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Abstract. We prove a result about the existence of certain ‘sums-of-
squares’ formulas over a field F . A classical theorem uses topological
K-theory to show that if such a formula exists over R, then certain
powers of 2 must divide certain binomial coefficients. In this paper
we use algebraic K-theory to extend the result to all fields not of
characteristic 2.

1. Introduction

Let F be a field. A classical problem asks for which values of r, s, and n does
there exist an identity of the form

(

x2
1 + · · · + x2

r

) (

y2
1 + · · · + y2

s

)

= z2
1 + · · · + z2

n

in the polynomial ring F [x1, . . . , xr, y1, . . . , ys], where the zi’s are bilinear ex-
pressions in the x’s and y’s. Such an identity is called a sums-of-squares
formula of type [r, s, n]. For the history of this problem, see the exposi-
tory papers [L, Sh].
The main theorem of this paper is the following:

Theorem 1.1. Assume F is not of characteristic 2. If a sums-of-squares for-

mula of type [r, s, n] exists over F , then 2⌊
s−1

2
⌋−i+1 divides

(

n

i

)

for n− r < i ≤

⌊ s−1

2
⌋.

As one specific application, the theorem shows that a formula of type [13, 13, 16]
cannot exist over any field of characteristic not equal to 2. Previously this had
only been known in characteristic zero. (Note that the case char(F ) = 2, which
is not covered by the theorem, is trivial: formulas of type [r, s, 1] always exist).
In the case F = R, the above theorem was essentially proven by Atiyah [At]
as an early application of complex K-theory; the relevance of Atiyah’s paper
to the sums-of-squares problem was only later pointed out by Yuzvinsky [Y].
The result for characteristic zero fields can be deduced from the case F = R by
an algebraic argument due to K. Y. Lam and T. Y. Lam (see [Sh]). Thus, our
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contribution is the extension to fields of non-zero characteristic. In this sense
the present paper is a natural sequel to [DI], which extended another classical
condition about sums-of-squares. We note that sums-of-squares formulas in
characteristic p were first seriously investigated in [Ad1, Ad2].
Our proof of Theorem 1.1, given in Section 2, is a modification of Atiyah’s
original argument. The existence of a sums-of-squares formula allows one to
make conclusions about the geometric dimension of certain algebraic vector
bundles. A computation of algebraic K-theory (in fact just algebraic K0),
given in Section 3, determines restrictions on what that geometric dimension
can be—and this yields the theorem.
Atiyah’s result for F = R is actually slightly better than our Theorem 1.1.
The use of topological KO-theory rather than complex K-theory yields an
extra power of 2 dividing some of the binomial coefficients. It seems likely that
this stronger result holds in non-zero characteristic as well and that it could be
proved with Hermitian algebraic K-theory.

1.2. Restatement of the main theorem. The condition on binomial co-
efficients from Theorem 1.1 can be reformulated in a slightly different way.
This second formulation surfaces often, and it’s what arises naturally in our
proof. We record it here for the reader’s convenience. Each of the following
observations is a consequence of the previous one:

• By repeated use of Pascal’s identity
(

c

d

)

=
(

c−1

d−1

)

+
(

c−1

d

)

,

the number
(

n+i−1

k+i

)

is a Z-linear combination of the numbers
(

n

k+1

)

,
(

n

k+2

)

, . . . ,
(

n

k+i

)

. Similarly,
(

n

k+i

)

is a Z-linear combination

of
(

n

k+1

)

,
(

n+1

k+2

)

, . . . ,
(

n+i−1

k+i

)

.

• An integer b is a common divisor of
(

n

k+1

)

,
(

n

k+2

)

, . . . ,
(

n

k+i

)

if and only

if it is a common divisor of
(

n

k+1

)

,
(

n+1

k+2

)

, . . . ,
(

n+i−1

k+i

)

.
• The series of statements

2N
∣

∣

∣

(

n

k+1

)

, 2N−1

∣

∣

∣

(

n

k+2

)

, . . . , 2N−i+1

∣

∣

∣

(

n

k+i

)

is equivalent to the series of statements

2N
∣

∣

∣

(

n

k+1

)

, 2N−1

∣

∣

∣

(

n+1

k+2

)

, . . . , 2N−i+1

∣

∣

∣

(

n+i−1

k+i

)

.

• If N is a fixed integer, then 2N−i+1 divides
(

n

i

)

for n − r < i ≤ N if

and only if 2N−i+1 divides
(

r+i−1

i

)

for n − r < i ≤ N .

The last observation shows that Theorem 1.1 is equivalent to the theorem
below. This is the form in which we’ll actually prove the result.

Theorem 1.3. Suppose that F is not of characteristic 2. If a sums-of-squares

formula of type [r, s, n] exists over F , then 2⌊
s−1

2
⌋−i+1 divides the binomial

coefficient
(

r+i−1

i

)

for n − r < i ≤ ⌊ s−1

2
⌋.

1.4. Notation. Throughout this paper K0(X) denotes the Grothendieck
group of locally free coherent sheaves on the scheme X. This group is usu-
ally denoted K0(X) in the literature.
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2. The main proof

In this section we fix a field F not of characteristic 2. Let qk be the qua-

dratic form on A
k defined by qk(x) =

∑k

i=1
x2

i . A sums-of-squares for-
mula of type [r, s, n] gives a bilinear map φ : A

r × A
s → A

n such that
qr(x)qs(y) = qn(φ(x, y)). We begin with a simple lemma:

Lemma 2.1. Let F →֒ E be a field extension, and let y ∈ Es be such that

qs(y) 6= 0. Then for x ∈ Er one has φ(x, y) = 0 if and only if x = 0.

Proof. Let 〈−,−〉 denote the inner product on Ek corresponding to the qua-
dratic form qk. Note that the sums-of-squares identity implies that

〈φ(x, y), φ(x′, y)〉 = qs(y)〈x, x′〉

for any x and x′ in Er. If one had φ(x, y) = 0 then the above formula would
imply that qs(y)〈x, x′〉 = 0 for every x′; but since qs(y) 6= 0, this can only
happen when x = 0. ¤

Let Vq be the subvariety of P
s−1 defined by qs(y) = 0. Let ξ denote the

restriction to Vq of the tautological line bundle O(−1) of P
s−1.

Proposition 2.2. If a sums-of-squares formula of type [r, s, n] exists over F ,

then there is an algebraic vector bundle ζ on P
s−1 − Vq of rank n− r such that

r[ξ] + [ζ] = n

as elements of the Grothendieck group K0(Ps−1 − Vq) of locally free coherent

sheaves on P
s−1 − Vq.

Proof. We’ll write q = qs in this proof, for simplicity. Let S = F [y1, . . . , ys]
be the homogeneous coordinate ring of P

s−1. By [H, Prop. II.2.5(b)] one has
P

s−1 −Vq = SpecR, where R is the subring of the localization Sq that consists
of degree 0 homogeneous elements. The group K0(Ps−1 − Vq) is naturally iso-
morphic to the Grothendieck group of finitely-generated projective R-modules.
Let P denote the subset of Sq consisting of homogeneous elements of degree
−1, regarded as a module over R. Then P is projective and is the module
of sections of the vector bundle ξ. To see explicitly that P is projective of

rank 1, observe that there is a split-exact sequence 0 → Rs−1 → Rs π
−→ P →

0 where π(p1, . . . , ps) =
∑

pi ·
yi

q
and the splitting χ : P → Rs is χ(f) =

(y1f, y2f, . . . , ysf).
From our bilinear map φ : A

r × A
s → A

n we get linear forms φ(ei, y) ∈ Sn for
1 ≤ i ≤ r. Here ei denotes the standard basis for F r, and y = (y1, . . . , ys) is
the vector of indeterminates from S. If f belongs to P , then each component
of f · φ(ei, y) is homogeneous of degree 0—hence lies in R.
Define a map α : P r → Rn by

(f1, . . . , fr) 7→ f1φ(e1, y) + f2φ(e2, y) + · · · + frφ(er, y).

We can write α(f1, . . . , fr) = φ((f1, . . . , fr), y), where the expression on the
right means to formally substitute each fi for xi in the defining formula for φ.
If R → E is any map of rings where E is a field, we claim that α ⊗R E is an
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injective map Er → En. To see this, note that R → E may be extended to a
map u : Sq → E (any map SpecE → P

s−1 − Vq lifts to the affine variety q 6= 0,
as the projection map from the latter to the former is a Zariski locally trivial
bundle). One obtains an isomorphism P ⊗R E → E by sending f ⊗ 1 to u(f).
Using this, α ⊗R E may be readily identified with the map x 7→ φ(x, u(y)).
Now apply Lemma 2.1.
Since R is a domain, we may take E to be the quotient field of R. It follows
that α is an inclusion. Let M denote its cokernel. The module M will play the
role of ζ in the statement of the proposition, so to conclude the proof we only
need show that M is projective. An inclusion of finitely-generated projectives
P1 →֒ P2 has projective cokernel if and only if P1 ⊗R E → P2 ⊗R E is injective
for every map R → E where E is a field (that is to say, the map has constant
rank on the fibers)—this follows at once using [E, Ex. 6.2(iii),(v)]. As we have
already verified this property for α, we are done. ¤

Remark 2.3. The above algebraic proof hides some of the geometric intuition
behind Proposition 2.2. We outline a different approach more in the spirit of
[At].
Let Grr(A

n) denote the Grassmannian variety of r-planes in affine space A
n.

We claim that φ induces a map f : P
s−1 − Vq → Grr(A

n) with the following
behavior on points. Let [y] be a point of P

s−1 represented by a point y of
A

s such that qs(y) 6= 0. Then the map φy : x 7→ φ(x, y) is a linear inclusion
by Lemma 2.1. Let f([y]) be the r-plane that is the image of φy. Since φ is
bilinear, we get that φλy = λ · φy for any scalar y. This shows that f([y]) is
well-defined. We leave it as an exercise for the reader to carefully construct f
as a map of schemes.
The map f has a special property related to bundles. If ηr denotes the tauto-
logical r-plane bundle over the Grassmannian, we claim that φ induces a map
of bundles f̃ : rξ → ηr covering the map f . To see this, note that the points
of rξ (defined over some field E) correspond to equivalence classes of pairs
(y, a) ∈ A

s × A
r with q(y) 6= 0, where (λy, a) ∼ (y, λa) for any λ in the field.

The pair (y, a) gives us a line 〈y〉 ⊆ A
s together with r points a1y, a2y, . . . , ary

on the line.
One defines f̃ so that it sends (y, a) to the element of ηr represented by the
vector φ(a, y) lying on the r-plane spanned by φ(e1, y), . . . , φ(er, y). This re-
spects the equivalence relation, as φ(λa, y) = φ(a, λy). So we have described

our map f̃ : rξ → ηr. We again leave it to the reader to construct f as a map
of schemes.
One readily checks that f̃ is a linear isomorphism on geometric fibers, using
Lemma 2.1. So f̃ gives an isomorphism rξ ∼= f∗ηr of bundles on P

s−1 − Vq.
The bundle ηr is a subbundle of the rank n trivial bundle, which we denote by
n. Consider the quotient n/ηr, and set ζ = f∗(n/ηr). Since n = [ηr]+[n/ηr] in
K0(Grr(A

n)), application of f∗ gives n = [f∗ηr] + [ζ] in K0(Ps−1 − Vq). Now
recall that f∗ηr

∼= rξ. This gives the desired formula in Proposition 2.2.
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The next task is to compute the Grothendieck group K0(Ps−1 − Vq). This
becomes significantly easier if we assume that F contains a square root of −1.
The reason for this is made clear in the next section.

Proposition 2.4. Suppose that F contains a square root of −1 and is not

of characteristic 2. Let c = ⌊ s−1

2
⌋. Then K0(Ps−1 − Vq) is isomorphic to

Z[ν]/(2cν, ν2 = −2ν), where ν = [ξ] − 1 generates the reduced Grothendieck

group K̃0(Ps−1 − Vq) ∼= Z/2c.

The proof of the above result will be deferred until the next section. Note that
K0(Ps−1 − Vq) has the same form as the complex K-theory of real projective

space RP
s−1 [A, Thm. 7.3]. To complete the analogy, we point out that when

F = C the space CP
s−1−Vq(C) is actually homotopy equivalent to RP

s−1 [Lw,
6.3]. We also mention that for the special case where F is contained in C, the
above proposition was proved in [GR, Theorem, p. 303].
By accepting the above proposition for the moment, we can finish the

Proof of Theorem 1.3. Recall that one has operations γi on K̃0(X) for any
scheme X [SGA6, Exp. V] (see also [AT] for a very clear explanation). If
γt = 1 + γ1t + γ2t2 + · · · denotes the generating function, then their basic
properties are:

(i) γt(a + b) = γt(a)γt(b).
(ii) For a line bundle L on X one has γt([L] − 1) = 1 + t([L] − 1).
(iii) If E is an algebraic vector bundle on X of rank k then γi([E] − k) = 0

for i > k.

The third property follows from the preceding two via the splitting principle.
If a sums-of-squares identity of type [r, s, n] exists over a field F , then it also
exists over any field containing F . So we may assume F contains a square root
of −1. If we write X = P

s−1−Vq, then by Proposition 2.2 there is a rank n− r
bundle ζ on X such that r[ξ] + [ζ] = n in K0(X). This may also be written as

r([ξ]− 1) + ([ζ]− (n− r)) = 0 in K̃0(X). Setting ν = [ξ]− 1 and applying the
operation γt we have

γt(ν)r · γt([ζ] − (n − r)) = 1

or
γt([ζ] − (n − r)) = γt(ν)−r = (1 + tν)−r.

The coefficient of ti on the right-hand-side is (−1)i
(

r+i−1

i

)

νi, which is the same

as −2i−1
(

r+i−1

i

)

ν using the relation ν2 = −2ν. Finally, since ζ has rank n − r

we know that γi([ζ] − (n − r)) = 0 for i > n − r. In light of Proposition 2.4,

this means that 2c divides 2i−1
(

r+i−1

i

)

for i > n − r, where c = ⌊ s−1

2
⌋. When

i − 1 < c, we can rearrange the powers of 2 to conclude that 2c−i+1 divides
(

r+i−1

i

)

for n − r < i ≤ c. ¤
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3. K-theory of deleted quadrics

The rest of the paper deals with the K-theoretic computation stated in Propo-
sition 2.4. This computation is entirely straightforward, and could have been
done in the 1970’s. We do not know of a reference, however.

Let Qn−1 →֒ P
n be the split quadric defined by one of the equations

a1b1 + · · ·+akbk = 0 (n = 2k−1) or a1b1 + · · ·+akbk +c2 = 0 (n = 2k).

Beware that in general Qn−1 is not the same as the variety Vq of the previous
section. However, if F contains a square root i of −1 then one can write
x2 + y2 = (x + iy)(x− iy). After a change of variables the quadric Vq becomes
isomorphic to Qn−1. These ‘split’ quadrics Qn−1 are simpler to compute with,
and we can analyze the K-theory of these varieties even if F does not contain
a square root of −1.
Write DQn = P

n−Qn−1, and let ξ be the restriction to DQn of the tautological
line bundle O(−1) of P

n. In this section we calculate K0(DQn) over any ground
field F not of characteristic 2. Proposition 2.4 is an immediate corollary of this
more general result:

Theorem 3.1. Let F be a field of characteristic not 2. The ring K0(DQn) is

isomorphic to Z[ν]/(2cν, ν2 = −2ν), where ν = [ξ] − 1 generates the reduced

group K̃0(DQn) ∼= Z/2c and c = ⌊n
2
⌋.

Remark 3.2. We remark again that we are writing K0(X) for what is usually
denoted K0(X) in the algebraic K-theory literature. We prefer this notation
partly because it helps accentuate the relationship with topological K-theory.

3.3. Basic facts about K-theory. Let X be a scheme. As usual K0(X)
denotes the Grothendieck group of locally free coherent sheaves, and G0(X)
(also called K ′

0(X)) is the Grothendieck group of coherent sheaves [Q, Sec-
tion 7]. Topologically speaking, K0(−) is the analog of the usual complex
K-theory functor KU0(−) whereas G0 is something like a Borel-Moore version
of KU -homology .
Note that there is an obvious map α : K0(X) → G0(X) coming from the in-
clusion of locally free coherent sheaves into all coherent sheaves. When X is
nonsingular, α is an isomorphism whose inverse β : G0(X) → K0(X) is con-
structed in the following way [H, Exercise III.6.9]. If F is a coherent sheaf on
X, there exists a resolution

0 → En → · · · → E0 → F → 0

in which the Ei’s are locally free and coherent. One defines β(F) =
∑

i(−1)i[Ei].
This does not depend on the choice of resolution, and now αβ and βα are
obviously the identities. This is ‘Poincare duality’ for K-theory.
Since we will only be dealing with smooth schemes, we are now going to blur
the distinction between G0 and K0. If F is a coherent sheaf on X, we will write
[F] for the class that it represents in K0(X), although we more literally mean
β([F]). As an easy exercise, check that if i : U →֒ X is an open immersion then
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the image of [F] under i∗ : K0(X) → K0(U) is the same as [F |U ]. We will use
this fact often.
If j : Z →֒ X is a smooth embedding and i : X − Z →֒ X is the complement,
there is a Gysin sequence [Q, Prop. 7.3.2]

· · · → K−1(X − Z) −→ K0(Z)
j!

−→ K0(X)
i∗

−→ K0(X − Z) −→ 0.

(Here K−1(X − Z) denotes the group usually called K1(X − Z), and i∗ is
surjective because X is regular). The map j! is known as the Gysin map. If F

is a coherent sheaf, then j!([F]) equals the class of its pushforward j∗(F) (also
known as extension by zero). Note that the pushforward of coherent sheaves
is exact for closed immersions.

3.4. Basic facts about P
n. If Z is a degree d hypersurface in P

n, then the
structure sheaf OZ can be pushed forward to P

n along the inclusion Z → P
n;

we will still write this pushforward as OZ . It has a very simple resolution of the
form 0 → O(−d) → O → OZ → 0, where O is the trivial rank 1 bundle on P

n

and O(−d) is the d-fold tensor power of the tautological line bundle O(−1) on
P

n. So [OZ ] equals [O] − [O(−d)] in K0(Pn). From now on we’ll write [O] = 1.
Now suppose that Z →֒ P

n is a complete intersection, defined by the regular
sequence of homogeneous equations f1, . . . , fr ∈ k[x0, . . . , xn]. Let fi have
degree di. The module k[x0, . . . , xn]/(f1, . . . , fr) is resolved by the Koszul
complex, which gives a locally free resolution of OZ . It follows that

(3.4) [OZ ] =
(

1 − [O(−d1)]
)(

1 − [O(−d2)]
)

· · ·
(

1 − [O(−dr)]
)

in K0(Pn). In particular, note that for a linear subspace P
i →֒ P

n one has

[OPi ] =
(

1 − [O(−1)]
)n−i

because P
i is defined by n − i linear equations.

One can compute that K0(Pn) ∼= Z
n+1, with generators [OP0 ], [OP1 ], . . . , [OPn ]

(see [Q, Th. 8.2.1], as one source). If t = 1 − [O(−1)], then the previous
paragraph tells us that K0(Pn) ∼= Z[t]/(tn) as rings. Here tk corresponds to
[OPn−k ].

3.5. Computations. Let n = 2k. Recall that Q2k−1 denotes the quadric in
P

2k defined by a1b1 + · · ·+ akbk + c2 = 0. The Chow ring CH∗(Q2k−1) consists
of a copy of Z in every dimension (see [DI, Appendix A] or [HP, XIII.4–5], for
example). The generators in dimensions k through 2k − 1 are represented by
subvarieties of Q2k−1 which correspond to linear subvarieties P

k−1, Pk−2, . . . , P0

under the embedding Q2k−1 →֒ P
2k. In terms of equations, P

k−i is defined by
c = b1 = · · · = bk = 0 together with 0 = ak = ak−1 = · · · = ak−i+2. The
generators of the Chow ring in degrees 0 through k − 1 are represented by
subvarieties Zi →֒ P

2k (k ≤ i ≤ 2k − 1), where Zi is defined by the equations

0 = b1 = b2 = · · · = b2k−1−i, a1b1 + · · · + akbk + c2 = 0.

Note that Z2k−1 = Q2k−1.
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The following result is proven in [R, pp. 128-129] (see especially the first
paragraph on page 129):

Proposition 3.6. The group K0(Q2k−1) is isomorphic to Z
2k, with generators

[OP0 ], . . . , [OPk−1 ] and [OZk
], . . ., [OZ2k−1

].

It is worth noting that to prove Theorem 3.1 we don’t actually need to know
that K0(Q2k−1) is free—all we need is the list of generators.

Proof of Theorem 3.1 when n is even. Set n = 2k. To calculate K0(DQ2k) we
must analyze the localization sequence

· · · → K0(Q2k−1)
j!

−→ K0(P2k) → K0(DQ2k) → 0.

The image of j! : K0(Q2k−1) → K0(P2k) is precisely the subgroup generated by
[OP0 ], . . . , [OPk−1 ] and [OZk

], . . ., [OZ2k−1
]. Since P

i is a complete intersection

defined by 2k − i linear equations, formula (3.4) tells us that [OPi ] = t2k−i for
0 ≤ i ≤ k − 1.
Now, Z2k−1 is a degree 2 hypersurface in P

2k, and so [OZ2k−1
] equals 1−[O(−2)].

Note that

1 − [O(−2)] = 2(1 − [O(−1)]) − (1 − [O(−1)])2 = 2t − t2.

In a similar way one notes that Zi is a complete intersection defined by 2k−1−i
linear equations and one degree 2 equation, so formula (3.4) tells us that

[OZi
] = (1 − [O(−1)])2k−1−i · (1 − [O(−2)]) = t2k−1−i(2t − t2).

The calculations in the previous two paragraphs imply that the kernel of the
map K0(P2k) → K0(DQ2k) is the ideal generated by 2t−t2 and tk+1. This ideal
is equal to the ideal generated by 2t − t2 and 2kt, so K0(DQ2k) is isomorphic
to Z[t]/(2kt, 2t − t2). If we substitute ν = [ξ] − 1 = −t, we find ν2 = −2ν.

To find K̃0(DQ2k), we just have to take the additive quotient of K0(DQ2k)
by the subgroup generated by 1. This quotient is isomorphic to Z/2k and is
generated by ν. ¤

This completes the proof of Theorem 3.1 in the case where n is even. The
computation when n is odd is very similar:

Proof of Theorem 3.1 when n is odd. In this case Qn−1 is defined by the equa-
tion a1b1 + · · · + akbk = 0 with k = n+1

2
. The Chow ring CH∗(Qn−1) consists

of Z in every dimension except for k − 1, which is Z ⊕ Z. The generators are
the Zi’s (k − 1 ≤ i ≤ 2k − 2) defined analogously to before, together with the
linear subvarieties P

0, P1, . . . , Pk−1. By [R, pp. 128–129], the group K0(Qn−1)
is again free of rank 2k on the generators [OZi

] and [OPi ]. One finds that
K0(DQn) is isomorphic to Z[t]/(2t− t2, tk) = Z[t]/(2t− t2, 2k−1t). Everything
else is as before. ¤

Documenta Mathematica 10 (2005) 357–366



Algebraic K-Theory and Sums-of-Squares Formulas 365

References

[A] J. F. Adams, Vector fields on spheres, Ann. of Math. (2) 75 (1962),
603–632.

[Ad1] J. Adem, On the Hurwitz problem over an arbitrary field I , Bol. Soc.
Mat. Mexicana (2) 25 (1980), no. 1, 29–51.

[Ad2] J. Adem, On the Hurwitz problem over an arbitrary field II , Bol. Soc.
Mat. Mexicana (2) 26 (1981), no. 1, 29–41.

[At] M. F. Atiyah, Immersions and embeddings of manifolds, Topology 1
(1962), 125–132.

[AT] M. F. Atiyah and D. O. Tall, Group representations, λ-rings and the

J-homomorphism, Topology 8 (1969), 253–297.
[DI] D. Dugger and D. C. Isaksen, The Hopf condition for bilinear forms

over arbitrary fields, preprint, 2003.
[E] D. Eisenbud, Commutative algebra, with a view toward algebraic geom-

etry, Graduate Texts in Mathematics 150, Springer, 1995.
[GR] A. V. Geramita and L. G. Roberts, Algebraic vector bundles on projec-

tive space, Invent. Math. 10 (1970), 298–304.
[H] R. Hartshorne, Algebraic geometry, Graduate Texts in Mathematics 52,

Springer, 1977.
[HP] W. V. D. Hodge and D. Pedoe, Methods of algebraic geometry, Vol. II,

Cambridge University Press, 1952.
[L] K. Y. Lam, Topological methods for studying the composition of qua-

dratic forms, Quadratic and Hermitian Forms, (Hamilton, Ont., 1983),
pp. 173–192, Canadian Mathematical Society Conference Proceedings
4, Amer. Math. Soc., 1984.

[Lw] P. S. Landweber, Fixed point free conjugations on complex manifolds,
Ann. Math. (2) 86 (1967), 491–502.

[Q] D. Quillen, Higher algebraic K-theory I, Algebraic K-theory, I: Higher
K-theories (Proc. Conf. Battelle Memorial Inst., Seattle, 1972), pp. 85–
147, Lecture Notes in Mathematics 341, Springer, 1973.

[R] L. Roberts, Base change for K0 of algebraic varieties, Algebraic K-
theory, II: “Classical” algebraic K-theory and connections with arith-
metic (Proc. Conf., Battelle Memorial Inst., Seattle, 1972), pp. 122–134,
Lecture Notes in Mathematics 342, Springer, 1973.
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