Erratum for

"On the Parity of Ranks of Selmer Groups III" cf. Documenta Math. 12 (2007), 243-274

Jan Nekovář

Received: March 31, 2008

Communicated by Ulf Rehmann

Abstract

In the manuscript "On the Parity of Ranks of Selmer Groups III" Documenta Math. 12 (2007), 243-274, [1], Remark 4.1.2(4) and the treatment of archimedean ε-factors in 4.1.3 are incorrect. Contrary to what is stated in 0.3 , the individual archimedean ε-factors $\varepsilon_{u}(M)(u \mid \infty)$ cannot be expressed, in general, in terms of $M_{\mathfrak{p}}$, but their product can.

2000 Mathematics Subject Classification: 11G40 11R23

To motivate the corrections below, consider a motive M (pure of weight w) over F with coefficients in L. Set $\widetilde{S}_{\infty}=\{\tau: F \hookrightarrow \mathbf{C}\}, \widetilde{S}_{p}=\left\{\sigma: F \hookrightarrow \overline{\mathbf{Q}}_{p}\right\}$ and denote by $r_{\infty}: \widetilde{S}_{\infty} \longrightarrow S_{\infty}, r_{p}: \widetilde{S}_{p} \longrightarrow S_{p}$ the canonical surjections. Fix an embedding $\iota: L \hookrightarrow \mathbf{C}$ and an isomorphism $\lambda: \overline{\mathbf{Q}}_{p} \xrightarrow{\sim} \mathbf{C}$ such that \mathfrak{p} is induced by $\iota_{p}=\lambda^{-1} \circ \iota: L \hookrightarrow \overline{\mathbf{Q}}_{p}$. To each $v \in S_{p}$ then corresponds a subset

$$
S_{\infty}(v)=\left\{r_{\infty}(\lambda \circ \sigma) \mid r_{p}(\sigma)=v\right\} \subset S_{\infty}
$$

such that

$$
\sum_{w \in S_{\infty}(v)}\left[L_{w}: \mathbf{R}\right]=\left[F_{v}: \mathbf{Q}_{p}\right]
$$

For each $\tau \in \widetilde{S}_{\infty}$, the Betti realization $M_{B, \tau}$ is an L-vector space and there is a Hodge decomposition

$$
M_{B, \tau} \otimes_{L, \iota} \mathbf{C}=\bigoplus_{i \in \mathbf{Z}}\left(\iota M_{\tau}\right)^{i, w-i}
$$

The corresponding Hodge numbers

$$
h^{i, w-i}\left(\iota M_{u}\right):=h^{i, w-i}\left(\iota M_{\tau}\right)=\operatorname{dim}_{\mathbf{C}}\left(\iota M_{\tau}\right)^{i, w-i}
$$

depend only on $u=r_{\infty}(\tau) \in S_{\infty}$. The de Rham realization $M_{d R}$ is a free $L \otimes_{\mathbf{Q}}$ F-module; its Hodge filtration is given by submodules $F^{r} M_{d R}$ (not necessarily free) which correspond, under the de Rham comparison isomorphism

$$
M_{d R} \otimes_{L \otimes_{\mathbf{Q}} F, \iota \otimes \tau} \mathbf{C} \xrightarrow{\sim} M_{B, \tau} \otimes_{L, \iota} \mathbf{C},
$$

to

$$
\left(F^{r} M_{d R}\right) \otimes_{L \otimes_{\mathbf{Q}} F, \iota \otimes \tau} \mathbf{C} \xrightarrow{\sim} \bigoplus_{i \geq r}\left(\iota M_{\tau}\right)^{i, w-i},
$$

hence

$$
\operatorname{dim}_{\mathbf{C}}\left(\left(g r_{F}^{i} M_{d R}\right) \otimes_{L \otimes \mathbf{Q} F, \iota \otimes \tau} \mathbf{C}\right)=h^{i, w-i}\left(\iota M_{\tau}\right) .
$$

The \mathfrak{p}-adic realization $M_{\mathfrak{p}}$ of M is isomorphic, as an $L_{\mathfrak{p}}$-vector space, to $M_{B, \tau} \otimes_{L} L_{\mathfrak{p}}$ (for any $\tau \in \widetilde{S}_{\infty}$). For each $v \in S_{p}, D_{d R}\left(M_{\mathfrak{p}, v}\right)$ is a free $L_{\mathfrak{p}} \otimes_{\mathbf{Q}_{p}} F_{v^{-}}$ module equipped with a filtration satisfying

$$
D_{d R}^{r}\left(M_{\mathfrak{p}, v}\right) \xrightarrow{\sim} F^{r} M_{d R} \otimes_{L \otimes_{\mathbf{Q}} F}\left(L_{\mathfrak{p}} \otimes_{\mathbf{Q}_{p}} F_{v}\right) .
$$

This implies that, for each $i \in \mathbf{Z}$, the dimension

$$
d_{v}^{i}\left(M_{\mathfrak{p}}\right):=\operatorname{dim}_{L_{\mathfrak{p}}}\left(D_{d R}^{i}\left(M_{\mathfrak{p}, v}\right) / D_{d R}^{i+1}\left(M_{\mathfrak{p}, v}\right)\right)
$$

is equal to

$$
\begin{aligned}
& \operatorname{dim}_{L_{\mathfrak{p}}}\left(g r_{F}^{i} M_{d R}\right) \otimes_{L \otimes_{\mathbf{Q}} F}\left(L_{\mathfrak{p}} \otimes_{\mathbf{Q}_{p}} F_{v}\right) \\
& =\operatorname{dim}_{\overline{\mathbf{Q}}_{p}}\left(g r_{F}^{i} M_{d R}\right) \otimes_{L \otimes \mathbf{Q} F, \iota_{p} \otimes \operatorname{incl}}\left(\overline{\mathbf{Q}}_{p} \otimes_{\mathbf{Q}_{p}} F_{v}\right) \\
& =\sum_{\sigma: F_{v} \hookrightarrow \overline{\mathbf{Q}}_{p}} \operatorname{dim}_{\overline{\mathbf{Q}}_{p}}\left(g r_{F}^{i} M_{d R}\right) \otimes_{L \otimes \mathbf{Q} F, \iota_{p} \otimes \sigma} \overline{\mathbf{Q}}_{p} \\
& \quad=\sum_{u \in S_{\infty}(v)}\left[F_{u}: \mathbf{R}\right] h^{i, w-i}\left(\iota M_{u}\right),
\end{aligned}
$$

hence

$$
\begin{align*}
d_{v}^{-}\left(M_{\mathfrak{p}}\right):=\sum_{i<0} i d_{v}^{i}\left(M_{\mathfrak{p}}\right)=\sum_{u \in S_{\infty}(v)}[& \left.F_{u}: \mathbf{R}\right] d^{-}\left(\iota M_{u}\right), \\
d^{-}\left(\iota M_{u}\right) & :=\sum_{i<0} i h^{i, w-i}\left(\iota M_{u}\right) .
\end{align*}
$$

Corrections to §4.1 and §5.1: firstly, 4.1.2(4) and 5.1.2(9) should be deleted. Secondly, $\S 4.1 .3$ should be reformulated as follows: we assume that V satisfies 4.1.2(1)-(3). For each $v \in S_{p}$ we define

$$
\begin{equation*}
d_{v}^{-}(V):=\sum_{i<0} i d_{v}^{i}(V), \quad d_{v}^{i}(V)=\operatorname{dim}_{L_{\mathfrak{p}}}\left(D_{d R}^{i}\left(V_{v}\right) / D_{d R}^{i+1}\left(V_{v}\right)\right) \tag{4.1.3.1'}
\end{equation*}
$$

and

$$
\prod_{u \in S_{\infty}(v)} \varepsilon\left(V_{u}\right):=(-1)^{d_{v}^{-}(V)} \prod_{u \in S_{\infty}(v), F_{u}=\mathbf{C}}(-1)^{\operatorname{dim}_{L_{\mathfrak{p}}}(V) / 2}
$$

(even though we are unable to define the individual $\varepsilon\left(V_{u}\right)$). If $V=M_{\mathfrak{p}}$, where $M \xrightarrow{\sim} M^{*}(1)$ is pure (of weight -1), it follows from (\star) and (2.3.1) that this definition gives the correct product of archimedean ε-factors.
The formula (4.1.3.6) should be replaced by

$$
\begin{equation*}
\forall v \in S_{p} \quad \widetilde{\varepsilon}\left(V_{v}\right)=(-1)^{d_{v}^{-}(V)}\left(\operatorname{det} V_{v}^{+}\right)(-1)=\varepsilon\left(W D\left(V_{v}\right)^{N-s s}\right) \tag{4.1.3.6'}
\end{equation*}
$$

which implies that

$$
\widetilde{\varepsilon}\left(V_{v}\right) \prod_{u \in S_{\infty}(v)} \varepsilon\left(V_{u}\right)=\left(\operatorname{det} V_{v}^{+}\right)(-1) \prod_{u \in S_{\infty}(v), F_{u}=\mathbf{C}}(-1)^{\operatorname{dim}_{L_{p}}(V) / 2}
$$

hence

$$
\begin{equation*}
\prod_{v \in S_{p} \cup S_{\infty}} \widetilde{\varepsilon}\left(V_{v}\right)=(-1)^{r_{2}(F) \operatorname{dim}_{L_{\mathfrak{p}}}(V) / 2} \prod_{v \in S_{p}}\left(\operatorname{det} V_{v}^{+}\right)(-1), \tag{4.1.3.7}
\end{equation*}
$$

where $r_{2}(F)$ denotes the number of complex places of F.
Corrections to Theorem 5.3.1 and its proof: the statement should say that, under the assumptions 5.1.2(1)-(8), the quantity

$$
\begin{gathered}
(-1)^{h_{f}^{1}(F, V)} / \varepsilon(V)=(-1)^{\widetilde{h}_{f}^{1}(F, V)} / \widetilde{\varepsilon}(V)= \\
=(-1)^{\widetilde{h}_{f}^{1}(F, V)}(-1)^{r_{2}(F) \operatorname{dim} \mathscr{L}(\mathcal{V}) / 2} \prod_{v \in S_{p}}\left(\operatorname{det} \mathcal{V}_{v}^{+}\right)(-1) \prod_{v \notin S_{p} \cup S_{\infty}} \varepsilon\left(\mathcal{V}_{v}\right)
\end{gathered}
$$

depends only on \mathcal{V} and $\mathcal{V}_{v}^{+}\left(v \in S_{p}\right)$.
In the proof, a reference to (4.1.3.7) should be replaced by that to (4.1.3.7'), which yields
$\widetilde{\varepsilon}(V)=\prod_{v \in S_{p} \cup S_{\infty}} \widetilde{\varepsilon}\left(V_{v}\right) \prod_{v \notin S_{p} \cup S_{\infty}} \varepsilon\left(V_{v}\right)=(-1)^{r_{2}(F) \operatorname{dim}_{L_{\mathfrak{p}}}(V) / 2} \prod_{v \in S_{p}}\left(\operatorname{det} V_{v}^{+}\right)(-1) \prod_{v \notin S_{p} \cup S_{\infty}} \varepsilon\left(V_{v}\right)$.

Corrections to $\S 5.3 .3$: the first question should ask whether

$$
(-1)^{d_{v}^{-}(V)} \varepsilon\left(W D\left(V_{v}\right)^{N-s s}\right) \quad\left(v \in S_{p}\right)
$$

depends only on \mathcal{V}_{v} ?
Corrections to $\S 5.3 .4-5$: it is often useful to use a slightly more general version of Example 5.3.4 with $\Gamma=\Gamma_{0} \times \Delta$, where Γ_{0} is isomorphic to \mathbf{Z}_{p} and Δ is finite (abelian). Given a character $\alpha: \Delta \longrightarrow \mathcal{O}_{\mathfrak{p}}^{*}$, set

$$
\begin{gathered}
R=\mathcal{O}_{\mathfrak{p}}\left[\left[\Gamma_{0}\right]\right], \quad \mathcal{T}=\left(T \otimes_{\mathcal{O}_{\mathfrak{p}}} \mathcal{O}_{\mathfrak{p}}\left[\left[\Gamma^{+}\right]\right]\right) \otimes_{\mathcal{O}_{\mathfrak{p}}[\Delta], \alpha} \mathcal{O}_{\mathfrak{p}}, \\
\mathcal{T}_{v}^{+}=\left(T_{v}^{+} \otimes_{\mathcal{O}_{\mathfrak{p}}} \mathcal{O}_{\mathfrak{p}}\left[\left[\Gamma^{+}\right]\right]\right) \otimes_{\mathcal{O}_{\mathfrak{p}}[\Delta], \alpha} \mathcal{O}_{\mathfrak{p}} \quad\left(v \in S_{p}\right) .
\end{gathered}
$$

As in 5.3.4(2)-(3), \mathcal{T} is an $R\left[G_{F, S}\right]$-module equipped with a skew-symmetric R-bilinear pairing $():, \mathcal{T} \times \mathcal{T} \longrightarrow R(1)$ inducing an isomorphism

$$
\mathcal{T} \otimes \mathbf{Q} \xrightarrow{\sim} \operatorname{Hom}_{R}(\mathcal{T}, R(1)) \otimes \mathbf{Q} .
$$

In 5.3.4(5) we have to replace $\beta: \Gamma \longrightarrow L_{\mathfrak{p}}(\beta)$ by $\beta: \Gamma_{0} \longrightarrow L_{\mathfrak{p}}(\beta)$; then

$$
\mathcal{T}_{P} / \varpi_{P} \mathcal{I}_{P}=\operatorname{Ind}_{G_{F_{0}, S}}^{G_{F, S}}(V \otimes(\beta \times \alpha))
$$

In 5.3.5, we set, for any $L_{\mathfrak{p}}[\Gamma]$-module M,

$$
M^{(\beta \times \alpha)}=\left\{x \in M \otimes_{L_{\mathfrak{p}}} L_{\mathfrak{p}}(\beta) \mid \forall \sigma \in \Gamma \quad \sigma(x)=(\beta \times \alpha)(x)\right\} ;
$$

then

$$
\begin{aligned}
H_{f}^{1}\left(F, \mathcal{T}_{P} / \varpi_{P} \mathcal{T}_{P}\right) & =H_{f}^{1}\left(F_{0}, V \otimes(\beta \times \alpha)\right) \\
= & \left(H_{f}^{1}\left(F_{\beta}, V\right) \otimes(\beta \times \alpha)\right)^{\operatorname{Gal}\left(F_{\beta} / F_{0}\right)}=H_{f}^{1}\left(F_{\beta}, V\right)^{\left(\beta^{-1} \times \alpha^{-1}\right)}
\end{aligned}
$$

and

$$
\tau: H_{f}^{1}\left(F_{\beta}, V\right)^{\left(\beta^{-1} \times \alpha^{-1}\right)} \xrightarrow{\sim} H_{f}^{1}\left(F_{\beta}, V\right)^{(\beta \times \alpha)} .
$$

Applying Corollary 5.3.2, we obtain, for any pair of characters of finite order $\beta, \beta^{\prime}: \Gamma_{0} \longrightarrow \bar{L}_{\mathfrak{p}}^{*}$, that

$$
\begin{align*}
(-1)^{h_{f}^{1}\left(F_{0}, V \otimes(\beta \times \alpha)\right)} / & \varepsilon\left(F_{0}, V \otimes(\beta \times \alpha)\right) \\
= & (-1)^{h_{f}^{1}\left(F_{0}, V \otimes\left(\beta^{\prime} \times \alpha\right)\right)} / \varepsilon\left(F_{0}, V \otimes\left(\beta^{\prime} \times \alpha\right)\right) .
\end{align*}
$$

References

[1] Jan Nekovář, On the Parity of Ranks of Selmer Groups III, Documenta Math. 12 (2007) 243-274

