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Abstract. We discuss three natural, classically equivalent, Haus-
dorff separation properties for topological spaces in constructive math-
ematics. Using Brouwerian examples, we show that our results are the
best possible in our constructive framework.

1 Introduction

A typical feature of constructive mathematics—that is, mathematics with in-
tuitionistic logic [1, 2, 3, 4, 10]—is that a classical property may have several
constructively inequivalent counterparts. In this paper we describe such coun-
terparts of the notion of a Hausdorff space, examine their interconnections, and,
by means of Brouwerian examples, show that our results cannot be improved
without some additional, nonconstructive principles.
The original impetus for our work came from the constructive theory of apart-
ness (point–set [5, 11] and set–set [9]). However, in order to make the work
below accessible to anyone familiar with only the most basic notions of topol-
ogy, we have chosen to work with the usual notion of topological space. Note,
however, that we require a topological space to be equipped from the outset
with an inequality relation 6= satisfying the following properties for all x
and y:

x 6= y ⇒ ¬ (x = y) ,

x 6= y ⇒ y 6= x.

We then denote the complement of a subset S of X by

∼S = {x ∈ X : ∀y ∈ S (x 6= y)} .

On the other hand, the apartness complement of S defined to be

−S = (∼S)
◦
.
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If

∀x, y (¬ (x 6= y) ⇒ x = y) ,

then we say that the inequality is tight.

We note here, for future reference, that a topological space X is

• topologically cotransitive if

(x ∈ U ∧ U ∈ τ) ⇒ ∀y ∈ X (x 6= y ∨ y ∈ U) ;

• locally decomposable if

(x ∈ U ∧ U ∈ τ) ⇒ ∃V ∈ τ (x ∈ V ∧ X = U∪ ∼V ) .

Note that local decomposability implies topological cotransitivity. In the con-
structive theory of point–set apartness spaces, topological cotransitivity is pos-
tulated, and local decomposability is an extremely valuable property to have
[6, 7]. For example, local decomposability ensures that if an apartness relation
is induced by a topology, then the natural topology produced by the apartness
relation coincides with the original topology. So important is local decom-
posability that it is actually postulated as a property of an apartness relation
between sets [6].

We will need some basic facts about nets in constructive topology. By a di-
rected set we mean a nonempty set D with a preorder1 < such that for all
m,n ∈ D there exists p ∈ D with p < m and p < n. If (X, τ) is a topological
space, then to each x in X there corresponds a special net defined as follows.
Let

Dx = {(ξ, U) ∈ X × τ : x ∈ U ∧ ξ ∈ U} ,

with equality defined by

(ξ, U) = (ξ′, U ′) ⇔ (ξ = ξ′ ∧ U = U ′) ,

and for each n = (ξ, U) in Dx define xn = ξ. It is easy to see that D is a
directed set under the inclusion preorder defined by

(ξ, U) < (ξ′, U ′) ⇔ U ⊂ U ′,

so that Nx = (xn)n∈Dx

is a net—the basic neighbourhood net of x.

We say that a net (xn)n∈D in X converges to a limit x in X if

∀U ∈ τ (x ∈ U ⇒ ∃n0 ∈ D ∀n < n0 (xn ∈ U)) .

1The classical theory of nets requires a partial order. If we used a partial order in our

constructive theory, we would run into difficulties which the classical theory avoids by appli-

cations of the axiom of choice.
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2 Hausdorff and unique limit properties

Let (X, τ) be a topological space. More or less as in classical topology, we say
that X is Hausdorff, or separated, if it satisfies the following condition:

H If x, y ∈ X and x 6= y, then there exist U, V ∈ τ such that x ∈ U, y ∈ V,
and U ⊂∼V

In that case, V ⊂∼ U.
Classically, being Hausdorff is equivalent to having the unique limits prop-
erty:

ULP If (xn)n∈D is a net converging to limits x and y in X, then x = y.

We say that a point y in X is eventually bounded away from a net
(xn)n∈D in X if there exists n0 ∈ D such that

y ∈ −{xn : n < n0} .

From a constructive viewpoint, the unique limits property appears rather weak;
of more likely interest is the (classically equivalent) strong unique limits
property:

SULP If (xn)n∈D is a net in X that converges to a limit x, and if x 6= y ∈ X,
then (xn)n∈D is eventually bounded away from y.

In this section we investigate constructively the connection between these two
uniqueness properties and condition H. Specifically, we prove that the following
diagram of implications occurs:

Tight 

SULP

Hausdorff

ULP

We first have an elementary, but useful, lemma.

Lemma 1 Let X be a topological space, x a point of X, and ν = (ξ, U) ∈ Dx.
Then

U = {xn : n ∈ Dx, n < ν} . (1)
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Proof. Consider n ∈ Dx. If n = (xn,W ) < ν, then xn ∈ W ⊂ U. Hence
{xn : n < ν} ⊂ U. On the other hand, for each y ∈ U we have (y, U) < ν, so
y ∈ {xn : n < ν} .

Proposition 2 A topological space is Hausdorff if and only if it has the strong

unique limits property.

Proof. Let (X, τ) be a topological space. Assume first that X is Hausdorff,
let (xn)n∈D be a net converging to a limit x in X, and let x 6= y in X. Choose
U, V ∈ τ such that x ∈ U, y ∈ V, and U ⊂∼V. There exists n0 such that xn ∈ U
for all n < n0. Then

y ∈ V ⊂∼ U ⊂∼ {xn : n < n0} ,

so

y ∈ (∼ {xn : n < n0})
◦

= −{xn : n < n0} .

Now suppose that X has the strong unique limits property, and let x, y be points
of X with x 6= y. Since the net Nx converges to x, there exist n0 = (ξ, U) ∈ Dx

and V ∈ τ such that

y ∈ V ⊂∼ {xn : n ∈ Dx, n < n0} .

By Lemma 1,

U = {xn : n ∈ Dx, n < n0} .

Thus x ∈ U, y ∈ V, and V ⊂∼U ; so X is Hausdorff.

Corollary 3 A Hausdorff space with tight inequality has the unique limits

property.

Proof. Let (xn)n∈D be a net converging to limits x, y in a Hausdorff space X
with tight inequality. If x 6= y, then we obtain a contradiction from Proposition
2. Hence ¬ (x 6= y) , and so, by tightness, x = y.

By a T1–space we mean a topological space (X, τ) with the property

x 6= y ⇒ ∃U ∈ τ (x ∈ U ⊂∼{y}) .

The following lemma enables us to prove a partial converse to Corollary 3.

Lemma 4 Let X be a topological space. If X is a T1–space with tight inequality,

then

∀x, y ∈ X
(

y ∈ {x} ⇒ x = y
)

. (2)

Conversely, if (2) holds and X is topologically cotransitive, then the inequality

on X is tight.
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Proof. Suppose that X is a T1–space with tight inequality, let y ∈ {x}, and
assume that x 6= y. Then there exists U ∈ τ such that x ∈ U ⊂∼{y} ; whence
y /∈ {x}, which is absurd. Thus ¬ (x 6= y) and therefore, by tightness, x = y.
Conversely, suppose that (2) holds and that X is topologically cotransitive.
Let ¬ (x 6= y) . For each U ∈ τ with x ∈ U, the topological cotransitivity of X
implies that either x 6= y or else y ∈ U ; the former alternative is ruled out, so
we must have y ∈ U. Hence y ∈ {x} and so, by (2), x = y.

Proposition 5 In a topological space with the unique limits property the in-

equality is tight.

Proof. Let X be a topological space with the unique limits property, and
suppose that y ∈ {x}. Then every open set containing x contains y. Let

L = {(z, U, V ) : U, V ∈ τ, x ∈ U, y ∈ V, z ∈ U ∩ V },

where
(z, U, V ) = (z′, U ′, V ′) ⇔ z = z′ ∧ U = U ′ ∧ V = V ′.

Define a binary relation < on L by

(z1, U1, V1) < (z2, U2, V2) ⇐⇒ U1 ⊂ U2.

It is easy to show that L is directed with respect to this binary relation. For
each n = (z, U, V ) in L define xn = z. Then the net (xn)n∈L converges to both
x and y in X; whence x = y. It follows from Lemma 4 that the inequality on
X is tight.

3 Limiting examples

In this section we show that the connections (summarised in the diagram pre-
sented earlier) we have established between the Hausdorff condition, the unique
limits property, and the strong unique limits property are the best possible
within our constructive framework. We begin by showing that Hausdorff is not
enough to establish tightness.

Proposition 6 If every topologically cotransitive topological space with the

unique limits property has tight inequality, then the law of excluded middle

holds in the weak form (¬¬P ⇒ P ) .

Proof. Let P be any syntactically correct statement such that ¬¬P holds,
and take X = {0, 1, 2} with equality satisfying

0 = 1 ⇔ P

and inequality given by

0 6= 2, 1 6= 2, and (0 6= 1 ⇔ ¬P ) .
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Define a topology τ on X by taking the basic open sets to be the complements
of subsets of X. To see that X has the topological cotransitivity property,
consider all possible cases that arise when x ∈ U and U ∈ τ. We may assume
that U =∼S for some S ⊂ X. If x = 0, then 0 ∈∼S. It follows that S ⊂ {2} :
for if s ∈ S, then either s = 1 or s = 2; in the former case, 0 6= 1 and therefore
¬P, which contradicts our hypotheses. Since 1 6= 2, we have 1 ∈ ∼S; since also
0 6= 2, we conclude that

∀y ∈ X (0 6= y ∨ y ∈∼S = U) .

The case x = 1 is similar, and the case x = 2 is even easier to handle.
We claim that X is a Hausdorff apartness space. If x 6= y, then without loss
of generality, either x = 0 and y = 2 or else x = 1 and y = 2. Taking, for
illustration, the former case, we have 0 ∈ {0, 1} =∼ {2} , 2 ∈ {2} =∼ {0} ,
and ∼ {2} =∼∼ {0} .Thus there exist U, V ∈ τ such that x ∈ U, y ∈ V, and
U ⊂∼V.
Finally, if the inequality on X is tight, then as ¬ (0 6= 1) , we have 0 = 1 and
therefore P.

Our final proposition shows that, even when the inequality is tight and certain
additional hypotheses hold, the strong unique limits property does not entail
being Hausdorff. For the proof we introduce a strange lemma and a general
construction. The lemma may seem obvious, but in fact we have to be careful
to avoid the axiom of choice, which implies the law of excluded middle [8].

Lemma 7 Let C be a class of subsets of a set X, and let (Si)i∈I be a family of

subsets of X such that for each i, if Si 6= ∅, then Si is a union of sets in C. If

S =
⋃

i∈I
Si 6= ∅, then S is also a union of sets in C.

Proof. For each x ∈ X define

Ix = {i ∈ I : x ∈ Si} .

Then

S =
⋃

x∈X

⋃

i∈I
Si.

If x ∈ S and i ∈ Ix, then Si 6= ∅ and so is a union of sets in C. Hence S itself
is such a union.

Let X be a set with a nontrivial inequality 6=. We say that a subset S of X is

• finitely enumerable (respectively, finite) if there exist a natural
number n and a mapping (respectively, one–one mapping) f of {1, . . . , n}
onto S;

• cofinite if it is the complement of a finitely enumerable subset.
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Note that the empty set is finitely enumerable, so X is cofinite. Also, if S is
finitely enumerable, then either S = ∅ or else S 6= ∅ (that is, there exists an
element of S).
We define the cofinite topology on X to be

τ = {S ⊂ X : S 6= ∅ ⇒ S is a union of cofinite sets} .

To see that this is a topology, note that (as above) X ∈ τ and, by ex falso

quodlibet, ∅ ∈ τ. The unions axiom for a topology is an immediate consequence
of Lemma 7 with C = τ. To verify the intersections axiom, let (Si)i∈I and
(Tj)j∈J

be families of sets in τ. For all i, j choose finitely enumerable subsets
Ai, Bj of X such that Si =∼Ai and Tj =∼Bj . Then

(

⋃

i∈I
Si

)

∩
(

⋃

j∈J
Tj

)

=
(

⋃

i∈I
∼Ai

)

∩
(

⋃

j∈J
∼Bj

)

=
⋃

i∈I

⋃

j∈J
(∼Ai∩ ∼Bj)

=
⋃

i∈I

⋃

j∈J
∼(Ai ∪ Bj) ,

where each Ai ∪ Bj is cofinite.
We now recall Markov’s Principle,

For every binary sequence (an)
∞

n=1
such that ¬∀n (an = 1) , there

exists n such that an = 0,

a form of unbounded search that is well–known to be independent of Heyting
arithmetic (Peano arithmetic with intuitionistic logic) and is therefore generally
regarded as essentially nonconstructive.

Proposition 8 If every locally decomposable T1–space with the unique limits

property and tight inequality is Hausdorff, then Markov’s Principle holds.

Proof. We take a specific case of the foregoing construction. Let (an)
∞

n=1
be

a decreasing binary sequence such that a1 = 1 and ¬∀n (an = 1) . Take

X = {0} ∪
{an

n
: n = 1, 2, 3, . . .

}

with the discrete inequality, and let τ be the cofinite topology on X. To show
that X is a T1–space, let x 6= y in X. Either one of x, y is 0 or else both are
nonzero. If, for example, x = 0, then y = 1/n for some n with an = 1. Writing

U = {0} ∪
{ak

k
: k > n

}

=∼
{ak

k
: k ≤ n

}

,

we see that

U ∈ τ and x ∈ U ⊂∼{y} . (3)
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So we are left with the case where x = 1/m and y = 1/n, with am = an = 1.
In this case, without loss of generality taking m > n, we obtain (3) by defining

U = {0} ∪
{ak

k
: k ≥ m

}

.

To show that X is locally decomposable, again consider x ∈ X and U ∈ τ with
x ∈ U. We may assume that U =∼A for some finitely enumerable set A ⊂ X;
without loss of generality, A 6= ∅. Consider first the case x = 0. Let

K = max

{

k :
1

k
∈ A

}

and
V = {0} ∪

{ak

k
: k > K

}

=∼
{ak

k
: k ≤ K

}

.

Then V is a neighbourhood of 0. For each y ∈ X, either y = 0 ∈ U or else
y = 1/k for some k with ak = 1. In the latter case, if k > K, then y ∈∼A = U ;
whereas if k ≤ K, then y ∈∼V. This deals with the case x = 0. Now consider
the case where x = 1/m for some m with am = 1. Again let U =∼A be an
open neighbourhood of x, where A is finitely enumerable. If am+1 = 0, then
X is finite and hence locally decomposable; so we may assume that am+1 = 1.
Without loss of generality we may further assume that 1/ (m + 1) ∈ A. Thus

L = max

{

n :
1

n
∈ A

}

> m.

Set

V =
{ak

k
: (k > L ∧ ak = 1) ∨ k = m

}

=∼
(

{0} ∪
{ak

k
: k ≤ L, k 6= m

})

.

Then V is a neighbourhood of x. For each y ∈ X, either y = 0 and hence
y ∈∼V, or else y = ak/k for some k with ak = 1. If k > L, then y ∈∼A = U ;
if k = m, then y ∈ U ; if k ≤ L and k 6= m, then y ∈∼V .
Next, we prove that X has the unique limits property. To this end, suppose
that (xn)n∈D is a net in X that converges to both x and y. Suppose also that
x 6= y. For each n, if an = 0, then X is finitely enumerable and so has the
unique limits property; whence x = y, a contradiction. Thus an = 1 for all n,
which is also a contradiction. We conclude that ¬ (x 6= y) ; since we are dealing
with a discrete inequality, it follows that x = y.
Finally, noting that 0 6= 1, suppose there exist U, V in τ such that 0 ∈ U, 1 ∈ V,
and U ∩ V = ∅. There exist finitely enumerable sets A,B ⊂ X such that
0 ∈∼A ⊂ U and 1 ∈∼B ⊂ V. Let

N = max

{

n :
1

n
∈ A ∪ B

}

.

Then
{ak

k
: k > N

}

⊂∼A∩ ∼B ⊂ U ∩ V.
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If aN+1 = 1, then U ∩ V 6= ∅, a contradiction. Hence aN+1 = 0.
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