement analogous to Remark 1.7 holds.
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2.2 Direct integral decomposition of the operator H(σ)

The operator H(σ) can be partially diagonalized by means of the Gelfand trans-
formation U . This operator is initially defined for u ∈ S(R2

+), the Schwartz
class on R

2
+, by

(Uu)(k, x) :=
∑

n∈Z

e−ik(x1+2πn)u(x1 + 2πn, x2), k ∈ [− 1
2 , 1

2 ], x ∈ Π,

and extended by continuity to a unitary operator

U : L2(R
2
+) →

∫ 1/2

−1/2

⊕L2(Π) dk.

Moreover, it turns out that u ∈ H1(R2
+) iff (Uu)(k, .) ∈ H̃1(Π) for a.e. k ∈

[− 1
2 , 1

2 ] and
∫ 1/2

−1/2
‖(Uu)(k, .)‖2

H1(Π) dk < ∞, and in this case

(UD1u)(k, .) = (D1 + k)(Uu)(k, .), (UD2u)(k, .) = D2(Uu)(k, .).

Concerning the multiplication on the boundary by a periodic function σ satis-
fying (1.2), one finds for u ∈ H1(R2

+)

∫ 1/2

−1/2

∫ π

−π

σ(x1)|(Uu)(k, x1, 0)|2 dx1 dk =

∫

R

σ(x1)|u(x1, 0)|2 dx1.

To summarize, the Gelfand transformation satisfies

U
(

D[h(σ)]
)

=

{

F ∈
∫ 1/2

−1/2

⊕L2(Π) dk : F (k) ∈ H̃1(Π) for a.e. k ∈ [− 1
2 , 1

2 ],

∫ 1/2

−1/2

∣

∣

∣
h(σ)(k)[F (k)]

∣

∣

∣
dk < ∞

}

,

h(σ)[u] =

∫ 1/2

−1/2

h(σ)(k)[(Uu)(k, .)] dk, u ∈ H1(R2
+),

which implies

U H(σ) U∗ =

∫ 1/2

−1/2

⊕H(σ)(k) dk. (2.2)

This relation allows us to investigate the operator H(σ) by studying the fibers
H(σ)(k).

2.3 Main result for the operators H(σ)(k) on the halfstrip

In case of existence we will use the notation

W
(σ)
± (k) := W±(H(σ)(k),H(0)(k)), k ∈

[

− 1
2 , 1

2

]

.
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Theorem 2.1. Assume that σ satisfies (1.2) and let k ∈ [− 1
2 , 1

2 ]. Then the

wave operators W
(σ)
± (k) exist and are complete.

The spectrum of the ”unperturbed” operator H(0)(k) (see Subsection 3.1) co-
incides with [k2,+∞) and is purely absolutely continuous. By the remarks
in Subsection 1.2 Theorem 2.1 implies that the absolutely continuous part of
H(σ)(k) is unitarily equivalent to H(0)(k), in particular

σac

(

H(σ)(k)
)

= [k2,+∞).

Concerning the singular continuous spectrum of H(σ)(k) we prove

Theorem 2.2. Assume that σ satisfies (1.2) and let k ∈ [− 1
2 , 1

2 ]. Then

σsc

(

H(σ)(k)
)

= ∅.

The point spectrum of H(σ)(k) is investigated in the second part [FrSh]. We
prove there that σp

(

H(σ)(k)
)

consists of eigenvalues of finite multiplicities
which may accumulate at +∞ only. The situation of infinitely many (em-
bedded) eigenvalues does actually occur. The discrete eigenvalues of H(σ)(k)
produce bands in the spectrum of H(σ). In general, the same is true for the
embedded eigenvalues of H(σ)(k). However, under the additional assumption
(1.6) we prove σp

(

H(σ)(k)
)

= ∅, which implies the completeness and even

unitarity of the wave operators W
(σ)
± .

2.4 Reduction of Theorem 1.8 to Theorem 2.1

Assuming Theorem 2.1, the proof of Theorem 1.8 is easy.

Proof of Theorem 1.8. For t ∈ R, k ∈ [− 1
2 , 1

2 ] put U (σ)(t) := exp(−itH(σ))

and U (σ)(t, k) := exp(−itH(σ)(k)), and similarly with σ replaced by 0. The

wave operators W
(σ)
± (k) exist by Theorem 2.1 and are measurable with respect

to k, so
∫ 1/2

−1/2
⊕W

(σ)
± (k) dk is well defined. Moreover, by (2.2) together with

Theorem XIII.85 in [ReSi4] one has

U U (σ)(t)U∗ = exp(−itU H(σ) U∗) =

∫ 1/2

−1/2

⊕U (σ)(t, k) dk,

where U is the Gelfand transformation from Subsection 2.2, and similarly with
σ replaced by 0. It follows that for all u ∈ L2(R

2
+)

∥

∥

∥

∥

∥

U U (σ)(−t)U (0)(t)u −
(

∫ 1/2

−1/2

⊕W
(σ)
± (k) dk

)

Uu

∥

∥

∥

∥

∥

2

=

=

∫ 1/2

−1/2

∥

∥

∥
U (σ)(−t, k)U (0)(t, k) (Uu)(k, .) − W

(σ)
± (k) (Uu)(k, .)

∥

∥

∥

2

dk → 0

(t → ±∞)
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by Lebesgue’s theorem. This means that the strong limits of U (σ)(−t)U (0)(t)

for t → ±∞ exist and coincide with W
(σ)
± = U∗ (

∫ 1/2

−1/2
⊕W

(σ)
± (k) dk)U . In

particular, because of the completeness of W
(σ)
± (k),

R(W
(σ)
± ) = U∗

(

∫ 1/2

−1/2

⊕R(P (σ)
ac (k)) dk

)

U .

3 The operators H(σ)(k) on the halfstrip

3.1 The unperturbed operator H(0)(k) on the halfstrip

We start our investigation by summarizing results on the ”unperturbed” oper-
ator H(0)(k).
Let k ∈ [− 1

2 , 1
2 ]. By separation of variables one easily finds that the spec-

trum of the operator H(0)(k) coincides with [k2,+∞), is purely absolutely
continuous and that the spectral multiplicity of λ ∈ [k2,+∞) is ♯{n ∈ Z :
(n + k)2 ≤ λ}. Note that the spectral multiplicity changes at the ”threshold
points” (n + k)2, n ∈ Z.
It is also easy to verify that the resolvent

R(0)(z, k) :=
(

H(0)(k) − zI
)−1

, z ∈ ρ
(

H(0)(k)
)

= C \ [k2,+∞),

is an integral operator with kernel

r(0)(x, y; z, k) :=
1

4π

∑

n∈Z

ein(x1−y1)

βn(z, k)

(

e−βn(z,k) (x2+y2) + e−βn(z,k) |x2−y2|
)

,

x, y ∈ Π, x2 6= y2.

(3.1)

where
βn(z, k) :=

√

(n + k)2 − z, n ∈ Z, z ∈ C \ [k2,+∞). (3.2)

Here and in the following we choose the canonical branch of the square root on
C \ (−∞, 0] satisfying Re

√
. > 0.

Note that the RHS of (3.1) converges absolutely and uniformly on compact
subsets of {(x, y) ∈ Π × Π : x2 6= y2}.

3.2 A general approach to the inversion of a perturbed operator

To investigate the ”perturbed” operators H(σ)(k) we use a version of the resol-
vent identity. The ”classical” resolvent identity (H − zI)−1 − (H0 − zI)−1 =
−(H0 − zI)−1(H −H0)(H − zI)−1 involves the difference of H and H0, which
may be not well-defined if the operators are defined via quadratic forms. Here
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we present a version of the resolvent identity that works also in the quadratic
form case. The proof may be found in Section 1.9 of [Ya].
We work in a general setting: Let H be a Hilbert space and H, H0 be self-adjoint
operators satisfying

D(|H|1/2) = D(|H0|1/2). (3.3)

We note that H and H0 are not assumed to be semibounded (but they will be
so in our application). Denote their resolvents by

R0(z) := (H0 − zI)−1, z ∈ ρ(H0), R(z) := (H − zI)−1, z ∈ ρ(H).

Suppose that there is an ”auxiliary” Hilbert space G and operators

G0 : H ⊃ D(G0) → G, G : H ⊃ D(G) → G,

such that the following is true.

(H1) The operators G0, G are |H0|1/2-bounded, i.e.,

D(|H0|1/2) ⊂ D(G0), D(|H0|1/2) ⊂ D(G),
G0(|H0|1/2 + I)−1 ∈ B(H,G), G(|H0|1/2 + I)−1 ∈ B(H,G).

(H2) The operators G0, G satisfy

(G0f,Gg) = (Gf,G0g), f, g ∈ D(|H0|1/2).

(H3) The relation H = H0 + G∗G0 holds in the sense of forms, i.e.,

(Hf, f0) = (f,H0f0) + (Gf,G0f0), f0 ∈ D(H0), f ∈ D(H).

The assumption (H1) guarantees that the operators GR0(z) : H → G and
G0(GR0(z))∗ : G → G are well-defined and bounded for z ∈ ρ(H0). With
slight abuse of notation we put

R0(z)G∗ := (GR0(z))∗, G0R0(z)G∗ := G0(GR0(z))∗.

Proposition 3.1. Let H0,H be self-adjoint operators satisfying (3.3) and as-
sume that the operators G0, G satisfy (H1)-(H3). Let z ∈ ρ(H0), then z ∈ ρ(H)
iff I + G0R0(z)G∗ is boundedly invertible, and in this case

R(z) − R0(z) = −R0(z)G∗ (I + G0R0(z)G∗)
−1

G0R0(z). (3.4)

3.3 Some auxiliary operators

For k ∈ [− 1
2 , 1

2 ], z ∈ C \ [k2,+∞) we consider in L2(T) the operator

D(B(z, k)) := H1(T),

(B(z, k)f)(x1) :=
1√
2π

∑

n∈Z

βn(z, k) f̂n einx1 , x1 ∈ T,
(3.5)
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with βn(z, k) defined in (3.2). The operator B(z, k) is invertible for z ∈ C \
[k2,+∞) and its square root is well-defined (it may be considered as the square
root of an m-accretive operator). Now, let σ be a periodic function satisfying
(1.2) and define operators on L2(T) by

T
(σ)
0 (z, k) := (sgnσ)|σ|1/2B(z, k)−1/2, T (σ)(z, k) := |σ|1/2B(z, k)−1/2.

It follows from Corollary 1.6 that these are compact operators of class
Σ2(L2(T)).
Finally, for z ∈ C \ [k2,+∞) we consider the integral operator Y (z, k) acting
from L2(Π) to L2(T) whose kernel is given by

Y (x1, y; z, k) :=
1

2π

∑

n∈Z

1
√

βn(z, k)
ein(x1−y1)e−βn(z,k) y2 , x1 ∈ T, y ∈ Π.

(3.6)
Writing down the singular value expansion explicitly we find that Y (z, k) is a
compact operator of class Σ1(L2(Π), L2(T)).

3.4 The resolvent difference

We are now ready to apply the general results from Subsection 3.2 to our
situation. Denote the resolvent of the operator H(σ)(k) by

R(σ)(z, k) :=
(

H(σ)(k) − zI
)−1

, z ∈ ρ
(

H(σ)(k)
)

.

The following statement is of crucial importance.

Proposition 3.2. Let k ∈ [− 1
2 , 1

2 ] and z ∈ C\ [k2,+∞). Then z ∈ ρ
(

H(σ)(k)
)

iff the operator I+T
(σ)
0 (z, k)T (σ)(z, k)∗ is boundedly invertible, and in this case

R(σ)(z, k) − R(0)(z, k) =

= −Y (z, k)∗ T (σ)(z, k)∗
(

I + T
(σ)
0 (z, k) T (σ)(z, k)∗

)−1

T
(σ)
0 (z, k) Y (z, k).

(3.7)

Proof. We want to apply the results of Subsection 3.2 to the case H = L2(Π),
G = L2(T), H0 = H(0)(k), H = H(σ)(k) and

D(G0) = D(G) := H̃1(Π),

(G0u)(x1) := (sgn σ(x1))
√

|σ(x1)|u(x1, 0), x1 ∈ T,

(Gu)(x1) :=
√

|σ(x1)|u(x1, 0), x1 ∈ T.

According to Lemma 1.3, the operators G0, G are well-defined and bounded
from H̃1(Π) to L2(T). Since (|H0|1/2 + I)−1 is a bounded operator from H

to H̃1(Π), the assumption (H1) in Subsection 3.2 holds. The remaining (3.3),
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(H2) and (H3) are obvious, so that the statement of Proposition 3.1 holds. Let
us determine the products G0R0(z), GR0(z) and G0R0(z)G∗.
The explicit form (3.1) of the free resolvent implies that for u ∈ L2(Π)

(R0(z)u)(x1, 0) =
1

2π

∑

n∈Z

1

βn(z, k)

∫

Π

u(y) ein(x1−y1) e−βn(z,k) y2 dy =

=
(

B(z, k)−1/2 Y (z, k)u
)

(x1), x1 ∈ T,

and hence

G0R0(z) = T
(σ)
0 (z, k)Y (z, k), GR0(z) = T (σ)(z, k)Y (z, k).

Moreover, for f ∈ L2(T) we have

(Y (z, k)∗f)(x) =
1√
2π

∑

n∈Z

f̂n
√

βn(z, k)
einx1 e−βn(z,k) x2 , x ∈ Π,

so that Y (z, k)∗f ∈ H̃1(Π) and (Y (z, k)∗f)(., 0) = B(z, k)−1/2f . It follows

that G0Y (z, k)∗ = T
(σ)
0 (z, k) and

G0R0(z)G∗ = G0 (GR0(z))
∗

= T
(σ)
0 (z, k) T (σ)(z, k)∗.

This concludes the proof of the Proposition.

As an easy consequence of (3.7) we obtain

Corollary 3.3. Let k ∈ [− 1
2 , 1

2 ] and z ∈ ρ
(

H(σ)(k)
)

, then

R(σ)(z, k) − R(0)(z, k) ∈ Σ1/3(L2(Π)).

Proof. We have remarked in Subsection 3.3 that T
(σ)
0 (z, k), T (σ)(z, k) ∈

Σ2(L2(T)) and Y (z, k) ∈ Σ1(L2(Π), L2(T)), so the statement follows from
(1.3).

The proof of Theorem 2.1 is now immediate.

Proof of Theorem 2.1. Combine Corollary 3.3 with Proposition 1.1.

3.5 The limiting absorption principle for the unperturbed oper-
ator

It remains to prove Theorem 2.2, the absence of singular continuous spectrum.
This will be achieved by controlling the behavior of the resolvent R(σ)(z, k) as
the spectral parameter z tends to the real axis. We start with the unperturbed
case σ ≡ 0.
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We introduce the function Λ2(x) := (1 + x2
2)

1/2, x ∈ Π, and note that for
k ∈ [− 1

2 , 1
2 ], z ∈ C \ [k2,+∞) and s > 1

2 the operator

Λ−s
2 R(0)(z, k)Λ−s

2

belongs to the Hilbert-Schmidt class. The following result is called the limiting
absorption principle for the operator H(0)(k).

Proposition 3.4. Let s > 1
2 and k ∈ [− 1

2 , 1
2 ]. Then the limits

lim
ǫ→0+

Λ−s
2 R(0)(λ ± iǫ, k)Λ−s

2 , λ 6= (n + k)2, n ∈ Z,

exist in the Hilbert-Schmidt norm and are uniform for λ from compact intervals
of R \ {(n + k)2 : n ∈ Z}.

Proof. Fix λ ∈ R \ {(n + k)2 : n ∈ Z}, and define

r(0)(x, y;λ ± i0, k) := lim
ǫ→0+

r(0)(x, y;λ ± iǫ, k), x 6= y ∈ Π,

as pointwise limit using formula (3.1). We have to prove that

∫

Π

∫

Π

∣

∣

∣
r(0)(x, y;λ ± iǫ, k) − r(0)(x, y;λ ± i0, k)

∣

∣

∣

2 dx

(1 + x2
2)

s

dy

(1 + y2
2)s

−→ 0

(ǫ → 0+).

(3.8)

We restrict ourselves to the ”+”-case, the other being similar, and for simplicity
of notation, we put

cn(ǫ) := βn(λ + iǫ, k), cn := lim
ǫ→0+

cn(ǫ).

Using Parseval’s identity and the triangle inequality we find

∫

Π

∫

Π

∣

∣

∣
r(0)(x, y;λ ± iǫ, k) − r(0)(x, y;λ ± i0, k)

∣

∣

∣

2 dx

(1 + x2
2)

s

dy

(1 + y2
2)s

=

=
∑

n∈Z

∫ ∞

0

dx2

(1 + x2
2)

s

∫ ∞

0

dy2

(1 + y2
2)s

∣

∣

∣

∣

e−cn(ǫ)(x2+y2) + e−cn(ǫ)|x2−y2|

2cn(ǫ)
− e−cn(x2+y2) + e−cn|x2−y2|

2cn

∣

∣

∣

∣

2

≤

≤ 2
∑

n∈Z

∫ ∞

0

∫ ∞

0

(tn,ǫ(x2 + y2) + tn,ǫ(x2 − y2))
dx2

(1 + x2
2)

s

dy2

(1 + y2
2)s

,

where

tn,ǫ(a) :=

∣

∣

∣

∣

e−cn(ǫ)|a|

2cn(ǫ)
− e−cn|a|

2cn

∣

∣

∣

∣

2

, a ∈ R.
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For (n + k)2 < λ it follows from Lebesgue’s theorem that

∑

(n+k)2<λ

∫ ∞

0

∫ ∞

0

(tn,ǫ(x2 + y2) + tn,ǫ(x2 − y2))
dx2

(1 + x2
2)

s

dy2

(1 + y2
2)s

−→ 0,

(ǫ → 0+).

Suppose now that (n+k)2 > λ. To control the convergence of the tn,ǫ in terms
of n we need the elementary estimate

tn,ǫ(a) ≤ ǫ2
C

|cn|6
, a ∈ R,

with a constant C independent of a, ǫ, λ and n. It follows that

∑

(n+k)2>λ

∫ ∞

0

∫ ∞

0

(tn,ǫ(x2 + y2) + tn,ǫ(x2 − y2))
dx2

(1 + x2
2)

s

dy2

(1 + y2
2)s

≤

≤ 2Cǫ2
(

∫ ∞

0

dx2

(1 + x2
2)

s

)2
∑

n∈Z

1

|cn|6
.

The RHS converges to 0 as ǫ → 0+, which completes the proof of (3.8).
Finally, we remark that the limit in (3.8) is uniform in λ for λ from a compact
intervall not containing any of the points (n + k)2, n ∈ Z. This follows from
the fact, that cn depends continuously on λ.

3.6 The limiting absorption principle for the perturbed operator

Using the Analytic Fredholm Alternative and the resolvent identity (3.7) we de-
rive the limiting absorption principle for the operator H(σ)(k) from Proposition
3.4.

Lemma 3.5. Let k ∈ [− 1
2 , 1

2 ], then the operator families

T
(σ)
0 (z, k), T (σ)(z, k), z ∈ C \ [k2,∞),

can be extended norm-continuously to the cut from above and from below with
the exception of the points z = (n+k)2, n ∈ Z. Denoting the (upper and lower)
boundary values by

T
(σ)
0 (λ ± i0, k), T (σ)(λ ± i0, k), λ 6= (n + k)2,

the sets

N±(k) :={λ ∈ R \ {(n + k)2 : n ∈ Z} :

N (I + T
(σ)
0 (λ ± i0, k)T (σ)(λ ∓ i0, k)∗) 6= {0}}

are discrete in R \ {(n + k)2 : n ∈ Z}.
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Remark 3.6. One can show that the sets N+(k) and N−(k) coincide. Moreover,
in the second part [FrSh] we will prove that the sets N±(k) can accumulate at
+∞ only.

Proof. Let

B̃(z, k), z ∈ C \ {(n + k)2 + iy : n ∈ Z, y ≤ 0} =: D+(k)

be the analytic family of operators given by the same formal expression (3.5) as
the operators B(z, k), but where we choose in the definition (3.2) the branch of
the square root on C \ {iy : y ≥ 0} which coincides with the canonical branch
on the lower halfplane. In particular,

B̃(z, k) = B(z, k), z ∈ C+. (3.9)

It follows from Corollary 1.6 that

T̃ (σ)(z, k) := |σ|1/2B̃(z, k)−1/2, z ∈ D+(k),

is an analytic family of compact operators. Because of (3.9) it is a bounded
analytic (and hence norm-continuous) extension of the family T (σ)(z, k) across
the cut from above. We put

T (σ)(λ + i0, k) := T̃ (σ)(λ, k), λ 6= (n + k)2, n ∈ Z.

The construction of the operators T (σ)(λ − i0, k) is similar, replacing D+(k)
by D−(k) := C \ {(n + k)2 + iy : n ∈ Z, y ≥ 0}, and the statement about the

operators T
(σ)
0 (z, k) follows by multiplying T (σ)(z, k) with sgnσ.

Let us prove the statement about the sets N±(k). It follows easily that
‖T̃ (σ)(z, k)‖ < 1 if |Im z| is large. Now the Analytic Fredholm Alternative

(cf. Theorem VII.1.9 in [K]) applied to the operators T̃
(σ)
0 (z, k) T̃ (σ)(z, k)∗

yields the discreteness of the sets N±(k). This concludes the proof.

Proposition 3.7. Let s > 1
2 and k ∈ [− 1

2 , 1
2 ]. Then the limits

lim
ǫ→0+

Λ−s
2 R(σ)(λ ± iǫ, k)Λ−s

2 , λ /∈ {(n + k)2 : n ∈ Z} ∪ N±(k),

exist in the Hilbert-Schmidt norm and are uniform for λ from compact intervals
of R \

(

{(n + k)2 : n ∈ Z} ∪ N±(k)
)

.

Proof. We consider the resolvent identity (3.7). Because of Proposition 3.4 and
Lemma 3.5 it suffices to prove that the limits

lim
ǫ→0+

Y (λ ± iǫ, k)Λ−s
2 , λ 6= (n + k)2, n ∈ Z,

exist in the Hilbert-Schmidt norm and are uniform for λ from compact intervals
of R \ {(n + k)2 : n ∈ Z}.
Considering the integral kernel (3.6) of Y (z, k) one can procede similar to the
proof of Proposition 3.4.
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As an easy consequence of Proposition 3.7 we obtain now Theorem 2.2.

Proof of Theorem 2.2. Let [a, b] ⊂ R\
(

{(n + k)2 : n ∈ Z} ∪ N±(k)
)

be a com-

pact interval. Then for every u from the dense set R(Λ−s
2 ) (with s > 1

2 arbi-
trary) we have

sup
0<ǫ<1

∫ b

a

|(R(σ)(λ ± iǫ, k)u, u)|2 dλ < ∞

by Proposition 3.7. It follows (cf. Proposition 1.5.2 in [Ya]) that the spectrum
of H(σ)(k) is purely absolutely continuous on [a, b]. Therefore σsing

(

H(σ)(k)
)

⊂
{(n+k)2 : n ∈ Z}∪N±(k). Since the latter set accumulates only at {(n+k)2 :
n ∈ Z} and +∞, we conclude σsc

(

H(σ)(k)
)

= ∅, as claimed.
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