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Abstract. Let k be an algebraially losed �eld of harateristi
p > 0, andG be a Barsotti-Tate over k. We denote by S the �algebrai�loal moduli in harateristi p of G, by G the universal deformationof G over S, and by U ⊂ S the ordinary lous of G. The étalepart of G over U gives rise to a monodromy representation ρG of thefundamental group of U on the Tate module of G. Motivated by afamous theorem of Igusa, we prove in this artile that ρG is surjetiveif G is onneted and HW-yli. This latter ondition is equivalentto saying that Oort's a-number of G equals 1, and it is satis�ed by allonneted one-dimensional Barsotti-Tate groups over k.2000 Mathematis Subjet Classi�ation: 13D10, 14L05, 14H30,14B12, 14D15, 14L15Keywords and Phrases: Barsotti-Tate groups (p-divisible groups), p-adi monodromy representation, universal deformation, Hasse-Wittmaps. 1. Introdution

1.1. A lassial theorem of Igusa says that the monodromy representation as-soiated with a versal family of ordinary ellipti urves in harateristi p > 0is surjetive [Igu, Ka2℄. This important result has deep onsequenes in thetheory of p-adi modular forms, and inpsired various generalizations. Faltingsand Chai [Ch2, FC℄ extended it to the universal family over the moduli spaeof higher dimensional prinipally polarized ordinary abelian varieties in har-ateristi p, and Ekedahl [Eke℄ generalized it to the jaobian of the universal
n-pointed urve in harateristi p, equipped with a sympleti level struture.Reently, Chai and Oort [CO℄ proved the maximality of the p-adi monodromyover eah �entral leaf� in the moduli spae of abelian varieties whih is notontained in the supersingular lous. We refer to Deligne-Ribet [DR℄ and Hida[Hid℄ for other generalizations to some moduli spaes of PEL-type and their
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398 Yichao Tianarithmeti appliations. Though it has been formulated in a global setting, theproof of Igusa's theorem is purely loal, and it has got also loal generalizations.Gross [Gro℄ generalized it to one-dimensional formal O-modules over a om-plete disrete valuation ring of harateristi p, where O is the integral losureof Zp in a �nite extension of Qp. We refer to Chai [Ch2℄ and Ahter-Norman[AN℄ for more results on loal monodromy of Barsotti-Tate groups. Motivatedby these results, it has been longly expeted/onjetured that the monodromyof a versal family of ordinary Barsotti-Tate groups in harateristi p > 0 ismaximal. The aim of this paper is to prove the surjetivity of the monodromyrepresentation assoiated with the universal deformation in harateristi p ofa ertain lass of Barsotti-Tate groups.
1.2. To desribe our main result, we introdue �rst the notion of HW-yliBarsotti-Tate groups. Let k be an algebraially losed �eld of harateristi p >
0, and G be a Barsotti-Tate group over k. We denote by G∨ the Serre dual of G,and by Lie(G∨) its Lie algebra. The Frobenius homomorphism of G (or duallythe Vershiebung of G∨) indues a semi-linear endomorphism ϕG on Lie(G∨),alled the Hasse-Witt map of G (2.6.1). We say that G is HW-yli, if c =
dim(G∨) ≥ 1 and there is a v ∈ Lie(G∨) suh that v, ϕG(v), · · · , ϕc−1

G (v) forma basis of Lie(G∨) over k (4.1). We prove in 4.7 that G is HW-yli and non-ordinary if and only if the a-number of G, de�ned previously by Oort, equals
1. Basi examples of HW-yli Barsotti-Tate groups are given as follows. Let
r, s be relatively prime integers suh that 0 ≤ s ≤ r and r 6= 0, λ = s/r, Gλbe the Barsotti-Tate group over k whose (ontravariant) Dieudonné module isgenerated by an element e over the non-ommutative Dieudonné ring with therelation (F r−s − V s) · e = 0 (4.10). It is easy to see that Gλ is HW-yli forany 0 < λ < 1. Any onneted Barsotti-Tate group over k of dimension 1 andheight h is isomorphi to G1/h [Dem, Chap.IV �8℄.Let G be a Barsotti-Tate group of dimension d and height c+ d over k; assume
c ≥ 1. We denote by S the �algebrai� loal moduli of G in harateristi p, andby G be the universal deformation of G over S (f. 3.8). The sheme S is a�neof ring R ≃ k[[(ti,j)1≤i≤c,1≤j≤d]], and the Barsotti-Tate group G is obtainedby algebraizing the formal universal deformation of G over Spf(R) (3.7). Let
U be the ordinary lous of G (i.e. the open subsheme of S parametrizing theordinary �bers of G), and η a geometri point over the generi point of U. Forany integer n ≥ 1, we denote by G(n) the kernel of the multipliation by pnon G, and by

Tp(G, η) = lim
←−
n

G(n)(η)the Tate module of G at η. This is a free Zp-module of rank c. We onsiderthe monodromy representation attahed to the étale part of G over U(1.2.1) ρG : π1(U, η)→ AutZp
(Tp(G, η)) ≃ GLc(Zp).The aim of this paper is to prove the following :
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p-Adic Monodromy of a Barsotti-Tate Group 399
Theorem 1.3. If G is onneted and HW-yli, then the monodromy repre-sentation ρG is surjetive.Igusa's theorem mentioned above orresponds to Theorem 1.3 for G = G1/2 (f.5.7). My interest in the p-adi monodromy problem started with the seondpart of my PhD thesis [Ti1℄, where I guessed 1.3 for G = Gλ with 0 < λ < 1and proved it for G1/3. After I posted the manusript on ArXiv [Ti2℄, Strauhproved the one-dimensional ase of 1.3 by using Drinfeld's level strutures [Str,Theorem 2.1℄. Later on, Lau [Lau℄ proved 1.3 without the assumption that
G is HW-yli. By using the Newton strati�ation of the universal deforma-tion spae of G due to Oort, Lau redued the higher dimensional ase to theone-dimensional ase treated by Strauh. In fat, Strauh and Lau onsideredmore generally the monodromy representation over eah p-rank stratum of theuniversal deformation spae. In this paper, we provide �rst a di�erent proof ofthe one-dimensional ase of 1.3. Our approah is purely harateristi p, whileStrauh used Drinfeld's level struture in harateristi 0. Then by followingLau's strategy, we give a new (and easier) argument to redue the general aseof 1.3 to the one-dimensional ase for HW-yli groups. The essential partof our argument is a versality riterion by Hasse-Witt maps of deformationsof a onneted one-dimensional Barsotti-Tate group (Prop. 4.11). This rite-rion an be onsidered as a generalization of another theorem of Igusa whihlaims that the Hasse invariant of a versal family of ellipti urves in hara-teristi p has simple zeros. Compared with Strauh's approah, our harater-isti p approah has the advantage of giving also results on the monodromy ofBarsotti-Tate groups over a disrete valuation ring of harateristi p.
1.4. Let A = k[[π]] be the ring of formal power series over k in the variable
π, K its fration �eld, and v the valuation on K normalized by v(π) = 1. We�x an algebrai losure K of K, and let Ksep be the separable losure of Kontained inK, I be the Galois group ofKsep overK, Ip ⊂ I be the wild inertiasubgroup, and It = I/Ip the tame inertia group. For every integer n ≥ 1, thereis a anonial surjetive harater θpn−1 : It → F×pn (5.2), where Fpn is the�nite sub�eld of k with pn elements.We put S = Spec(A). Let G be a Barsotti-Tate group over S, G∨ be its Serredual, Lie(G∨) the Lie algebra of G∨, and ϕG the Hasse-Witt map of G, i.e.the semi-linear endomorphism of Lie(G∨) indued by the Frobenius of G. Wede�ne h(G) to be the valuation of the determinant of a matrix of ϕG, and allit the Hasse invariant of G (5.4). We see easily that h(G) = 0 if and only if Gis ordinary over S, and h(G) <∞ if and only if G is generially ordinary. If Gis onneted of height 2 and dimension 1, then h(G) = 1 is equivalent to that
G is versal (5.7).
Proposition 1.5. Let S = Spec(A) be as above, G be a onneted HW-yliBarsotti-Tate group with Hasse invariant h(G) = 1, and G(1) the kernel of themultipliation by p on G. Then the ation of I on G(1)(K) is tame; moverover,
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G(1)(K) is an Fpc -vetor spae of dimension 1 on whih the indued ation of
It is given by the surjetive harater θpc−1 : It → F×pc .This proposition is an analog in harateristi p of Serre's result [Se3, Prop.9℄ on the tameness of the monodromy assoiated with one-dimensional formalgroups over a trait of mixed harateristi. We refer to 5.8 for the proof of thisproposition and more results on the p-adi monodromy of HW-yli Barsotti-Tate groups over a trait in harateristi p.
1.6. This paper is organized as follows. In Setion 2, we review some wellknown fats on ordinary Barsotti-Tate groups. Setion 3 ontains some prelim-inaries on the Dieudonné theory and the deformation theory of Barsotti-Tategroups. In Setion 4, after establishing some basi properties of HW-yligroups, we give the fundamental relation between the versality of a Barsotti-Tate group and the oe�ients of its Hasse-Witt matrix (Prop. 4.11). Setion5 is devoted to the study of the monodromy of a HW-yli Barsotti-Tate groupover a omplete trait of harateristi p. Setion 6 is totally elementary, andontains a riterion (6.3) for the surjetivity of a homomorphism from a pro�-nite group to GLn(Zp). Setion 7 is the heart of this work, and it ontainsa proof of Theorem 1.3 in the one-dimensional ase. Finally in Setion 8, wefollow Lau's strategy and omplete the proof of 1.3 by reduing the generalase to the one-dimensional ase treated in Setion 7.The proof in Setion 7 of 1.3 in the one-dimensional ase is based on an indu-tion on the height n+ 1 ≥ 2 of G. The ase n = 1 is just the lassial Igusa'stheorem (5.7). For n ≥ 2, by lemmas 6.3 and 6.5, it su�es to prove the fol-lowing two statements: (a) the image of redution modulo p of ρG ontains anon-split Cartan subgroup; (b) under a suitable basis, the image of ρG ontainsall matrix of the form (

B b
0 1

) with B ∈ GLn−1(Zp) and b ∈ M(n−1)×1(Zp).The �rst statement follows easily from 1.5 by onsidering a ertain base hangeof G to a omplete disrete valuation ring. To prove (b), we onsider the for-mal ompletion Spec(R′) of the loalization of the loal moduli S = Spec(R)of G at the generi point of the lous where the universal deformation G has
p-rank ≤ 1 (7.4). The ring R′ is a omplete regular ring of dimension n − 1,and the Barsotti-Tate group G ′ = G ⊗R R

′ has a onneted part of height nand an étale part of height 1. Let K0 be the residue �eld of R′, and K0 analgebrai losure of K0. In order to apply the indution hypothesis, we on-sider the set of k-algebra homomorphisms σ : R′ → R̃′ = K0[[t1, · · · , tn−1]]lifting the natural inlusion K0 → K0. The key point is that, the natural map
σ 7→ GfR′,σ = G ′⊗R′,σ R̃′ gives a bijetion between the set of suh σ's and the setof deformations of GK0

= G ′⊗R′K0 to R̃′; moreover, we an ompute expliitlythe Hasse-Witt map of the onneted omponent G ◦
fR′,σ

of GfR′,σ
(Lemma 7.8).From the versality riterion for one-dimensional Barsotti-Tate groups in termsof the Hasse-Witt map established in Setion 4 (Prop. 4.11), it follows imme-diately that there exists a σ suh that the Barsotti-Tate group G ◦

fR′,σ
, whih
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p-Adic Monodromy of a Barsotti-Tate Group 401is onneted and one-dimensional of height n, is the universal deformation ofits losed �ber. We �x suh a σ. Then the set of all σ′ with G ◦
fR′,σ′

≃ G ◦
fR′,σas deformations of their ommon losed �ber is atually a group isomorphito Ext1fR′(Qp/Zp,G

◦
fR′,σ

) (Prop. 3.10). Let σ1 be the element orrespondingto neutral element in Ext1fR′(Qp/Zp,G
◦
fR′,σ

). Applying the indution hypothesisto G ◦
fR′,σ1

, we see that the monodromy group of GfR′,σ1
, hene that of G, on-tains the subgroup (GLn−1(Zp) 0

0 1

) under a suitable basis of the Tate module(7.5.3). In order to onlude the proof, we need another σ2 suh that GfR′,σ2has the same onneted omponent as GfR′,σ1
, and that the indued extensionbetween the Tate module of the étale part of GfR′,σ2

and that of G ◦R′,σ2
is non-trivial after redution modulo p (see 7.5 and 7.5.4). To verify the existene ofsuh a σ2, we redue the problem to a similar situation over a omplete trait ofharateristi p (see 7.9), and we use a riterion of non-triviality of extensionsby Hasse-Witt maps (5.12).

1.7. Acknowledgement. This paper is an expanded version of the seondpart of my Ph.D. thesis at University Paris 13. I would like to express my greatgratitude to my thesis advisor Prof. A. Abbes for his enouragement duringthis work, and also for his various helpful omments on earlier versions of thispaper. I also thank heartily E. Lau, F. Oort and M. Strauh for interestingdisussions and valuable suggestions.
1.8. Notations. Let S be a sheme of harateristi p > 0. A BT-groupover S stands for a Barsotti-Tate group over S. Let G be a ommutative�nite group sheme (resp. a BT-group) over S. We denote by G∨ its Cartierdual (resp. its Serre dual), by ωG the sheaf of invariant di�erentials of G over
S, and by Lie(G) the sheaf of Lie algebras of G. If S = Spec(A) is a�neand there is no risk of onfusions, we also use ωG and Lie(G) to denote theorresponding A-modules of global setions. We put G(p) the pull-bak of Gby the absolute Frobenius of S, FG : G → G(p) the Frobenius homomorphismand VG : G(p) → G the Vershiebung homomorphism. If G is a BT-group and
n an integer ≥ 1, we denote by G(n) the kernel of the multipliation by pn on
G; we have G∨(n) = (G∨)(n) by de�nition. For an OS-module M , we denoteby M (p) = OS ⊗FS

M the salar extension of M by the absolute Frobenius of
OS . If ϕ : M → N be a semi-linear homomorphism of OS-modules, we denoteby ϕ̃ : M (p) → N the linearization of ϕ, i.e. we have ϕ̃(λ⊗x) = λ ·ϕ(x), where
λ (resp. x) is a loal setion of OS (resp. of M).Starting from Setion 5, k will denote an algebraially losed �eld of hara-teristi p > 0.

2. Review of ordinary Barsotti-Tate groupsIn this setion, S denotes a sheme of harateristi p > 0.
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2.1. Let G be a ommutative group sheme, loally free of �nite type over S.We have a anonial isomorphism of oherent OS-modules [Ill, 2.1℄(2.1.1) Lie(G∨) ≃H omSfppf
(G,Ga),where H omSfppf

is the sheaf of homomorphisms in the ategory of abelian
fppf-sheaves over S, and Ga is the additive group sheme. Sine G

(p)
a ≃ Ga,the Frobenius homomorphism of Ga indues an endomorphism(2.1.2) ϕG : Lie(G∨)→ Lie(G∨),semi-linear with respet to the absolute Frobenius map FS : OS → OS ; we allit the Hasse-Witt map of G. By the funtoriality of Frobenius, ϕG is also theanonial map indued by the Frobenius of G, or dually by the Vershiebungof G∨.

2.2. By a ommutative p-Lie algebra over S, we mean a pair (L,ϕ), where Lis an OS-module loally free of �nite type, and ϕ : L → L is a semi-linearendomorphism with respet to the absolute Frobenius FS : OS → OS . Whenthere is no risk of onfusions, we omit ϕ from the notation. We denote by
p-LieS the ategory of ommutative p-Lie algebras over S.Let (L,ϕ) be an objet of p-LieS . We denote by

U (L) = Sym(L) = ⊕n≥0 Symn(L),the symmetri algebra of L over OS . Let Ip(L) be the ideal sheaf of U (L)de�ned, for an open subset V ⊂ S, by
Γ(V,Ip(L)) = {x⊗p − ϕ(x) ; x ∈ Γ(V,U (L))},where x⊗p = x⊗ x⊗ · · · ⊗ x ∈ Γ(V, Symp(L)). We put Up(L) = U (L)/Ip(L),and all it the p-enveloping algebra of (L,ϕ). We endow Up(L) with the stru-ture of a Hopf-algebra with the omultipliation given by ∆(x) = 1⊗ x+x⊗ 1and the oinverse given by i(x) = −x.Let G be a ommutative group sheme, loally free of �nite type over S. Wesay that G is of oheight one if the Vershiebung VG : G(p) → G is the zerohomomorphism. We denote by GVS the ategory of suh objets. For anobjet G of GVS , the Frobenius FG∨ of G∨ is zero, so the Lie algebra Lie(G∨)is loally free of �nite type over OS ([DG℄ VIIA Théo. 7.4(iii)). The Hasse-Wittmap of G (2.1.2) endows Lie(G∨) with a ommutative p-Lie algebra strutureover S.

Proposition 2.3 ([DG℄ VIIA, Théo. 7.2 et 7.4). The funtor GVS → p-LieSde�ned by G 7→ Lie(G∨) is an anti-equivalene of ategories; a quasi-inverse isgiven by (L,ϕ) 7→ Spec(Up(L)).
2.4. Assume S = Spec(A) a�ne. Let (L,ϕ) be an objet of p-LieS suh that
L is free of rank n over OS , (e1, · · · , en) be a basis of L over OS , (hij)1≤i,j≤nbe the matrix of ϕ under the basis (e1, · · · , en), i.e. ϕ(ej) =

∑n
i=1 hijei for
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p-Adic Monodromy of a Barsotti-Tate Group 403
1 ≤ j ≤ n. Then the group sheme attahed to (L,ϕ) is expliitly given by

Spec(Up(L)) = Spec

(
A[X1, · · · , Xn]/(X

p
j −

n∑

i=1

hijXi)1≤j≤n

)
,with the omultipliation ∆(Xj) = 1⊗Xj +Xj ⊗ 1. By the Jaobian riterionof étaleness [EGA, IV0 22.6.7℄, the �nite group sheme Spec(Up(L)) is étaleover S if and only if the matrix (hij)1≤i,j≤n is invertible. This ondition isequivalent to that the linearization of ϕ is an isomorphism.

Corollary 2.5. An objet G of GVS is étale over S, if and only if the lin-earization of its Hasse-Witt map (2.1.2) is an isomorphism.Proof. The problem being loal over S, we may assume S a�ne and L =
Lie(G∨) free over OS . By Theorem 2.3, G is isomorphi to Spec(Up(L)), andwe onlude by the last remark of 2.4. �

2.6. Let G be a BT-group over S of height c+ d and dimension d. The Lie al-gebra Lie(G∨) is an OS-module loally free of rank c, and anonially identi�edwith Lie(G∨(1))([BBM℄ 3.3.2). We de�ne the Hasse-Witt map of G(2.6.1) ϕG : Lie(G∨)→ Lie(G∨)to be that of G(1) (2.1.2).
2.7. Let k be a �eld of harateristi p > 0, G be a BT-group over k. Reallthat we have a anonial exat sequene of BT-groups over k(2.7.1) 0→ G◦ → G→ Gét → 0with G◦ onneted and Gét étale ([Dem℄ Chap.II, �7). This indues an exatsequene of Lie algebras(2.7.2) 0→ Lie(Gét∨)→ Lie(G∨)→ Lie(G◦∨)→ 0,ompatible with Hasse-Witt maps.
Proposition 2.8. Let k be a �eld of harateristi p > 0, G be a BT-groupover k. Then Lie(Gét∨) is the unique maximal k-subspae V of Lie(G∨) withthe following properties:(a) V is stable under ϕG;(b) the restrition of ϕG to V is injetive.Proof. It is lear that Lie(Gét∨) satis�es property (a). We note that the Ver-shiebung of Gét(1) vanishes; so Gét(1) is in the ategory GVSpec(k). Sine kis a �eld, 2.5 implies that the restrition of ϕG to Lie(Gét∨), whih oinideswith ϕGét , is injetive. This proves that Lie(Gét∨) veri�es (b). Conversely, let
V be an arbitrary k-subspae of Lie(G∨) with properties (a) and (b). We haveto show that V ⊂ Lie(Gét∨). Let σ be the Frobenius endomorphism of k. If Mis a k-vetor spae, for eah integer n ≥ 1, we put M (pn) = k ⊗σn M , i.e. wehave 1 ⊗ ax = σn(a) ⊗ x in k ⊗σn M for a ∈ k, x ∈ M . Sine ϕG|V : V → Vis injetive by assumption, the linearization ϕ̃nG|V (pn) : V (pn) → V of ϕnG|V
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404 Yichao Tianis injetive (hene bijetive) for any n ≥ 1. We have V = ϕ̃nG(V (pn)). Sine
G◦ is onneted, there is an integer n ≥ 1 suh that the n-th iterated Frobe-nius FnG◦(1) : G◦(1) → G◦(1)(p

n) vanishes. Hene by de�nition, the linearized
n-iterated Hasse-Witt map ϕ̃nG◦ : Lie(G◦∨)(p

n) → Lie(G◦∨) is zero. By theompatibility of Hasse-Witt maps, we have ϕ̃nG(Lie(G∨)(p
n)) ⊂ Lie(Gét∨); inpartiular, we have V = ϕ̃nG(V (pn)) ⊂ Lie(Gét∨). This ompletes the proof. �

Corollary 2.9. Let k be a �eld of harateristi p > 0, G be a BT-group over
k. Then G is onneted if and only if ϕG is nilpotent.Proof. In the proof of the proposition, we have seen that the Hasse-Witt mapof the onneted part of G is nilpotent. So the �only if� part is veri�ed. Con-versely, if ϕG is nilpotent, Lie(Gét∨) is zero by the proposition. Therefore G isonneted. �

Definition 2.10. Let S be a sheme of harateristi p > 0, G be a BT-group over S. We say that G is ordinary if there exists an exat sequene ofBT-groups over S(2.10.1) 0→ Gmult → G→ Gét → 0,suh that Gmult is multipliative and Gét is étale.We note that when it exists, the exat sequene (2.10.1) is unique up to aunique isomorphism, beause there is no non-trivial homomorphisms between amultipliative BT-group and an étale one in harateristi p > 0. The propertyof being ordinary is learly stable under arbitrary base hange and Serre duality.If S is the spetrum of a �eld of harateristi p > 0, G is ordinary if and onlyif its onneted part G◦ is of multipliative type.
Proposition 2.11. Let G be a BT-group over S. The following onditions areequivalent:(a) G is ordinary over S.(b) For every x ∈ S, the �ber Gx = G⊗S κ(x) is ordinary over κ(x).() The �nite group sheme KerVG is étale over S.(') The �nite group sheme KerFG is of multipliative type over S.(d) The linearization of the Hasse-Witt map ϕG is an isomorphism.First, we prove the following lemmas.
Lemma 2.12. Let T be a sheme, H be a ommutative group sheme loally freeof �nite type over T . Then H is étale ( resp. of multipliative type) over T ifand only if, for every x ∈ T , the �ber H⊗T κ(x) is étale ( resp. of multipliativetype) over κ(x).Proof. We will onsider only the étale ase; the multipliative ase follows byduality. Sine H is T -�at, it is étale over T if and only if it is unrami�edover T . By [EGA, IV 17.4.2℄, this ondition is equivalent to that H ⊗T κ(x) isunrami�ed over κ(x) for every point x ∈ T . Hene the onlusion follows. �
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p-Adic Monodromy of a Barsotti-Tate Group 405
Lemma 2.13. Let G be a BT-group over S. Then KerVG is an objet of theategory GVS, i.e. it is loally free of �nite type over S, and its Vershiebung iszero. Moreover, we have a anonial isomorphism (KerVG)∨ ≃ KerFG∨ , whihindues an isomorphism of Lie algebras Lie

(
(KerVG)∨

)
≃ Lie(KerFG∨) =

Lie(G∨), and the Hasse-Witt map (2.1.2) of KerVG is identi�ed with ϕG(2.6.1).Proof. The group sheme KerVG is loally free of �nite type over S ([Ill℄ 1.3(b)),and we have a ommutative diagram
(KerVG)(p)

VKer VG
//

� _

��

KerVG� _

��
(G(p))(p)

V
G(p)

// G(p)By the funtoriality of Vershiebung, we have VG(p) = (VG)(p) and KerVG(p) =
(KerVG)(p). Hene the omposition of the left vertial arrow with VG(p) van-ishes, and the Vershiebung of KerVG is zero.By Cartier duality, we have (KerVG)∨ = Coker(FG∨(1)). Moreover, the exatsequene

· · · → G∨(1)
FG∨(1)
−−−−→

(
G∨(1)

)(p) VG∨(1)
−−−−→ G∨(1)→ · · · ,indues a anonial isomorphism(2.13.1) Coker(FG∨(1))

∼
−→ Im(VG∨(1)) = KerFG∨(1) = KerFG∨ .Hene, we dedue that(2.13.2) (KerVG)∨ ≃ Coker(FG∨(1))

∼
−→ KerFG∨ →֒ G∨(1).Sine the natural injetion KerFG∨ → G∨(1) indues an isomorphism of Liealgebras, we get(2.13.3) Lie

(
(KerVG)∨

)
≃ Lie(KerFG∨) = Lie(G∨(1)) = Lie(G∨).It remains to prove the ompatibility of the Hasse-Witt maps with (2.13.3). Wenote that the dual of the morphism (2.13.2) is the anonial map F : G(1) →

KerVG = Im(FG(1)) indued by FG(1). Hene by (2.1.1), the isomorphism(2.13.3) is identi�ed with the funtorial map
H omSfppf

(KerVG,Ga)→H omSfppf
(G(1),Ga)indued by F , and its ompatibility with the Hasse-Witt maps follows easilyfrom the de�nition (2.1.2). �Proof of 2.11. (a)⇒(b). Indeed, the ordinarity of G is stable by base hange.(b)⇒(). By Lemma 2.12, it su�es to verify that for every point x ∈ S, the�ber (KerVG)⊗S κ(x) ≃ KerVGx

is étale over κ(x). Sine Gx is assumed to beordinary, its onneted part (Gx)
◦ is multipliative. Hene, the Vershiebung of
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(Gx)
◦ is an isomorphism, and KerVGx

is anonially isomorphi to KerVGét
x
⊂

(Gét
x )(p) ≃ (G

(p)
x )ét, so our assertion follows.

(c)⇔ (d). It follows immediately from Lemma 2.13 and Corollary 2.5.()⇔('). By 2.12, we may assume that S is the spetrum of a �eld. So theategory of ommutative �nite group shemes over S is abelian. We will justprove ()⇒('); the onverse an be proved by duality. We have a fundamentalshort exat sequene of �nite group shemes(2.13.4) 0→ KerFG → G(1)
F
−→ KerVG → 0,where F is indued by FG(1), That indues a ommutative diagram

0 // (KerFG
)(p)

V ′

��

// (G(1)
)(p) F (p)

//

VG(1)

��

(
KerVG

)(p) //

V ′′

��

0

0 // KerFG // G(1)
F

// KerVG // 0where vertial arrows are the Vershiebung homomorphisms. We have seenthat V ′′ = 0 (2.13). Therefore, by the snake lemma, we have a long exatsequene(2.13.5)
0→ KerV ′ → KerVG(1)

α
−→
(
KerVG

)(p)
→

→ CokerV ′ → CokerVG(1)
β
−→ KerVG → 0,where the map α is the Frobenius of KerVG and β is the omposed isomorphism

Coker(VG(1)) ≃ G(1)/KerFG(1)
∼
−→ Im(FG(1)) ≃ KerVG.Then ondition () is equivalent to that α is an isomorphism; it implies that

KerV ′ = CokerV ′ = 0, i.e. the Vershiebung of KerFG is an isomorphism,and hene (').()⇒(a). For every integer n > 0, we denote by FnG the omposed homomor-phism
G

FG−−→ G(p)
F

G(p)

−−−−→ · · ·
F

G(pn−1)

−−−−−−→ G(pn),and by V nG the omposed homomorphism
G(pn)

V
G(pn−1)

−−−−−−→ G(pn−1)
V

G(pn−2)

−−−−−−→ · · ·
VG−−→ G;

FnG and V nG are isogenies of BT-groups. From the relation V nG ◦ FnG = pn, wededue an exat sequene(2.13.6) 0→ KerFnG → G(n)
Fn

−−→ KerV nG → 0,
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p-Adic Monodromy of a Barsotti-Tate Group 407where Fn is indued by FnG. For 1 ≤ j < n, we have a ommutative diagram(2.13.7) G(pn)

V n−j

G(pj)
//

V n
G ""EE

EE
EE

EE
G(pj)

V j
G||yy

yy
yy

yy

G.One noties that KerV n−j
G(pj)

= (KerV n−jG )(p
j) by the funtoriality of Ver-shiebung . Sine all maps in (2.13.7) are isogenies, we have an exat sequene(2.13.8) 0→ (KerV n−jG )(p

j)
i′n−j,n

−−−−→ KerV nG
pn,j

−−→ KerV jG → 0.Therefore, ondition () implies by indution that KerV nG is an étale groupsheme over S. Hene the j-th iteration of the Frobenius KerV n−jG →

(KerV n−jG )(p
j) is an isomorphism, and KerV n−jG is identi�ed with a losedsubgroup sheme of KerV nG by the omposed map
in−j,n : KerV n−jG

∼
−→ (KerV n−jG )(p

j)
i′n−j,n

−−−−→ KerV nG .We laim that the kernel of the multipliation by pn−j on KerV nG is KerV n−jG .Indeed, from the relation pn−j · IdG(pn) = Fn−j
G(pj)

◦ V n−j
G(pj )

, we dedue a ommu-tative diagram (without dotted arrows)(2.13.9) KerV nG //

pn−j

��

pn,j

$$I
I

I
I

I
G(pn)

pn−j

��

V n−j

G(pj )

##GG
GGG

GG
GG

KerV jG
//_________

ij,n
zzu

u
u

u
u

G(pj)

Fn−j

G(pj){{ww
ww

ww
www

KerV nG // G(pn).It follows from (2.13.8) that the subgroup KerV nG of G(pn) is sent by V n−j
G(pj )

onto
KerV jG. Therefore diagram (2.13.9) remains ommutative when ompleted bythe dotted arrows, hene our laim. It follows from the laim that (KerV nG )n≥1onstitutes an étale BT-group over S, denoted by Gét. By duality, we have anexat sequene(2.13.10) 0→ KerF jG → KerFnG → (KerFn−jG )(p

j) → 0.Condition (') implies by indution that KerFnG is of multipliative type. Henethe j-th iteration of Vershiebung (KerFn−jG )(p
j) → KerFn−jG is an isomor-phism. We dedue from (2.13.10) that (KerFnG)n≥1 form a multipliative BT-group over S that we denote by Gmult. Then the exat sequenes (2.13.6) givea deomposition of G of the form (2.10.1). �
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Corollary 2.14. Let G be a BT-group over S, and Sord be the lous in S ofthe points x ∈ S suh that Gx = G ⊗S κ(x) is ordinary over κ(x). Then Sordis open in S, and the anonial inlusion Sord → S is a�ne.The open subsheme Sord of S is alled the ordinary lous of G.
3. Preliminaries on Dieudonné Theory and Deformation Theory

3.1. We will use freely the onventions of 1.8. Let S be a sheme of hara-teristi p > 0, G be a Barsotti-Tate group over S, and M(G) = D(G)(S,S) bethe oherent OS-module obtained by evaluating the (ontravariant) Dieudonnérystal of G at the trivial divided power immersion S →֒ S [BBM, 3.3.6℄. Reallthat M(G) is an OS-module loally free of �nite type satisfying the followingproperties:(i) Let FM : M(G)(p) →M(G) and VM : M(G) →M(G)(p) be the OS-linearmaps indued respetively by the Frobenius and the Vershiebung of G. Wehave the following exat sequene:
· · · →M(G)(p)

FM−−→M(G)
VM−−→M(G)(p) → · · · .(ii) There is a onnetion ∇ : M(G) → M(G) ⊗OS

Ω1
S/Fp

for whih FM and
VM are horizontal morphisms.(iii) We have two anonial �ltrations on M(G) by OS-modules loally free of�nite type:(3.1.1) 0→ ωG →M(G)→ Lie(G∨)→ 0,alled the Hodge �ltration on M(G) [BBM, 3.3.5℄, and the onjugate �ltrationon M(G)(3.1.2) 0→ Lie(G∨)(p)

φG
−−→M(G)→ ω

(p)
G → 0,whih is obtained by applying the Dieudonné funtor to the exat sequene of�nite group shemes 0 → KerFG → G(1) → KerVG → 0 [BBM, 4.3.1, 4.3.6,4.3.11℄. Moreover, we have the following ommutative diagram (f. [Ka1, 2.3.2
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p-Adic Monodromy of a Barsotti-Tate Group 409and 2.3.4℄)(3.1.3)
0

��

0

��

0

��

ω
(p)
G

��

ωG

��

ψG
// ω

(p)
G

��
// M(G)(p)

FM
//

��

M(G)

��

VM
//

6 6mmmmmmmmmmmmmmmm

M(G)(p)

��

// ,

Lie(G∨)(p)

��

(
�

φG

6llllllllllllll
fϕG

// Lie(G∨)

��

Lie(G∨)(p)

��
0 0 0where the olumns are the Hodge �ltrations and the anti-diagonal is theonjugate �ltration. By funtoriality, we see easily that ϕ̃G above is noth-ing but the linearization of the Hasse-Witt map ϕG (2.6.1), and the mor-phism ψ∗G : Lie(G)(p) → Lie(G), whih is obtained by applying the funtor

H omOS
(_,OS) to ψG, is identi�ed with the linearization ϕ̃G∨ of ϕG∨ .The formation of these strutures on M(G) ommutes with arbitrary basehanges of S. In the sequel, we will use (M(G), FM ,∇) to emphasize thesestrutures on M(G).

3.2. In the reminder of this setion, k will denote an algebraially losed �eldof harateristi p > 0. Let S be a sheme formally smooth over k suh that
Ω1
S/Fp

= Ω1
S/k is an OS-module loally free of �nite type, e.g. S = Spec(A)with A a formally smooth k-algebra with a �nite p-basis over k. Let G be aBT-group over S. We put KS to be the omposed morphism(3.2.1) KS : ωG →M(G)

∇
−→M(G)⊗OS

Ω1
S/k

pr
−→ Lie(G∨)⊗OS

Ω1
S/kwhih is OS-linear. We put TS/k = H omOS

(Ω1
S/k,OS), and de�ne theKodaira-Spener map of G(3.2.2) Kod : TS/k →H omOS

(ωG,Lie(G∨))to be the morphism indued by KS. We say that G is versal if Kod is surjetive.
3.3. Let r be an integer ≥ 1, R = k[[t1, · · · , tr]], m be the maximal idealof R. We put S = Spf(R), S = Spec(R), and for eah integer n ≥ 0,
Sn = Spec(R/mn+1). By a BT-group G over the formal sheme S , we meana sequene of BT-groups (Gn)n≥0 over (Sn)n≥0 equipped with isomorphisms
Gn+1 ×Sn+1 Sn ≃ Gn.
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410 Yichao TianAording to [deJ, 2.4.4℄, the funtor G 7→ (G×SSn)n≥0 indues an equivaleneof ategories between the ategory of BT-groups over S and the ategory of BT-groups over S . For a BT-group G over S , the orresponding BT-group Gover S is alled the algebraization of G . We say that G is versal over S , if itsalgebraization G is versal over S. Sine S is loal, by Nakayama's Lemma, Gor G is versal if and only if the redution of Kod modulo the maximal ideal(3.3.1) Kod0 : TS/k ⊗OS
k −→ Homk(ωG0 ,Lie(G∨0 ))is surjetive.

3.4. We reall brie�y the deformation theory of a BT-group. Let ALk be theategory of loal artinian k-algebras with residue �eld k. We notie that allmorphisms of ALk are loal. A morphism A′ → A in ALk is alled a smallextension, if it is surjetive and its kernel I satis�es I ·mA′ = 0, where mA′ isthe maximal ideal of A′.Let G0 be a BT-group over k, and A an objet of ALk. A deformation of
G0 over A is a pair (G,φ), where G is a BT-group over Spec(A) and φ isan isomorphism φ : G ⊗A k

∼
−→ G0. When there is no risk of onfusions, wewill denote a deformation (G,φ) simply by G. Two deformations (G,φ) and

(G′, φ′) over A are isomorphi if there exists an isomorphism of BT-groups
ψ : G

∼
−→ G′ over A suh that φ = φ′ ◦ (ψ⊗A k). Let's denote by D the funtorwhih assoiates with eah objet A of ALk the set of isomorphsm lasses ofdeformations of G0 over A. If f : A → B is a morphism of ALk, then themap D(f) : D(A) → D(B) is given by extension of salars. We all D thedeformation funtor of G0 over ALk.

Proposition 3.5 ([Ill℄, 4.8). Let G0 be a BT-group over k of dimension d andheight c+ d, D be the deformation funtor of G0 over ALk.(i) Let A′ → A be a small extension in ALk with ideal I, x = (G,φ)be an element in D(A), Dx(A′) be the subset of D(A′) with image x in
D(A). Then the set Dx(A′) is a nonempty homogenous spae under the group
Homk(ωG0 ,Lie(G∨0 ))⊗k I.(ii) The funtor D is pro-representable by a formally smooth formal sheme Sover k of relative dimension cd, i.e. S = Spf(R) with R ≃ k[[(tij)1≤i≤c,1≤j≤d]],and there exists a unique deformation (G , ψ) of G0 over S suh that, for anyobjet A of ALk and any deformation (G,φ) of G0 over A, there is a uniquehomomorphism of loal k-algebras ϕ : R→ A with (G,φ) = D(ϕ)(G , ψ).(iii) Let TS /k(0) = TS /k⊗OS

k be the tangent spae of S at its unique losedpoint,
Kod0 : TS /k(0) −→ Homk(ωG0 ,Lie(G∨0 ))be the Kodaira-Spener map of G evaluated at the losed point of S . Then Kod0is bijetive, and it an be desribed as follows. For an element f ∈ TS /k(0), i.e.a homomorphism of loal k-algebras f : R→ k[ǫ]/ǫ2, Kod0(f) is the di�ereneof deformations

[G ⊗R (k[ǫ]/ǫ2)]− [G0 ⊗k (k[ǫ]/ǫ2)],whih is a well-de�ned element in Homk(ωG0 ,Lie(G∨0 )) by (i).
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p-Adic Monodromy of a Barsotti-Tate Group 411
Remark 3.6. Let (ej)1≤j≤d be a basis of ωG0 , (fi)1≤i≤c be a basis of Lie(G∨0 ).In view of 3.5(iii), we an hoose a system of parameters (tij)1≤i≤c,1≤j≤d of Ssuh that

Kod0(
∂

∂tij
) = e∗j ⊗ fi,where (e∗j )1≤j≤d is the dual basis of (ej)1≤j≤d. Moreover, if m is the maximalideal of R, the parameters tij are determined uniquely modulo m2.

Corollary 3.7 (Algebraization of the universal deformation). Theassumptions being those of (3.5), we put moreover S = Spec(R) and G thealgebraization of the universal formal deformation G . Then the BT-group Gis versal over S, and satis�es the following universal property: Let A be anoetherian omplete loal k-algebra with residue �eld k, G be a BT-group over
A endowed with an isomorphism G ⊗A k ≃ G0. Then there exists a uniqueontinuous homomorphism of loal k-algebras ϕ : R→ A suh that G ≃ G⊗RA.Proof. By the last remark of 3.3, G is learly versal. It remains to prove that itsatis�es the universal property in the orollary. Let G be a deformation of G0over a noetherian omplete loal k-algebra A with residue �eld k. We denoteby mA the maximal ideal of A, and put An = A/mn+1

A for eah integer n ≥ 0.Then by 3.5(b), there exists a unique loal homomorphism ϕn : R → An suhthat G ⊗ An ≃ G⊗R An. The ϕn's form a projetive system (ϕn)n≥0, whoseprojetive limit ϕ : R→ A answers the question. �

Definition 3.8. The notations are those of (3.7). We all S the loal moduli inharateristi p of G0, and G the universal deformation of G0 in harateristi
p.If there is no onfusions, we will omit �in harateristi p� for short.
3.9. Let G be a BT-group over k, G◦ be its onneted part, and Gét be itsétale part. Let r be the height of Gét. Then we have Gét ≃ (Qp/Zp)

r, sine
k is algebraially losed. Let DG (resp. DG◦) be the deformation funtor of G(resp. G◦) over ALk. If A is an objet in ALk and G is a deformation of G(resp. G◦) over A, we denote by [G ] its isomorphism lass in DG(A) (resp. in
DG◦(A)).
Proposition 3.10. The assumptions are as above, let Θ : DG → DG◦ be themorphism of funtors that maps a deformation of G to its onneted omponent.(i) The morphism Θ is formally smooth of relative dimension r.(ii) Let A be an objet of ALk, and G ◦ be a deformation of G◦ over A. Then thesubset Θ−1

A ([G ◦]) of DG(A) is anonially identi�ed with Ext1A(Qp/Zp,G
◦)r,where Ext1A means the group of extensions in the ategory of abelian fppf-sheaves on Spec(A).Proof. (i) Sine DG and DG◦ are both pro-representable by a noetherian loalomplete k-algebra and formally smooth over k (3.5), by a formal ompletionversion of [EGA, IV 17.11.1(d)℄, we only need to hek that the tangent map

Θk[ǫ]/ǫ2 : DG(k[ǫ]/ǫ2)→ DG◦(k[ǫ]/ǫ2)
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412 Yichao Tianis surjetive with kernel of dimension r over k. By 3.5(iii), DG(k[ǫ]/ǫ2)(resp. DG◦(k[ǫ]/ǫ2)) is isomorphi to Homk(ωG,Lie(G∨)) (resp.
Homk(ωG◦ ,Lie(G◦∨))) by the Kodaira-Spener morphism. In view of theanonial isomorphism ωG ≃ ωG◦ , Θk[ǫ]/ǫ2 orresponds to the map

Θ′k[ǫ]/ǫ2 : Homk(ωG,Lie(G∨))→ Homk(ωG,Lie(G◦∨))indued by the anonial surjetion Lie(G∨) → Lie(G◦∨). It is lear that
Θ′k[ǫ]/ǫ2 is surjetive of kernel Homk(ωG,Lie(Gét∨)), whih has dimension rover k.(ii) Sine Gét is isomorphi to (Qp/Zp)

r, every element in Ext1A(Qp/Zp,G
◦)rde�nes learly an element of DG(A) with image [G ◦] in DG◦(A). Conversely, forany G ∈ DG(A) with onneted omponent isomorphi to G ◦, the isomorphism

Gét ≃ (Qp/Zp)
r lifts uniquely to an isomorphism G ét ≃ (Qp/Zp)

r beause A ishenselian. The anonial exat sequene 0 → G ◦ → G → G ét → 0 shows that
G omes from an element of Ext1A(Qp/Zp,G

◦)r.
�

4. HW-yli Barsotti-Tate Groups
Definition 4.1. Let S be a sheme of harateristi p > 0, G be a BT-groupover S suh that c = dim(G∨) is onstant. We say that G is HW-yli, if c ≥ 1and there exists an element v ∈ Γ(S,Lie(G∨)) suh that

v, ϕG(v), · · · , ϕc−1
G (v)generate Lie(G∨) as an OS-module, where ϕG is the Hasse-Witt map (2.6.1) of

G.
Remark 4.2. It is lear that a BT-group G over S is HW-yli, if and onlyif Lie(G∨) is free over OS and there exists a basis of Lie(G∨) over OS underwhih ϕG is expressed by a matrix of the form(4.2.1) 



0 0 · · · 0 −a1

1 0 · · · 0 −a2

0 1 · · · 0 −a3... . . . ...
0 0 · · · 1 −ac



,where ai ∈ Γ(S,OS) for 1 ≤ i ≤ c.

Lemma 4.3. Let R be a loal ring of harateristi p > 0, k be its residue �eld.(i) A BT-group G over R is HW-yli if and only if so is G⊗ k.(ii) Let 0→ G′ → G→ G′′ → 0 be an exat sequene of BT-groups over R. If
G is HW-yli, then so is G′. In partiular, if R is henselian, the onnetedpart of a HW-yli BT-group over R is HW-yli.Proof. (i) The property of being HW-yli is learly stable under arbitrarybase hanges, so the �only if� part is lear. Assume that G0 = G ⊗ kis HW-yli. Let v be an element of Lie(G∨0 ) = Lie(G∨) ⊗ k suh that
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p-Adic Monodromy of a Barsotti-Tate Group 413
(v, ϕG0(v), · · · , ϕ

c−1
G0

(v)) is a basis of Lie(G∨0 ). Let v be any lift of v in Lie(G∨).Then by Nakayama's lemma, (v, ϕG(v), · · · , ϕc−1
G (v)) is a basis of Lie(G∨).(ii) By statement (i), we may assume R = k. The exat sequene of BT-groupsindues an exat sequene of Lie algebras(4.3.1) 0→ Lie(G′′∨)→ Lie(G∨)→ Lie(G′∨)→ 0,and the Hasse-Witt map ϕG′ is indued by ϕG by funtoriality. Assume that

G is HW-yli and G∨ has dimension c. Let u be an element of Lie(G∨) suhthat
u, ϕG(u), · · · , ϕc−1

G (u)form a basis of Lie(G∨) over k. We denote by u′ the image of u in Lie(G′∨).Let r ≤ c be the maximal integer suh that the vetors
u′, ϕG′(u′), · · · , ϕr−1

G′ (u′)are linearly independent over k. It is easy to see that they form a basis of the
k-vetor spae Lie(G′∨). Hene G′ is HW-yli. �

Lemma 4.4. Let S = Spec(R) be an a�ne sheme of harateristi p > 0, Gbe a HW-yli BT-group over R with c = dim(G∨) onstant, and



0 0 · · · 0 −a1

1 0 · · · 0 −a2

0 1 · · · 0 −a3... . . . ...
0 0 · · · 1 −ac



∈Mc×c(R),be a matrix of ϕG. Put ac+1 = 1, and P (X) =
∑c
i=0 ai+1X

pi

∈ R[X ].(i) Let VG : G(p) → G be the Vershiebung homomorphism of G. Then KerVGis isomorphi to the group sheme Spec(R[X ]/P (X)) with omultipliationgiven by X 7→ 1⊗X +X ⊗ 1.(ii) Let x ∈ S, and Gx be the �bre of G at x. Put(4.4.1) i0(x) = min
0≤i≤c

{i; ai+1(x) 6= 0},where ai(x) denotes the image of ai in the residue �eld of x. Then the étale partof Gx has height c− i0(x), and the onneted part of Gx has height d + i0(x).In partiular, Gx is onneted if and only if ai(x) = 0 for 1 ≤ i ≤ c.Proof. (i) By 2.3 and 2.13, KerVG is isomorphi to the group sheme
Spec

(
R[X1, . . . , Xc]/(X

p
1 −X2, · · · , X

p
c−1 −Xc, X

p
c + a1X1 + · · ·+ acXc)

)with omultipliation ∆(Xi) = 1 ⊗ Xi + Xi ⊗ 1 for 1 ≤ i ≤ c. By sending
(X1, X2, · · · , Xc) 7→ (X,Xp, · · · , Xpc−1

), we see that the above group shemeis isomorphi to Spec(R[X ]/P (X))with omultipliation ∆(X) = 1⊗X+X⊗1.
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414 Yichao Tian(ii) By base hange, we may assume that S = x = Spec(k) and hene G = Gx.Let G(1) be the kernel of the multipliation by p on G. Then we have an exatsequene
0→ KerFG → G(1)→ KerVG → 0.Sine KerFG is an in�nitesimal group sheme over k, we have G(1)(k) =

(KerVG)(k), where k is an algebrai losure of k. By the de�nition of i0(x), wehave P (X) = Q(Xpi0(x)

), where Q(X) is an additive sepearable polynomial in
k[X ] with deg(Q) = pc−i0(x). Hene the roots of P (X) in k form an Fp-vetorspae of dimension c − i0(x). By (i), (KerVG)(k) an be identi�ed with theadditive group onsisting of the roots of P (X) in k. Therefore, the étale partof G has height c− i0(x), and the onneted part of G has height d+ i0(x). �

4.5. Let k be a perfet �eld of harateristi p > 0, and αp = Spec(k[X ]/Xp) bethe �nite group sheme over k with omultipliation map ∆(X) = 1⊗X+X⊗1.Let G be a BT-group over k. Following Oort, we all
a(G) = dimk Homkfppf

(αp, G)the a-number of G, where Homkfppf
means the homomorphisms in the ate-gory of abelian fppf-sheaves over k. Sine the Frobenius of αp vanishes, anymorphism of αp in G fatorize through Ker(FG). Therefore we have

Homkfppf
(αp, G) = Homk−gr(αp,Ker(FG))

= Homk−gr(Ker(FG)∨, αp)

= Homp-Liek
(Lie(αp),Lie(Ker(FG))),where Homk−gr denotes the homomorphisms in the ategory of ommutativegroup shemes over k, and the last equality uses Proposition 2.3. Sine we havea anonial isomorphism Lie(Ker(FG)) ≃ Lie(G) and Lie(αp) has dimension oneover k with ϕαp

= 0, we get(4.5.1) a(G) = dimk{x ∈ Lie(G)|ϕG∨(x) = 0} = dimk Ker(ϕG∨).Due to the perfetness of k, we have also a(G) = dimk Ker(ϕ̃G∨), where ϕ̃G∨is the linearization of ϕG∨ . By Proposition 2.11, we see that a(G) = 0 if andonly if G is ordinary.
Lemma 4.6. Let G be a BT-group over k, and G∨ its Serre dual. Then wehave a(G) = a(G∨).Proof. Let ψG : ωG → ω

(p)
G be the k-linear map indued by the Vershiebungof G. Then ψ∗G, the morphism obtained by applying the funtor Homk(_, k)to ψG, is identi�ed with ϕ̃G∨ . By (4.5.1) and the exatitude of the funtor

Homk(_, k), we have a(G) = dimk Ker(ψ∗G) = dimk Coker(ψG). Using theadditivity of dimk, we get �nally a(G) = dimk Ker(ψG). By onsidering theommutative diagram (3.1.3), we have
a(G) = dimk

(
ωG ∩ φG(Lie(G∨)(p))

)
.
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p-Adic Monodromy of a Barsotti-Tate Group 415On the other hand, it follows also from (3.1.3) that
a(G∨) = dimk Ker(ϕ̃G) = dimk

(
φG(Lie(G∨)(p)) ∩ ωG

)
.The lemma now follows immediately.

�

Proposition 4.7. Let k be a perfet �eld of harateristi p > 0, G a BT-groupover k. Consider the following onditions:(i) G is HW-yli and non-ordinary;(ii) the onneted part G◦ of G is HW-yli and not of multipliative type;(iii) a(G∨) = a(G) = 1.We have (i) ⇒ (ii) ⇔ (iii). If k is algebraially losed, we have moreover
(ii)⇒ (i).
Remark 4.8. In [Oo1, Lemma 2.2℄, Oort proved the following assertion, whihis a generalization of (iii) ⇒ (ii): Let k be an algebraially losed �eld ofharateristi p > 0, and G be a onneted BT-group with a(G) = 1. Thenthere exists a basis of the Dieudonné module M of G overW (k), suh that theation of Frobenius on M is given by a display-matrix of �normal form� in thesense of [Oo1, 2.1℄.Proof. (i)⇒ (ii) follows from 4.3(ii).
(ii)⇒ (iii). First, we note that a(G) = a(G◦), so we may assume G onneted.Sine G is not of multipliative type, we have c = dim(G∨) ≥ 1. By Lemma4.4(ii), there exists a basis of Lie(G∨) over k under whih ϕG is expressed by




0 0 · · · 0 0
1 0 · · · 0 0
0 1 · · · 0 0... . . . ...
0 0 · · · 1 0



∈ Mc×c(k).Aording to (4.5.1), a(G∨) equals to dimk Ker(ϕG), i.e. the k-dimension ofthe solutions of the equation system in (x1, · · · , xc)




0 0 · · · 0 0
1 0 · · · 0 0... . . . ...
0 0 · · · 1 0







xp1
xp2...
xpc


 = 0The solutions (x1, · · · , xc) form learly a vetor spae over k of dimension 1,i.e. we have a(G∨) = 1.

(iii) ⇒ (ii). Let Gét be the étale part of G. Sine k is perfet, the exatsequene (2.7.1) splits [Dem, Chap. II �7℄; so we have G ≃ G◦ ×Gét. We put
M = Lie(G∨), M1 = Lie(G◦∨) and M2 = Lie(Gét∨) for short. By 2.8 and 2.9,we have a deomposition M = M1 ⊕M2, suh that M1,M2 are stable under
ϕG, and the ation of ϕG is nilpotent on M1 and bijetive on M2. We note
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416 Yichao Tianthat a(G◦∨) = a(G◦) = a(G) = 1. By the last remark of 4.5, G◦ is not ofmultipliative type, hene dimkM1 = dim(G◦∨) ≥ 1. It remains to prove that
G◦ is HW-yli. Let n be the minimal integer suh that ϕnG(M1) = 0. Wehave a stritly inreasing �ltration

0 ( Ker(ϕG) ( · · · ( Ker(ϕnG) = M1.If n = 1, then M1 is one-dimensional, hene G◦ is learly HW-yli. Assume
n ≥ 2. For 2 ≤ m ≤ n, ϕm−1

G indues an injetive map
ϕm−1
G : Ker(ϕmG )/Ker(ϕm−1

G ) −→ Ker(ϕG).Sine dimk Ker(ϕG) = a(G◦∨) = 1, ϕm−1
G is neessarily bijetive. So we have

dimk Ker(ϕmG ) = m for 1 ≤ m ≤ n. Let v be an element of M1 but not in
Ker(ϕn−1

G ). Then v, ϕG(v), · · · , ϕn−1
G (v) are linearly independant, hene theyform a basis of M1 over k. This proves that G◦ is HW-yli.Assume k algebraially losed. We prove that (ii) ⇒ (i). Noting that G isordinary if and only if G◦ is of multipliative type, we only need to hek that

G is HW-yli. We onserve the notations above. Sine ϕG is bijetive on M2and k algebraially losed, there exists a basis (e1, · · · , em) of M2 suh that
ϕG(ei) = ei for 1 ≤ i ≤ m. Let v ∈ M1 but not in Ker(ϕn−1

G ) as above, andput u = v + λ1e1 + · · ·λmem, where λi(1 ≤ i ≤ m) are some elements in k tobe determined later. Then we have



ϕnG(u)...
ϕn+m−1
G (u)


 =




λp
n

1 · · · λp
n

m... . . . ...
λp

n+m−1

1 · · · λp
n+m−1

m






e1...
em


 .Let L(λ1, · · · , λm) ∈ k[λ1, · · · , λm] be the determinant polynomial of the ma-trix on the right side. An elementary omputation shows that the polyno-mial L(λ1, · · · , λm) is not null. We an hoose λ1, · · · , λm ∈ k suh that

L(λ1, · · · , λm) 6= 0 beause k is algebraially losed. So ϕnG(u), · · · , ϕn+m−1
G (u)form a basis of M2 over k. Sine

ϕiG(u) ≡ ϕiG(v) mod M2 for 0 ≤ i ≤ n,by the hoie of u, we see that {u, ϕG(u), · · · , ϕn+m−1
G (u)} form a basis of

M = Lie(G∨) over k. �By ombining 4.6 and 4.7, we obtain the following
Corollary 4.9. Let k be an algebraially losed �eld of harateristi p > 0.Then a BT-group over k is HW-yli if and only if so is its Serre dual.
4.10. Examples. Let k be a perfet �eld, W (k) be the ring of Witt vetorswith oe�ients in k, and σ be the Frobenius automorphism of W (k). Let
s, r be relatively prime integers suh that 0 ≤ s ≤ r and r 6= 0; put λ = s

r .We onsider the Dieudonné module Mλ ≃ W (k)[F, V ]/(F r−s − V s), where
W (k)[F, V ] is the non-ommutative ring with relations FV = V F = p, Fa =
σ(a)F and V σ(a) = aV for all a ∈ W (k). We note that Mλ is free of rank
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p-Adic Monodromy of a Barsotti-Tate Group 417
r over W (k) and Mλ/VMλ ≃ k[F ]/F r−s. By the ontravariant Dieudonnétheory, Mλ orresponds to a BT-group Gλ over k of height r with Lie(Gλ∨) =
Mλ/VMλ. We see easily that Gλ is HW-yli, and we all it the elementaryBT-group of slope λ. We note that G0 ≃ Qp/Zp, G1 ≃ µp∞ , and (Gλ)∨ ≃ G1−λfor 0 ≤ λ ≤ 1.Assume k algebraially losed. Then by the Dieudonné-Manin's lassi�ationof isorystals [Dem, Chap.IV �4℄, any BT-group over k is isogenous to a �-nite produt of Gλ's; moreover, any onneted one-dimensional BT-group over
k of height r is neessarily isomorphi to G1/r [Dem, Chap.IV �8℄, hene inpartiular HW-yli.
Proposition 4.11. Let k be an algebraially losed �eld of harateristi p > 0,
R be a noetherian omplete regular loal k-algebra with residue �eld k, and
S = Spec(R). Let G be a onneted HW-yli BT-group over R of dimension
d ≥ 1 and height c+ d,

h =




0 0 · · · 0 −a1

1 0 · · · 0 −a2

0 1 · · · 0 −a3... . . . ...
0 0 · · · 1 −ac



∈ Mc×c(R)be a matrix of ϕG.(i) If G is versal over S, then {a1, · · · , ac} is a subset of a regular system ofparameters of R.(ii) Assume that d = 1. The onverse of (i) is also true, i.e. if {a1, · · · , ac}is a subset of a regular system of parameters of R then G is versal over S.Furthermore, G is the universal deformation of its speial �ber if and only if

{a1, · · · , ac} is a system of regular parameters of R.Proof. Let (M(G), FM ,∇) be the �nite free OS-module equipped with a semi-linear endomorphism FM and a onnetion ∇ : M(G) → M(G) ⊗OS
Ω1
S/k,obtained by evaluating the Dieudonné rystal of G at the trivial immersion

S →֒ S (f. 3.1). Reall that we have a ommutative diagram(4.11.1) M(G)(p)
FM

//

pr

��

M(G)

pr

��

Lie(G∨)(p)
fϕG

//
(
�

φG

66llllllllllllll

Lie(G∨),where φG is universally injetive (3.1.3). Let {v1, · · · , vc} be a basis of Lie(G∨)over OS under whih ϕG is expressed by h, i.e. we have ϕi−1
G (v1) = vi for

1 ≤ i ≤ c and ϕcG(v1) = ϕG(vc) = −
∑c
i=1 aivi. Let f1 be a lift of v1 to

Γ(S,M(G)), and put fi+1 = φG(v
(p)
i ) for 1 ≤ i ≤ c− 1, where v(p)

i = 1 ⊗ vi ∈
Γ(S,Lie(G∨)(p)). The image of fi in Γ(S,Lie(G∨)) is thus vi for 1 ≤ i ≤ c by
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418 Yichao Tian(4.11.1). We put(4.11.2) e1 = φG(v(p)
c ) + a1f1 + · · ·+ acfc ∈ Γ(S,M(G)).The image of e1 in Γ(S,Lie(G∨)) is ϕG(vc) +

∑c
i=1 aivi = 0; so we have e1 ∈

Γ(S, ωG). By 4.4(ii), we notie that a1, · · · , ac belong to the maximal ideal
mR of R, as G is onneted. Hene, we have e1 = φG(v

(p)
c ), where for a R-module M and x ∈ M , we denote by x the anonial image of x in M ⊗ k.Sine φG ommutes with base hange and is universally injetive, we get e1 =

φG(v
(p)
c ) = φG⊗k(v

(p)
c ) 6= 0. Therefore, we an hoose e2, · · · , ed ∈ Γ(S, ωG)suh that (e1, · · · , ed) beomes a basis of ωG over OS , so (e1, · · · , ed, f1, · · · , fc)is a basis of M(G). Sine FM is horizontal for the onnetion ∇ (f. 3.1(ii)),we have
∇(φG(v(p)

c )) = ∇(FM (f (p)
c )) = 0.In view of (4.11.2), we get

∇(e1) =

c∑

i=1

fi ⊗ dai +

c∑

i=1

ai∇(fi)

≡
c∑

i=1

fi ⊗ dai (mod mR).(4.11.3)Let KS0 and Kod0 be respetively the redutions modulo mR of (3.2.1) and(3.2.2). Sine (vi)1≤i≤c is a base of Lie(G∨)⊗ k, we an write
KS0(ej) =

c∑

i=1

vi ⊗ θi,j for 1 ≤ j ≤ d,where θi,j ∈ ΩS/k ⊗ k. From (4.11.3), we dedue that θi,1 = dai. By thede�nition of Kod0, we have(4.11.4) Kod0(∂) =

d∑

j=1

c∑

i=1

< ∂, θi,j > ej
∗ ⊗ viwhere ∂ ∈ TS/k ⊗ k, < •, • > is the anonial pairing between TS/k ⊗ k and

Ω1
S/k⊗ k, and (ei

∗)1≤i≤d denotes the dual basis of (ei)1≤i≤d. Now assume that
G is versal over S, i.e. Kod0 is surjetive by de�nition (3.2). In partiular,there are ∂1, · · · , ∂c ∈ TS/k ⊗ k suh that Kod0(∂i) = e1

∗ ⊗ vi for 1 ≤ i ≤ c,i.e. we have(4.11.5) < ∂i, daj >=

{
1 if i = j

0 if i 6= j
for 1 ≤ i, j ≤ c,and

< ∂i, θj,ℓ >= 0 for 1 ≤ i, j ≤ c, 2 ≤ ℓ ≤ d.From (4.11.5), we see easily that da1, · · · , dac are linearly independent in ΩS/k⊗
k ≃ mR/m

2
R; therefore, (a1, · · · , ac) is a part of a regular system of parametersof R. Statement (i) is proved.
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p-Adic Monodromy of a Barsotti-Tate Group 419For statement (ii), we assume d = 1 and that (a1, · · · , ac) is a part of a regularsystem of parameters of R. Then the formula (4.11.4) is simpli�ed as
Kod0(∂) =

c∑

i=1

< ∂, dai > e1
∗ ⊗ vi.Sine da1, · · · , dac are linearly independent in Ω1

S/k⊗k, there exist ∂1, · · · , ∂c ∈

TS/k⊗k suh that (4.11.5) holds, i.e. (e1
∗⊗vi)1≤i≤c are in the image of Kod0.But the elements (e1

∗⊗vi)1≤i≤c form already a basis ofH omOS
(ωG,Lie(G∨))⊗

k. So Kod0 is surjetive, and hene G is versal over S by Nakayama's lemma.Let G0 be the speial �ber of G. It remains to prove that when d = 1, G is theuniversal deformation of G0 if and only if dim(S) = c and G is versal over S.Let S be the loal moduli in harateristi p of G0. By the universal propertyof G (3.7), there exists a unique morphism f : S → S suh that G ≃ G×S S.Sine S and S are loal omplete regular shemes over k with residue �eld k ofthe same dimension, f is an isomorphism if and only if the tangent map of f atthe losed point of S, denoted by Tf , is an isomorphism. By the funtorialityof Kodaira-Spener maps (3.2.2), we have a ommutative diagram
TS/k ⊗OS

k

Tf

��

KodS
0

// Homk(ωG0 ,Lie(G∨0 ))

TS/k ⊗OS
k

KodS

0
// Homk(ωG0 ,Lie(G∨0 ))

,where horizontal arrows are the Kodaira-Spener maps evaluated at the losedpoints (3.3.1). Sine KodS0 and KodS

0 are isomorphisms aording to the �rstpart of this propostion, we dedue that so is Tf . This ompletes the proof. �

5. Monodromy of a HW-yli BT-group over a Complete Traitof Charateristi p > 0

5.1. Let k be an algebraially losed �eld of harateristi p > 0, A be a om-plete disrete valuation ring of harateristi p, with residue �eld k and fration�eld K. We put S = Spec(A), and denote by s its losed point, by η its generipoint. Let K be an algebrai losure of K, Ksep be the maximal separableextension of K ontained in K, Kt be the maximal tamely rami�ed extensionof K ontained in Ksep. We put I = Gal(Ksep/K), Ip = Gal(Ksep/Kt) and
It = I/Ip = Gal(Kt/K).Let π be a uniformizer of A; so we have A ≃ k[[π]]. Let v be the valuation on
K normalized by v(π) = 1; we denote also by v the unique extension of v to K.For every α ∈ Q, we denote by mα (resp. by m+

α ) the set of elements x ∈ Ksepsuh that v(x) ≥ α (resp. v(x) > α). We put(5.1.1) Vα = mα/m
+
α ,whih is a k-vetor spae of dimension 1 equipped with a ontinuous ation ofthe Galois group I.
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420 Yichao Tian

5.2. First, we reall some properties of the inertia groups Ip and It [Se1, Chap.IV℄. The subgroup Ip, alled the wild inertia subgroup, is the unique maximalpro-p-group ontained in I and hene normal in I. The quotient It = I/Ipis a ommutative pro�nite group, alled the tame inertia group. We have aanonial isomorphism(5.2.1) θ : It
∼
−→ lim←−

(d,p)=1

µd,where the projetive system is taken over positive integers prime to p, µd is thegroup of d-th roots of unity in k, and the transition maps µm → µd are givenby ζ 7→ ζm/d, whenever d divides m. We denote by θd : It → µd the projetionindued by (5.2.1). Let q be a power of p, Fq be the �nite sub�eld of k with qelements. Then µq−1 = F×q , and we an write θq−1 : It → F×q . The harater
θd is haraterized by the following property.
Proposition 5.3 ([Se3℄ Prop.7). Let a, d be relatively prime positive integerswith d prime to p. Then the natural ation of Ip on the k-vetor spae Va/d(5.1.1) is trivial, and the indued ation of It on Va/d is given by the harater
(θd)

a : It → µd. In partiular, if q is a power of p, the ation of It on V1/(q−1)is given by the harater θq−1 : It → F×q and any I-equivariant Fp-subspae of
V1/(q−1) is an Fq-vetor spae.
5.4. Let G be a BT-group over S. We de�ne h(G) to be the valuation of thedeterminant of a matrix of ϕG if dim(G∨) ≥ 1, and h(G) = 0 if dim(G∨) = 0.We all h(G) the Hasse invariant of G.(a) h(G) does not depend on the hoie of the matrix representing ϕG. Indeed,let c be the rank of Lie(G∨) over A, h ∈ Mc×c(A) be a matrix of ϕG. Anyother matrix representing ϕG an be written in the form U−1 · h · U (p), where
U ∈ GLc(A), U−1 is the inverse of U , and U (p) is the matrix obtained byapplying the Frobenius map of A to the oe�ients of U .(b) By 2.11, the generi �ber Gη is ordinary if and only if h(G) < ∞; G isordinary over T if and only h(G) = 0.() Let 0→ G′ → G→ G′′ → 0 be a short exat sequene of BT-groups over T ,then we have h(G) = h(G′) + h(G′′). Indeed, the exat sequene of BT-groupsindues a short exat sequene of Lie algebras (f. [BBM℄ 3.3.2)

0→ Lie(G′′∨)→ Lie(G∨)→ Lie(G′∨)→ 0,from whih our assertion follows easily.
Proposition 5.5. Let G be a BT-group over S. Then we have h(G) = h(G∨).Proof. The proof is very similar to that of Lemma 4.6. First, we have

h(G) = leng
(
Lie(G∨)/ϕ̃G(Lie(G∨)(p))

)
,where ϕ̃G is the linearization of ϕG, and � leng� means the length of a �nite

A-module (note that this formulae holds even if dim(G∨) = 0). By the om-mutative diagram (3.1.3), we have
h(G) = lengM(G)/(φG(Lie(G∨)(p)) + ωG).
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p-Adic Monodromy of a Barsotti-Tate Group 421On the other hand, by applying the funtor HomA(_, A) to the A-linear map
ϕ̃G∨ : Lie(G)(p) → Lie(G), we obtain a map ψG : ωG → ω

(p)
G . If U is a matrixof ϕ̃G∨ , then the transpose of U , denoted by U t, is a matrix of ψG. So we have

h(G∨) = v(det(U)) = v(det(U t)) = leng
(
ω

(p)
G /ψG(ωG)

)
.By diagram 3.1.3, we get

h(G∨) = leng M(G)/(φG(Lie(G∨)(p)) + ωG) = h(G).

�

5.6. Let G be a BT-group over S, c = dim(G∨). We put(5.6.1) Tp(G) = lim
←−

n

G(n)(K)the Tate module of G, where G(n) is the kernel of pn : G → G. It is a free
Zp-module of rank ≤ c, and the equality holds if and only if the generi �ber Gηis ordinary. The Galois group I ats ontinuously on Tp(G). We are interestedin the image of the monodromy representation(5.6.2) ρ : I = Gal(Ksep/K)→ AutZp

(Tp(G)).We denote by(5.6.3) ρ : I = Gal(Ksep/K)→ AutFp

(
G(1)(K)

)its redution mod p.
Theorem 5.7 (Reformulation of Igusa's theorem). Let G be a onneted BT-group over S of height 2 and dimension 1. Then G is versal (3.2) if and only if
h(G) = 1; moreover, if this ondition is satis�ed, the monodromy representation
ρ : I → AutZp

(Tp(G)) ≃ Z×p is surjetive.Proof. Sine Lie(G∨) is an OS-module free of rank 1, the ondition that h(G) =
1 is equivalent to that any matrix of ϕG is represented by a uniformizer of A.Hene the �rst part of this theorem follows from Proposition 4.11(ii).We follow [Ka2, Thm 4.3℄ to prove the surjetivity of ρ under the assumptionthat h(G) = 1. For eah integer n ≥ 1, let

ρn : I → AutZ/pnZ(G(n)(K)) ≃ (Z/pnZ)×be the redution mod pn of ρ, Kn be the sub�eld of Ksep �xed by the kernelof ρn. Then ρn indues an injetive homomorphism Gal(Kn/K)→ (Z/pnZ)×.By taking projetive limits, we are redued to proving the surjetivity of ρn forevery n ≥ 1. It su�es to verify that
| Im(ρn)| = [Kn : K] ≥ pn−1(p− 1)(then the equality holds automatially).
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422 Yichao TianWe regard G as a formal group over S. Then by [Ka2, 3.6℄, there exists aparameter X of the formal group G normalized by the ondition that [ξ](X) =
ξ(X) for all (p− 1)-th root of unity ξ ∈ Zp. For suh a parameter, we have

[p](X) = a1X
p + αXp2 +

∑

m≥2

cmX
p(1+m(p−1)) ∈ A[[X ]],where we have v(a1) = h(G) = 1 by [Ka2, 3.6.1 and 3.6.5℄, and v(α) = 0, as Gis of height 2. For eah integer i ≥ 0, we put

V (pi)(X) = ap
i

1 X + αp
i

Xp +
∑

m≥2

cp
i

mX
1+m(p−1) ∈ A[[X ]];then we have [pn](X) = V (pn−1) ◦ V (pn−2) ◦ · · · ◦ V (Xpn

). Hene eah pointof G(n)(K) is given by a sequene y1, · · · , yn ∈ Ksep (or simply an element
yn ∈ Ksep) satisfying the equations





V (y1) = a1y1 + αyp1 + · · · = 0;

V (p)(y2) = ap1y2 + αpyp2 + · · · = y1;...
V (pn−1)(yn) = ap

n−1

1 yn + αp
n−1

ypn + · · · = yn−1.Let yn ∈ Ksep be suh that y1 6= 0. By onsidering the Newton polygons ofthe equations above, we verify that
v(yi) =

1

pi−1(p− 1)
for 1 ≤ i ≤ n.In partiular, the rami�ation index e(Kn/K) is at least pn−1(p − 1). By thede�nition of Kn, the Galois group Gal(Ksep/Kn) must �x yn ∈ Ksep, i.e. Knis an extension of K(yn). Therefore, we have [Kn : K] ≥ [K(yn) : K] ≥

e(K(yn)/K) ≥ pn−1(p− 1). �

Proposition 5.8. Let G be a HW-yli BT-group over S of height c+ d anddimension d suh that G⊗K is ordinary,
h =




0 0 · · · 0 −a1

1 0 · · · 0 −a2

0 1 · · · 0 −a3... . . . ...
0 0 · · · 1 −ac


be a matrix of ϕG. Put q = pc, ac+1 = 1, and P (X) =

∑c
i=0 ai+1X

pi

∈ A[X ].(i) Assume that G is onneted and the Hasse invariant h(G) = 1. Then therepresentation ρ (5.6.3) is tame, G(1)(K) is endowed with the struture of an
Fq-vetor spae of dimension 1, and the indued ation of It is given by theharater θq−1 : It → F×q .(ii) Assume that c > 1, v(ai) ≥ 2 for 1 ≤ i ≤ c − 1 and v(ac) = 1. Then theorder of Im(ρ) is divisible by pc−1(p− 1).
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p-Adic Monodromy of a Barsotti-Tate Group 423(iii) Put i0 = min0≤i≤c{i; v(ai+1) = 0}. Assume that there exists α ∈ k suhthat v(P (α)) = 1. Then we have i0 ≤ c− 1 and the order of Im(ρ) is divisibleby pi0 .Proof. Sine G is generially ordinary, we have a1 6= 0 by 2.11(d). Hene
P (X) ∈ K[X ] is a separable polynomial. By 4.4, G(1)(K) ≃ (KerVG)(Ksep)is identi�ed with the additive group onsisting of the roots of P (X) in Ksep.(i) By de�nition of the Hasse invariant, we have v(a1) = h(G) = 1. By 4.4(ii),the assumption that G is onneted is equivalent to saying v(ai) ≥ 1 for 1 ≤
i ≤ c. From the Newton polygon of P (X), we dedue that all the non-zeroroots of P (X) in Ksep have the same valuation 1/(q − 1). We denote by

ψ : G(1)(K)→ V1/(q−1)the map whih sends eah root x ∈ Ksep of P (X) to the lass of x in V1/(q−1) =

m1/(q−1)/m
+
1/(q−1) (5.1.1). We remark that G(1)(K) is an Fp-vetor spae ofdimension c. Hene G(1)(K) is automatially of dimension 1 over Fq onewe know it is an Fq-vetor spae. By 5.3, it su�es to show that ψ is aninjetive I-equivariant homomorphism of groups. By 4.4(i), ψ is obviously an

I-equivariant homomorphism of groups. Let x0 be a root of P (X), and put
Q(y) = P (x0y). Then the polynomial Q(y) has the form Q(y) = xq0Q1(y),where

Q1(y) = yq + bcy
pc−1

+ · · ·+ b2y
p + b1ywith bi = ai/x

(q−pi−1)
0 ∈ Ksep. We have v(bi) > 0 for 2 ≤ i ≤ c and v(b1) = 0.Let b1 be the lass of b1 in the residue �eld k = m0/m

+
0 . Then the images ofthe roots of P (X) in V1/(q−1) are x0b

1/(q−1)

1 ζ, where ζ runs over the �nite �eld
Fq. Therefore, ψ is injetive.(ii) By omputing the slopes of the Newton polygon of P (X), we see that P (X)has pc−1(p − 1) roots of valuation 1/(pc − pc−1). Let L be the sub-extensionof Ksep obtained by adding to K all the roots of P (x). Then the rami�ationindex e(L/K) is divisible by pc−1(p − 1). Let L̃ be the sub-extension of Ksep�xed by the kernel of ρ (5.6.3). The Galois group Gal(Ksep/L̃) �xes the rootsof P (x) by de�nition. Hene we have L ⊂ L̃, and | Im(ρ)| = [L̃ : K] is divisibleby [L : K]; in partiular, it is divisible by pc−1(p− 1).(iii) Note that the relation i0 ≤ c − 1 is equivalent to saying that G is notonneted by 4.4(ii). Assume onversely i0 = c, i.e. G is onneted. Then wewould have

P (X) ≡ Xq mod (πA[X ]).But v(P (α)) = 1 implies that αpc

∈ πA, i.e. α = 0; hene we would have
P (α) = 0, whih ontradits the ondition v(P (α)) = 1.We put Q(X) = P (X + α) = P (X) + P (α). As v(P (α)) = 1, then (0, 1) and
(pi0 , 0) are the �rst two break points of the Newton polygon of Q(X). Henethere exists pi0 roots of Q(X) of valuation 1/pi0. Let L be the subextensionof K in Ksep generated by the roots of P (X). The rami�ation index e(L/K)is divisible by pi0 . As in the proof of (ii), if L̃ is the subextension of Ksep
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424 Yichao Tian�xed by the kernel of ρ, then it is an extension of L. Therefore, we have
| Im(ρ)| = [L̃ : K] is divisible by [L : K], and in partiular, divisible by pi0 . �

5.9. Let G be a BT-group over S with onneted part G◦, and étale part Gétof height r. We have a anonial exat sequene of I-modules(5.9.1) 0→ G◦(1)(K)→ G(1)(K)→ Gét(1)(K)→ 0giving rise to a lass C ∈ Ext1
Fp[I](G

ét(1)(K), G◦(1)(K)), whih vanishes ifand only if (5.9.1) splits. Sine I ats trivially on Gét(1)(K), we have anisomorphism of I-modules Gét(1)(K) ≃ Frp. Reall that for any Fp[I]-module
M , we have a anonial isomorphism ([Se1℄ Chap.VII, �2)

Ext1
Fp[I](Fp,M) ≃ H1(I,M).Hene we dedue that(5.9.2) C ∈ Ext1

Fp[I](G
ét(1)(K), G◦(1)(K)) ≃ H1(I,G◦(1)(K))r.

Proposition 5.10. Let G be a HW-yli BT-group over S suh that h(G) = 1,
ρ (5.6.3) be the representation of I on G(1)(K). Then the ohomology lass Cdoes not vanish if and only if the order of the group Im(ρ) is divisible by p.First, we prove the following result on ohomology of groups.
Lemma 5.11. Let F be a �eld, Γ be a ommutative group, and χ : Γ→ F× be anon-trivial harater of Γ. We denote by F (χ) an F -vetor spae of dimension
1 endowed with an ation of Γ given by χ. Then we have H1(Γ, F (χ)) = 0.Proof. Let C be a 1-oyle of Γ with values in F (χ). We prove that C is a
1-oboundary. For any g, h ∈ Γ, we have

C(gh) = C(g) + χ(g)C(h),

C(hg) = C(h) + χ(h)C(g).Sine Γ is ommutative, it follows from the relation C(gh) = C(hg) that(5.11.1) (χ(g)− 1)C(h) = (χ(h)− 1)C(g).If χ(g) 6= 1 and χ(h) 6= 1, then
1

χ(g)− 1
C(g) =

1

χ(h)− 1
C(h).Therefore, there exists x ∈ F (χ) suh that C(g) = (χ(g) − 1)x for all g ∈ Γwith χ(g) 6= 1. If χ(g) = 1, we have also C(g) = 0 = (χ(g) − 1)x by (5.11.1).This shows that C is a 1-oboundary. �Proof of 5.10. By 4.3(ii) and 5.4(), the onneted part G◦ of G is HW-yliwith h(G◦) = h(G) = 1. Assume that Tp(G

◦) has rank ℓ over Zp, and Tp(G
ét)has rank r. Then by 5.8(a), G◦(1)(K) is an Fq-vetor spae of dimension 1 with

q = pℓ, and the ation of I on G◦(1)(K) fators through the harater χ : I →

It
θq−1
−−−→ F×q . We write G◦(1)(K) = Fq(χ) for short. If the ohomology lass

C is zero, then the exat sequene (5.9.1) splits, i.e. we have an isomorphism
Documenta Mathematica 14 (2009) 397–440



p-Adic Monodromy of a Barsotti-Tate Group 425of Galois modules G(1)(K) ≃ Fq(χ)⊕ Frp. It is lear that the group Im(ρ) hasorder q − 1.Conversely, if the ohomology lass C is not zero, we will show that there existsan element in Im(ρ) of order p. We hoose a basis adapted to the exat sequene(5.9.1) suh that the ation of g ∈ I is given by(5.11.2) ρ(g) =

(
χ(g) C(g)

0 1r

)
,where 1r is the unit matrix of type (r, r) with oe�ients in Fp, and the map

g 7→ C(g) gives rise to a 1-oyle representing the ohomology lass C. Let
I1 be the kernel of χ : I → F×q , Γ be the quotient I/I1, so χ indues anisomorphism χ : Γ

∼
−→ F×q . We have an exat sequene

0→ H1(Γ,Fq(χ))r
Inf
−−→ H1(I,Fq(χ))r

Res
−−→ H1(I1,Fq(χ))r,where �Inf� and �Res� are respetively the in�ation and restrition homomor-phisms in group ohomology. Sine H1(Γ,Fq(χ))r = 0 by 5.11, the restritionof the ohomology lass C to H1(I1,Fq(χ))r is non-zero. Hene there exists

h ∈ I1 suh that C(h) 6= 0. As we have χ(h) = 1, then
ρ(h)p =

(
1ℓ pC(h)
0 1r

)
= 1ℓ+r.Thus the order of ρ(h) is p. �

Corollary 5.12. Let G be a HW-yli BT-group over S,
h =




0 0 · · · 0 −a1

1 0 · · · 0 −a2

0 1 · · · 0 −a3... . . . ...
0 0 · · · 1 −ac


be a matrix of ϕG, P (X) = Xpc

+ acX
pc−1

+ · · · + a1X ∈ A[X ]. If h(G) = 1and if there exists α ∈ k ⊂ A suh that v(P (α)) = 1, then the ohomology lass(5.9.2) is not zero, i.e. the extension of I-modules (5.9.1) does not split.Proof. Sine v(a1) = h(G) = 1, the integer i0 de�ned in 5.8(iii) is at least 1.Then the orollary follows from 5.8(iii) and 5.10. �

6. Lemmas in Group TheoryIn this setion, we �x a prime number p ≥ 2 and an integer n ≥ 1.
6.1. Reall that the general linear group GLn(Zp) admits a natural exhaustivedereasing �ltration by normal subgroups

GLn(Zp) ⊃ 1 + pMn(Zp) ⊃ · · · ⊃ 1 + pmMn(Zp) ⊃ · · · ,where Mn(Zp) denotes the ring of matrix of type (n, n) with oe�ients in Zp.We endow GLn(Zp) with the topology for whih (1 + pmMn(Zp))m≥1 form a
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426 Yichao Tianfundamental system of neighborhoods of 1. Then GLn(Zp) is a omplete andseparated topologial group.
6.2. Let G be a pro�nite group, ρ : G→ GLn(Zp) be a ontinuous homomor-phism of topologial groups. By taking inverse images, we obtain a dereasing�ltration (FmG,m ∈ Z≥0) on G by open normal subgroups:

F 0G = G, and FmG = ρ−1(1 + pmMn(Zp)) for m ≥ 1.Furthermore, the homomorphism ρ indues a sequene of injetive homomor-phisms of �nite groups
ρ0 : F 0G/F 1G −→ GLn(Fp)(6.2.1)
ρm : FmG/Fm+1G→ Mn(Fp), for m ≥ 1.(6.2.2)

Lemma 6.3. The homomorphism ρ is surjetive if and only if the followingonditions are satis�ed:(i) The homomorphism ρ0 is surjetive.(ii) For every integer m ≥ 1, the subgroup Im(ρm) of Mn(Fp) ontains anelement of the form 


x 0 · · · 0
0 0 · · · 0... ... . . . ...
0 0 · · · 0


with x 6= 0; or equivalently, there exists, for every m ≥ 1, an element gm ∈ Gsuh that ρ(gm) is of the form




1 + pma1,1 pm+1a1,2 · · · pm+1a1,n

pm+1a2,1 1 + pm+1a2,2 · · · pm+1a2,n... ... . . . ...
pm+1an,1 pm+1an,2 · · · 1 + pm+1an,n


 ,where ai,j ∈ Zp for 1 ≤ i, j ≤ n and a1,1 is not divisible by p.Proof. We notie �rst that ρ is surjetive if and only if ρm is surjetive for every

m ≥ 0, beause G is omplete and GLn(Zp) is separated [Bou, Chap. III �2
n◦8 Cor.2 au Théo. 1℄. The surjetivity of ρ0 is ondition (i). Condition (ii) islearly neessary. We prove that it implies the surjetivity of ρm for all m ≥ 1,under the assumption of (i). First, we remark that under ondition (i), if Alies in Im(ρm), then for any U ∈ GLn(Fp) the onjuagate matrix U · A · U−1lies also in Im(ρm). In fat, let Ã be a lift of A in Mn(Zp) and Ũ ∈ GLn(Zp) alift of U . By assumption, there exist g, h ∈ G suh that
ρ(g) ≡ 1+pmÃ mod (1+pm+1Mn(Zp)) and ρ(h) ≡ Ũ mod (1+pMn(Zp)).Therefore, we have ρ(hgh−1) ≡ (1 + pmŨ · Ã · Ũ−1) mod (1 + pm+1Mn(Zp)).Hene hgh−1 ∈ FmG and ρm(hgh−1) = U ·A · U−1.For 1 ≤ i, j ≤ n, let Ei,j ∈ Mn(Fp) be the matrix whose (i, j)-th entry is
0 and the other entries are 0. The matries Ei,j(1 ≤ i, j ≤ n) form learly
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p-Adic Monodromy of a Barsotti-Tate Group 427a basis of Mn(Fp) over Fp. To prove the surjetivity of ρm, we only needto verify that Ei,j ∈ Im(ρm) for 1 ≤ i, j ≤ n, beause Im(ρm) is an Fp-subspae of Mn(Fp). By assumption, we have E1,1 ∈ Im(ρm). For 2 ≤ i ≤ n,we put Ui = E1,i − Ei,1 +
∑

j 6=1,i Ej,j . Then we have Ui ∈ GLn(Zp) and
Ui · E1,1 · U

−1
i = Ei,i ∈ Im(ρm). For 1 ≤ i < j ≤ n, we put Ui,j = I + Ei,jwhere I is the unit matrix. Then we have Ui,j ·Ei,i ·U−1

i,j = Ei,i+Ei,j ∈ Im(ρm),and hene Ei,j ∈ Im(ρm). This ompletes the proof.
�

Remark 6.4. By using the arguments in [Se2, Chap. IV 3.4 Lemma 3℄, we anprove the following stronger form of Lemma 6.3: If p = 2, ondition (i) and
(ii) for m = 1, 2 are su�ient to guarantee the surjetivity of ρ; if p ≥ 3, then
(i) and (ii) just for m = 1 su�e already.A subgroup C of GLn(Fp) is alled a non-split Cartan subgroup, if the subset
C∪{0} of the matrix algebra Mn(Fp) is a �eld isomorphi to Fpn ; suh a groupis yli of order pn − 1.
Lemma 6.5. Assume that n ≥ 2. We denote by H the subgroup of GLn(Fp)onsisting of all the elements of the form (

A b
0 1

)
, where A ∈ GLn−1(Fp) and

b =




b1...
bn−1


 with bi ∈ Fp(1 ≤ i ≤ n − 1). Let G be a subgroup of GLn(Fp).Then G = GLn(Fp) if and only if G ontains H and a non-split Cartan subgroupof GLn(Fp).Proof. The �only if� part is lear. For the �if� part, let C be a non-split Cartansubgroup ontained in G. For a �nite group Λ, we denote by |Λ| its order. Aneasy omputation shows that |GLn(Fp)| = |H | · |C|. So we just need to provethat U∩C = {1}; sine then we will have |GLn(Fp)| = |G|, hene G = GLn(Fp).Let g ∈ H ∩ C, and P (T ) ∈ Fp[T ] be its harateristi polynomial. We �x anisomorphism C ≃ F×pn , and let ζ ∈ F×pn be the element orresponding to g. Wehave P (T ) =
∏
σ∈Gal(Fpn/Fp)(T − σ(ζ)) in Fpn [T ]. On the other hand, the fatthat g ∈ H implies that (T − 1) divises P (T ). Therefore, we get ζ = 1, i.e.

g = 1. �

Remark 6.6. E. Lau point out the following strengthened version of 6.5: When
n ≥ 3, a subgroup G ⊂ GLn(Fp) oinides with GLn(Fp) if and only if Gontains a non-split Cartan subgroup and the subgroup (GLn−1(Fp) 0

0 1

). Thisan be used to simplify the indution proess in the proof of Theorem 7.3 when
n ≥ 3.
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7. Proof of Theorem 1.3 in the One-dimensional Case
7.1. We start with a general remark on the monodromy of BT-groups. Let Xbe a sheme, G be an ordinary BT-group over a sheme X , Gét be its étalepart (2.10.1). If η is a geometri point of X , we denote by

Tp(G, η) = lim
←−
n

G(n)(η) = lim
←−
n

Gét(n)(η)the Tate module of G at η, and by ρ(G) the monodromy representation of
π1(X, η) on Tp(G, η). Let f : Y → X be a morphism of shemes, ξ be ageometri point of Y , GY = G ×X Y . Then by the funtoriality, we have aommutative diagram(7.1.1) π1(Y, ξ)

π1(f)
//

ρ(GY )

��

π1(X, f(ξ))

ρ(G)

��

AutZp
(Tp(GY , ξ)) AutZp

(Tp(G, f(ξ)))In partiular, the monodromy of GY is a subgroup of the monodromy of G. Inthe sequel, diagram (7.1.1) will be refereed as the funtoriality of monodromyfor the BT-group G and the morphism f .
7.2. Let k be an algebraially losed �eld of harateristi p > 0, G be theunique onneted BT-group over k of dimension 1 and height n+1 ≥ 2 (4.10).We denote by S the algebrai loal moduli of G in harateristi p, by G theuniversal deformation of G over S, and by U the ordinary lous of G over S(3.8). Reall that S is a�ne of ring R ≃ k[[t1, · · · , tn]] (3.7), and that G and
G are HW-yli (f. 4.3(i) and 4.10). Let η be a geometri point of U overits generi point. We put

Tp(G, η) = lim
←−

m∈Z≥1

G(m)(η)to be the Tate module of G at the point η. This is a free Zp-module of rank
n. We have the monodromy representation

ρn : π1(U, η)→ AutZp
(Tp(G, η)) ≃ GLn(Zp).The following is the one-dimensional ase of Theorem 1.3.

Theorem 7.3. Under the above assumptions, the homomorphism ρn is surje-tive for n ≥ 1.
7.4. First, we assume n ≥ 2. By Proposition 4.11(ii), we may assume that(7.4.1) h =




0 0 · · · 0 −t1
1 0 · · · 0 −t2
0 1 · · · 0 −t3... . . . ...
0 0 · · · 1 −tn
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p-Adic Monodromy of a Barsotti-Tate Group 429is a matrix of the Hasse-Witt map ϕG. Let p be the prime ideal of R generatedby t1, · · · , tn−1. Then the losed subsheme of S de�ned by p is just the louswhere the p-rank of G is ≤ 1 by 4.4(ii). Let K0 ≃ k((tn)) be the fration�eld of R/p, R′ = R̂p be the ompletion of the loalization of R at p, and
GR′ = G ⊗R R′. Sine the natural map R → R′ is injetive, for any a ∈ R,we will denote also by a its image in R′. Sine the Hasse-Witt map ommuteswith base hange, the image of h in Mn×n(R

′), denoted also by h, is a matrixof ϕGR′ . We see easily that the étale part of GR′ has height 1 and its onnetedpart G ◦R′ has height n. We have an exat sequene of BT-groups over R′(7.4.2) 0→ G
◦
R′ → GR′ → G

ét
R′ → 0.We �x an imbedding i : K0 → K0 of K0 into an algebraially losed �eld. Put

G ∗
K0

= G ∗R′ ⊗K0 for ∗ = ∅, ét, ◦. We have G ét
K0
≃ Qp/Zp, and G ◦

K0
is the uniqueonneted one-dimensional BT-group over K0 of height n (f. 4.10). We put

R̃′ = K0[[x1, · · · , xn−1]], and(7.4.3) Σ = {ring homomorphisms σ : R′ → R̃′ lifting R′ → K0
i
−→ K0}Let σ ∈ Σ. We dedue from (7.4.2) by base hange an exat sequene ofBT-groups over R̃′(7.4.4) 0→ G

◦
fR′,σ
→ GfR′,σ → G

ét
fR′,σ
→ 0,where we have put G ∗

fR′,σ
= G ∗R′ ⊗σ R̃′ for ∗ = ◦, ∅, ét. Due to the henselianproperty of R̃′, the isomorphism G ét

K0
≃ Qp/Zp lifts uniquely to an isomorphism

G ét
fR′,σ
≃ Qp/Zp . Assume that G ◦

fR′,σ
is generially ordinary over S̃′ = Spec(R̃′).Let Ũ ′σ ⊂ S̃′ be its ordinary lous, and x be a geometri point over the generipoint of Ũ ′σ. The exat sequene (7.4.4) indues an exat sequene of Tatemodules(7.4.5) 0→ Tp(G

◦
fR′,σ

, x)→ Tp(GfR′,σ, x)→ Tp(G
ét
fR′,σ

, x)→ 0ompatible with the ations of π1(Ũ
′
σ, x). Sine we have Tp(G

ét
fR′,σ

, x) ≃

Tp(Qp/Zp, x) = Zp, this determines a ohomology lass(7.4.6) Cσ ∈ Ext1
Zp[π1(eU ′

σ ,x)]
(Zp,Tp(G

◦
fR′,σ

, x)) ≃ H1(π1(Ũ
′
σ, x),Tp(G

◦
fR′,σ

, x)).We onsider also the �mod-p version� of (7.4.5)
0→ G

◦
fR′,σ

(1)(x)→ GfR′,σ
(1)(x)→ Fp → 0,whih determines a ohomology lass(7.4.7) Cσ ∈ Ext1

Fp[π1(eU ′
σ ,x)]

(Fp,G
◦
fR′,σ

(1)(x)) ≃ H1(π1(Ũ
′
σ, x),G

◦
fR′,σ

(1)(x)).It is lear that Cσ is the image of Cσ by the anonial redution map
H1(π1(Ũ

′
σ, x),Tp(G

◦
fR′,σ

, x))→ H1(π1(Ũ
′
σ, x),G

◦
fR′,σ

(1)(x)).
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Lemma 7.5. Under the above assumptions, there exist σ1, σ2 ∈ Σ satisfying thefollowing properties:(i) We have G ◦
fR′,σ1

= G ◦
fR′,σ2

, and it is the universal deformation of G ◦
K0

.(ii) We have Cσ1 = 0 and Cσ2 6= 0.Before proving this lemma, we prove �rst Theorem 7.3.
Proof of 7.3. First, we notie that the monodromy of a BT-group is inde-pendent of the base point. So we an hange η to any geometri point of Uwhen disussing the monodromy of G. We make an indution on the odimen-sion n = dim(G∨). The ase of n = 1 is proved in Theorem 5.7. Assume that
n ≥ 2 and the theorem is proved for n− 1. We denote by

ρn : π1(U, η)→ AutFp
(G(1)(η)) ≃ GLn(Fp)the redution of ρn modulo by p. By Lemma 6.3 and 6.5, to prove the surje-tivity of ρn, we only need to verify the following onditions:(a) Im(ρn) ontains a non-split Cartan subgroup of GLn(Fp);(b) Im(ρn) ontains the subgroup H ⊂ GLn(Zp) onsisting of all the elementsof the form (

B b
0 1

)
∈ GLn(Zp), with B ∈ GLn−1(Zp) and b ∈ M(n−1)×1(Zp);For ondition (a), let A = k[[π]], T = Spec(A), ξ be its generi point, ξ be ageometri point over ξ, and I = Gal(ξ/ξ) be the absolute Galois group over

ξ. We keep the notations of 7.4. Let f∗ : R → A be the homomorphism of
k-algebras suh that f∗(t1) = π and f∗(ti) = 0 for 2 ≤ i ≤ n. We denote by
f : T → S the orresponding morphism of shemes, and put GT = G×S T . Bythe funtoriality of Hasse-Witt maps,

hT =




0 0 · · · 0 −π
1 0 · · · 0 0... . . . ...
0 0 · · · 1 0


is a matrix of ϕGT

. By de�nition 5.4, the Hasse invariant of GT is h(G) = 1.Hene GT is generially ordinary; so f(ξ) ∈ U. Let
ρT : I = Gal(ξ/ξ)→ AutFp

(GT (1)(ξ))be the mod-p monodromy representation attahed to GT . Proposition 5.8(i)implies that Im(ρT ) is a non-split Cartan subgroup of GLn(Fp). On the otherhand, by the funtoriality of monodromy, we get Im(ρT ) ⊂ Im(ρn). This veri�esondition (a).To hek ondition (b), we onsider the onstrutions in 7.4. Let S′ = Spec(R′),
f : S′ → S be the morphism of shemes orresponding to the natural ringhomomorphism R→ R′, U ′ be the ordinary lous of GR′ , and ξ be a geometripoint of U ′. From (7.4.2), we dedue an exat sequene of Tate modules(7.5.1) 0→ Tp(G

◦
R′ , ξ)→ Tp(GR′ , ξ)→ Tp(G

ét
R′ , ξ)→ 0.
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′, ξ)→ AutZp

(Tp(GR′ , ξ)) ≃ GLn(Zp) be the monodromy repre-sention of GR′ . Under any basis of Tp(GR′ , ξ) adapted to (7.5.1), the ation of
π1(U

′, ξ) on Tp(GR′ , ξ) is given by
ρGR′ : g ∈ π1(U

′, ξ) 7→

(
ρG ◦

R′
(g) ∗

0 ρG ét
R′

(g),

)where g 7→ ρG ◦
R′

(g) ∈ GLn−1(Zp) (resp. g 7→ ρG ét
R′

(g) ∈ Z×p ) gives the ationof π1(U
′, ξ) on Tp(G

◦
R′ , ξ) (resp. on Tp(G

ét
R′ , ξ)). Note that f(U ′) ⊂ U. So bythe funtoriality of monodromy, we get Im(ρG ′) ⊂ Im(ρn). To omplete theproof of Theorem 7.3, it su�es to hek ondition (b) with ρn replaed by ρGR′under the indution hypothesis that 7.3 is valide for n−1. Let σ1, σ2 : R′ → R̃′be the homomorphisms given by 7.5. For i = 1, 2, we denote by fi : S̃′ =

Spec(R̃′)→ S′ = Spec(R′) the morphism of shemes orresponding to σi, andput Gi = GfR′,σi
= GR′ ⊗σi

R̃′ to simply the notations. By ondition 7.5(i), wean denote by G ◦ the ommon onneted omponent of G1 and G2. Let Ũ ′ ⊂ S̃′be the ordinary lous of G ◦. Then we have fi(Ũ ′) ⊂ U ′ for i = 1, 2. Let x bea geometri point over the generi point of Ũ ′. We have an exat sequene ofTate modules(7.5.2) 0→ Tp(G
◦, x)→ Tp(Gi, x)→ Tp(Qp/Zp, x)→ 0ompatible with the ations of π1(Ũ ′, x). We denote by

ρGi
: π1(Ũ ′, x)→ AutZp

(Tp(Gi, x)) ≃ GLn(Zp)the monodromy representation of Gi. In a basis adapted to (7.5.2), the ationof π1(Ũ ′, x) on Tp(Gi, x) is given by
ρGi

: g 7→

(
ρG ◦(g) Cσi

(g)
0 1

)
,where ρG ◦ : π1(Ũ ′, x) → GLn−1(Zp) is the monodromy representation of G ◦,and the ohomology lass in H1(π1(Ũ ′, x),Tp(G

◦)) given by g 7→ Cσi
(g) isnothing but the lass de�ned in (7.4.6). By 7.5(i) and the indution hypothesis,

ρG ◦ is surjetive. Sine the ohomology lass Cσ1 = 0 by 7.5(ii), we may assume
Cσ1 (g) = 0 for all g ∈ π1(U

′, x). Therefore Im(ρG1) ontains all the matrix ofthe form (
B 0
0 1

) with B ∈ GLn−1(Zp). By the funtoriality of monodromy,
Im(ρGR′ ) ontains Im(ρG1). Hene we have(7.5.3) (

GLn−1(Zp) 0
0 1

)
⊂ Im(ρG1) ⊂ Im(ρGR′ ).On the other hand, sine the ohomology lass Cσ2 6= 0, there exists a

g ∈ π1(Ũ ′, x) suh that b2 = Cσ2(g) 6= 0. Hene the matrix ρG2(g) has theform (B2 b2
0 1

) suh that B2 ∈ GLn−1(Zp) and the image of b2 ∈M1×n−1(Zp)
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432 Yichao Tianin M1×n−1(Fp) is non-zero. By the funtoriality of monodromy, we have
Im(ρG2) ⊂ Im(ρGR′ ); in partiular, we have (B2 b2

0 1

)
∈ Im(ρGR′ ). In viewof (7.5.3), we get(7.5.4) (

GLn−1(Zp) 0
0 1

)(
B2 b2
0 1

)(
GLn−1(Zp) 0

0 1

)
⊂ Im(ρGR′ ).But the subset of GLn(Zp) on the left hand side is just the subgroup Hdesribed in ondition (b). Therefore, ondition (b) is veri�ed for ρGR′ , andthe proof of 7.3 is omplete.The rest of this setion is dediated to the proof of Lemma 7.5.

Lemma 7.6. Let k be an algebraially losed �eld of harateristi p > 0, Abe a noetherian henselian loal k-algebra with residue �eld k, G be a BT-groupover A, and Gét be its étale part. Put
Lie(G∨)ϕ=1 = {x ∈ Lie(G∨) suh that ϕG(x) = x}.Then Lie(G∨)ϕ=1 is an Fp-vetor spae of dimension equal to the rankof Lie(Gét∨), and the A-submodule Lie(Gét∨) of Lie(G∨) is generated by

Lie(G∨)ϕ=1.Proof. Let r be the rank of Lie(Gét∨), G◦ be the onneted part of G, and sbe the height of Lie(G◦∨). We have an exat sequene of A-modules
0→ Lie(Gét∨)→ Lie(G∨)→ Lie(G◦∨)→ 0,ompatible with Hasse-Witt maps. We hoose a basis of Lie(G∨) adapted tothis exat sequene, so that ϕG is expressed by a matrix of the form (

U W
0 V

)with U ∈ Mr×r(A), V ∈ Ms×s(A), and W ∈ Mr×s(A). An element of
Lie(G∨)ϕ=1 is given by a vetor (x

y

), where x =



x1...
xr


 and y =



y1...
ys


 with

xi, yj ∈ A, satisfying(7.6.1) (
U W
0 V

)
·

(
x(p)

y(p)

)
=

(
x
y

)
⇔

{
U · x(p) +W · y(p) = x

V · y(p) = y.where x(p) (resp. y(p)) is the vetor obtained by applying a 7→ ap to eah xi(1 ≤
i ≤ r) (resp. yj(1 ≤ j ≤ s)). By 2.9, the Hasse-Witt map of the speial �ber of
G◦ is nilpotent. So there exists an integer N ≥ 1 suh that ϕNG◦(Lie(G◦∨)) ⊂

mA · Lie(G◦∨), i.e. we have V · V (p) · · ·V (pN−1) ≡ 0 (mod mA). From theequation V · y(p) = y, we dedue that
y = V · V (p) · · ·V (pN−1) · y(pN ) ≡ 0 (mod mA).
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p-Adic Monodromy of a Barsotti-Tate Group 433But this implies that y(pN ) ≡ 0 (mod m
pN

A ). Hene we get y = V · y(p) ≡

0 (mod m
pN +1
A ). Repeting this argument, we get �nally y ≡ 0 (mod mℓ

A)for all integers ℓ ≥ 1, so y = 0. This implies that Lie(G∨)ϕ=1 ⊂ Lie(Gét∨),and the equation (7.6.1) is simpli�ed as U · x(p) = x. Sine the linearizationof ϕGét is bijetive by 2.11, we have U ∈ GLr(A). Let U be the image of
U in GLr(k), and Sol be the solutions of the equation U · x(p) = x. As k isalgebraially losed, Sol is an Fp-spae of dimension r, and Lie(Gét∨) ⊗ k isgenerated by Sol (f. [Ka2, Prop. 4.1℄). By the henselian property of A, everyelements in Sol lifts uniquely to a solution of U ·x(p) = x, i.e. the redution map
Lie(G∨)ϕ=1 ∼−→ Sol is bijetive. By Nakayama's lemma, Lie(G∨)ϕ=1 generatesthe A-module Lie(Gét∨). �

7.7. We keep the notations of 7.4. Let CompK0
be the ategory of noetherianomplete loal K0-algebras with residue �eld K0, DG

K0
(resp. DG ◦

K0

) be thefuntor whih assoiates to every objet A of CompK0
the set of isomorphsmlasses of deformations of GK0

(resp. G ◦
K0

) . If A is an objet in CompK0
and

G is a deformation of GK0
(resp. G ◦

K0
) over A, we denote by [G] its isomorphilass in DG

K0
(A) (resp. in DG ◦

K0

).
Lemma 7.8. Let Σ be the set de�ned in (7.4.3).(i) The morphism of sets Φ : Σ→ DG

K0
(R̃′) given by σ 7→ [GfR′,σ

] is bijetive.(ii) Let σ ∈ Σ. Then there exists a basis of Lie(G ◦∨
fR′,σ

) suh that ϕG ◦
fR′,σ

isrepresented by a matrix of the form(7.8.1) h◦σ =




0 0 · · · 0 a1

1 0 · · · 0 a2... . . . ...
0 0 · · · 1 an−1


with ai ≡ α · σ(ti) (mod m2

fR′
) for 1 ≤ i ≤ n− 1, where α ∈ R̃′× and mfR′ is themaximal ideal of R̃′. In partiular, G ◦

fR′,σ
is the universal deformation of G ◦

K0if and only if {σ(t1), · · · , σ(tn−1)} is a system of regular parameters of R̃′.Proof. (i) We begin with a remark on the Kodaira-Spener map of GR′ . Let
TS/k = H omOS

(Ω1
S/k,OS) be the tangent sheaf of S. Sine G is universal,the Kodaira-Spener map (3.2.2)
Kod : TS/k

∼
−→H omOS

(ωG,Lie(G∨))is an isomorphism. By funtoriality, this indues an isomorphism of R′-modules(7.8.2) KodR′ : TR′/k
∼
−→ HomR′(ωGR′ ,Lie(G ∨R′)),where TR′/k = HomR′(Ω1

R′/k, R
′) = Γ(S,TS/k)⊗R R

′.For eah integer ν ≥ 0, we put R̃′ν = R̃′/mν+1
fR′

, Σν to be the set of liftings of
R→ K0 → K0 to R→ R̃′ν , and Φν : Σν → DG

K0
(R̃′ν) to be the morphism of
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434 Yichao Tiansets σν 7→ [GR′⊗σν
R̃′ν ]. We prove by indution on ν that Φν is bijetive for all

ν ≥ 0. This will omplete the proof of (i). For ν = 0, the laim holds trivially.Assume that it holds for ν − 1 with ν ≥ 1. We have a ommutative diagram
Σν

��

Φν
// DG

K0
(R̃′ν)

��

Σν−1
Φν−1

// DG
K0

(R̃′ν−1),where the vertial arrows are the anonial redutions, and the lower arrowis an isomorphism by indution hypothesis. Let τ be an arbitrary element of
Σν−1. We denote by Σν,τ ⊂ Σν the preimage of τ , and by DΦν−1(τ)(R̃

′
ν) ⊂

DG
K0

(R̃′ν) the preimage of Φν−1(τ). It su�es to prove that Φν indues abijetion between Σν,τ and DΦν−1(τ)(R̃
′
ν). Let Iν = mν

fR′
/mν+1

fR′
be the ideal ofthe redution map R̃′ν → R̃′ν−1. By [EGA, 0IV 21.2.5 and 21.9.4℄, we have

Ω1
R′/k ≃ Ω̂1

R′/k, and they are free over A of rank n. By [EGA, 0IV 20.1.3℄, Σν,τis a (nonempty) homogenous spae under the group
HomK0(Ω

1
R′/k ⊗R′ K0, Iν) = TR′/k ⊗R′ Iν .On the other hand, aording to 3.5(i), DΦν−1(τ)(R̃′ν) is a homogenous spaeunder the group

HomK0
(ωGK0

,Lie(G ∨
K0

))⊗K0
Iν = HomR′(ωGR′ ,Lie(G ∨R′))⊗R′ Iν .Moreover, it is easy to hek that the morphism of sets Φν : Σν,τ →

DΦν−1(τ)(R̃
′
ν) is ompatible with the homomorphism of groups

KodR′ ⊗R′ Id : TR′/k ⊗R′ Iν → HomR′(ωGR′ ,Lie(G ∨R′))⊗R′ Iν ,where KodR′ is the Kodaira-Spener map (7.8.2) assoiated to GR′ . The bije-tivity of Φν now follows from the fat that KodR′ is an isomorphism.(ii) The seond part of the statement follows immediately from 4.11. It remainsto ompute the Hasse-Witt map of G ◦
fR′,σ

. We determine �rst the submodule
Lie(G ét∨

fR′,σ
) of Lie(G ∨

fR′,σ
). We hoose a basis of Lie(G∨) over OS suh that ϕGis expressed by the matrix h (7.4.1). As GfR′,σ

derives from G by base hange
R → R′

σ
−→ R̃′, there exists a basis (e1, · · · , en) of Lie(G ∨

fR′,σ
) suh that ϕG fR′,σis expressed by

hσ =




0 0 · · · 0 −σ(t1)
1 0 · · · 0 −σ(t2)... . . . ...
0 0 · · · 1 −σ(tn)


 .By Lemma 7.6, Lie(G ét∨

fR′,σ
) is generated by Lie(G ∨

fR′,σ
)ϕ=1. If ∑n

i=1 xnen ∈

Lie(G ∨
fR′,σ

)ϕ=1 with xi ∈ R̃′ for 1 ≤ i ≤ n, then (xi)1≤i≤n must satisfy the
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p-Adic Monodromy of a Barsotti-Tate Group 435equation hσ ·



xp1...
xpn


 =



x1...
xn


 ; or equivalently,

(7.8.3) 



x1 = −σ(t1)x
p
n

x2 = −σ(t2)x
p
n − σ(t1)

pxp
2

n

· · ·

xn−1 = −σ(tn−1)x
p
n − · · · − σ(t1)

pn−2

xp
n−1

n

σ(t1)
pn−1

xp
n

n + σ(t2)
pn−2

xp
n−1

n + · · ·+ σ(tn)xpn + xn = 0.We note that σ(ti) ∈ mfR′ for 1 ≤ i ≤ n − 1 and σ(tn) ∈ R̃′
× with image

i(tn) ∈ K0, where i : K0 → K0 is the �xed immbedding. By Hensel's lemma,every solution inK0 of the equation i(tn)xpn+xn = 0 lifts uniquely to a solutionof (7.8.3). As Lie(G ét∨
fR′,σ

) has rank 1, by Lemma 7.6, these are all the solutionsof (7.8.3). Let (λ1, · · · , λn) be a non-zero solution of (7.8.3). We have(7.8.4) λn ∈ R̃′
× and λi ≡ −λ

p
nσ(ti) (mod m2

fR′
).We put v = λ1e1 + · · · + λnen; so v is a basis of Lie(G ét∨

fR′,σ
) by 7.6. For

1 ≤ i ≤ n, let fi be the image of ei in Lie(G ◦∨
fR′,σ

). Then f1, · · · , fn learlygenerate Lie(G ◦∨
fR′,σ

). By the expliit desription above of Lie(G ét∨
fR′,σ

), we have
fn = −λ−1

n (λ1f1 · · ·+λn−1fn−1). Hene f1, · · · , fn−1 form a basis of Lie(G ◦∨
fR′,σ

).By the funtoriality of Hasse-Witt maps, we have ϕG ◦
fR′

(fi) = fi+1 for 1 ≤ i ≤

n− 1, or equivalently,
ϕG ◦

fR′,σ

(f1, · · · , fn−1) = (f1, · · · , fn−1) ·




0 0 · · · 0 −λ−1
n λ1

1 0 · · · 0 −λ−1
n λ2... . . . ...

0 0 · · · 1 −λ−1
n λn−1


 .In view of (7.8.4), we see that the above matrix has the form of (7.8.1) bysetting α = λp−1

n ∈ R̃′
×. The seond part of statement (ii) follows immediatelyfrom Proposition 4.11(ii) and the desription above of ϕG ◦

fR′,σ

. �Now we an turn to the proof of 7.5.
7.9. Proof of Lemma 7.5. First, suppose that we have found a σ2 ∈ Σsuh that Cσ2 6= 0 and G ◦

fR′,σ2
is the universal deformation of G ◦

K0
. Sine

Φ : Σ
∼
−→ DG

K0
(R̃′) is bijetive by 7.8(i), there exists a σ1 ∈ Σ orresponding tothe deformation [G ◦

fR′,σ2
⊕Qp/Zp] ∈ DG

K0
(R̃′). It is lear that G ◦

fR′,σ1
≃ G ◦

fR′,σ2
.Besides, the exat sequene (7.4.5) for σ1 splits; so we have Cσ1 = 0. Itremains to prove the existene of σ2. We note �rst that K0 an be anoniallyimbedded into R̃′, sine it is perfet. Sine R′ is formally smooth over k and
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(t1, · · · , tn) is a p-basis of R′ over k, by [EGA, 0IV 21.2.7℄, there is a σ ∈ Σsuh that σ(ti) (1 ≤ i ≤ n− 1) form a system of regular parameters of R̃′ and
σ(tn) ∈ K0 ⊂ R̃′. We laim that σ2 = σ answers the question. In fat, Lemma7.8(ii) implies that G ◦

fR′,σ
is the universal deformation of G ◦

K0
. It remains toverify that Cσ 6= 0.Let A = K0[[π]] be a omplete disrete valuation ring of harateristi p withresidue �eld K0, T = Spec(A), ξ be the generi point of T , ξ be a geometriover ξ, and I = Gal(ξ/ξ) the Galois group. We de�ne a homomorphism of

K0-algebras f∗ : R̃′ → A by putting f∗(σ(t1)) = π and f∗(σ(ti)) = 0 for
2 ≤ i ≤ n − 1. This is possible, sine (σ(t1), · · · , σ(tn−1)) is a system ofregular parameters of R̃′. Let f : T → S̃′ be the homomorphism of shemesorresponding to f∗, and GT = GfR′,σ×fS′ T . By the funtoriality of Hasse-Wittmaps,

hT =




0 0 · · · 0 −π
1 0 · · · 0 0
0 1 · · · 0 0... . . . ...
0 0 · · · 1 −f∗(σ(tn))



∈Mn×n(R̃′)is a matrix of ϕGT

. By de�nition (5.4), the Hasse invariant of GT is h(GT ) = 1.In partiular, GT is generially ordinary. Let Ũ ′σ ⊂ S̃′ be the ordinary lousof GfR′,σ
. We have f(ξ) ∈ Ũ ′σ. By the funtoriality of fundamental groups, findues a homomorphism of groups

π1(f) : I = Gal(ξ/ξ)→ π1(Ũ
′
σ, f(ξ)) ≃ π1(Ũ

′
σ, x).Let G ◦T be the onneted part of GT , and G ét

T be the étale part of GT . Then
G ét
T ≃ Qp/Zp. We have an exat sequene of Fp[I]-modules

0→ G
◦
T (1)(ξ)→ GT (1)(ξ)→ G

ét
T (1)(ξ)→ 0,whih determines a ohomology lass CT ∈ H1(I,G ◦T (1)(ξ)). We notie that

GT (1)(ξ) is isomorphi to GfR′,σ(1)(x) as an abelian group, and the ation of Ion GT (1)(ξ) is indued by the ation of π1(Ũ
′
σ, x) on GfR′,σ

(1)(x). Therefore,
CT is the image of Cσ by the funtorial map

H1
(
π1(Ũ

′
σ, x),G

◦
fR′,σ

(1)(x)
)
→ H1

(
I,G ◦T (1)(ξ)

)
.To verify that Cσ 6= 0, it su�es to hek that CT 6= 0. We onsider thepolynomial P (X) = Xpn

+ f∗(σ(tn))Xpn−1

+ πX ∈ A[X ]. Aording to 5.12,it su�es to �nd a α ∈ K0 ⊂ A suh that P (α) is a uniformizer of A. But bythe hoie of σ, we have σ(tn) ∈ K0 and σ(tn) 6= 0; so f∗(σ(tn)) 6= 0 lies in K0.Let α be a pn−1(p − 1)-th root of −f∗(σ(tn)) in K0. Then we have α ∈ K×0 ,and P (α) = απ is a uniformizer of A. This ompletes the proof of 7.5.
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8. End of the Proof of Theorem 1.3In this setion, k denotes an algebraially losed �eld of harateristi p > 0.

8.1. First, we reall some preliminaries on Newton strati�ation due to F.Oort. Let G be an arbitrary BT-group over k, S be the loal moduli of G inharateristi p, and G be the universal deformation of G over S (3.8). Put
d = dim(G) and c = dim(G∨). We denote by N (G) the Newton polygon of
G whih has endpoints (0, 0) and (c + d, d). Here we use the normalization ofNewton polygons suh that slope 0 orresponds to étale BT- groups and slope1 orresponds to groups of multipliative type.Let NP(c + d, d) be the set of Newton polygons with endpoints (0, 0) and
(c + d, d) and slopes in (0, 1). For α, β ∈ NP(c + d, d), we say that α � βif no point of α lies below β; then ��� is a partial order on NP(c + d, d).For eah β ∈ NP(c + d, d), we denote by Vβ the subset of S onsisting ofpoints x with N (Gx) � β, and by V ◦β the subset of S onsisting of points xwith N (Gx) = β. By Grothendiek-Katz's speialization theorem of Newtonpolygons, Vβ is losed in S, and V ◦β is open (maybe empty) in Vβ . We put
♦(β) =

{(x, y) ∈ Z×Z | 0 ≤ y < d, y < x < c+d, (x, y)lies on or above the polygon β},and dim(β) = #(♦(β)).
Theorem 8.2 ([Oo2℄ Theorem 2.11). Under the above assumptions, for eah
β ∈ NP(c + d, d), the subset V ◦β is non-empty if and only if N (G) � β. Inthat ase, Vβ is the losure of V ◦β and all irreduible omponents of Vβ havedimension dim(β).
8.3. Let G be a onneted and HW-yli BT-group over k of dimension d =
dim(G) ≥ 2. Let β ∈ NP(c + d, d) be the Newton polygon given by thefollowing slope sequene:

β = (1/(c+ 1), · · · , 1/(c+ 1)︸ ︷︷ ︸
c+1

, 1, · · · , 1︸ ︷︷ ︸
d−1

).We have N (G) � β sine G is supposed to be onneted. By Oort's Theorem8.2, Vβ is a equal dimensional losed subset of the loal moduli S of dimension
c(d− 1). We endow Vβ with the struture of a redued losed subsheme of S.
Lemma 8.4. Under the above assumptions, let R be the ring of S, and




0 0 · · · 0 −a1

1 0 · · · 0 −a2

0 1 · · · 0 −a3... . . . ...
0 0 · · · 1 −ac



∈ Mc×c(R)be a matrix of the Hasse-Witt map ϕG. Then the losed redued subsheme Vβof S is de�ned by the prime ideal (a1, · · · , ac). In partiular, Vβ is irreduible.
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438 Yichao TianProof. Note �rst that {a1, · · · , ac} is a subset of a system of regular parametersof R by 4.11(i). Let I be the ideal of R de�ning Vβ . Let x be an arbitrarypoint of Vβ , we denote by px the prime ideal of R orresponding to x. Sinethe Newton polygon of the �bre Gx lies above β, Gx is onneted. By Lemma4.4, we have ai ∈ px for 1 ≤ i ≤ c. Sine Vβ is redued, we have ai ∈ I.Let P = (a1, · · · , ac), and V (P) the losed subsheme of S de�ned by P.Then V (P) is an integral sheme of dimension c(d− 1) and Vβ ⊂ V (P). SineTheorem 8.2 implies that dimVβ = c(d−1), we have neessarily Vβ = V (P). �We keep the assumptions above. Let (ti,j)1≤i≤c,1≤j≤d be a regular system ofparameters of R suh that ti,d = ai for all 1 ≤ i ≤ c. Let x be the generi pointof the Newton strata Vβ , k′ = κ(x), and R′ = ÔS,x. Sine R is noetherianand integral, the anonial ring homomorphism R → OS,x → R′ is injetive.The image in R′ of an element a ∈ R will be denoted also by a. By hoosing a
k-setion k′ → R′ of the anonial projetion R′ → k′, we get a (non-anonial)isomorphism of k-algebras R′ ≃ k′[[t1,d, · · · , tc,d]]. Let k′′ be an algebrailosure of k′, and R′′ = k′′[[t1,d, · · · , tc,d]]. Then we have a natural injetivehomomorphism of k-algebras R′ → R′′ mapping ti,d to ti,d for 1 ≤ i ≤ c.Let S′′ = Spec(R′′), x be its losed point. By the onstrution of S′′, we havea morphism of k-shemes(8.4.1) f : S′′ → Ssending x to x. We put G = G×S S

′′. By the hoie of the Newton polygon β,the losed �bre Gx has a BT-subgroup Hx of multipliative type of height d−1.Sine S′′ is henselian, Hx lifts uniquely to a BT-subgroup H of G . We put
G ′′ = G /H . It is a onneted BT-group over S′′ of dimension 1 and height c+1.
Lemma 8.5. Under the above assumptions, G ′′ is the universal deformation inequal harateristi of its speial �ber.This lemma is a partiular ase of [Lau, Lemma 3.1℄. Here, we use 4.11(ii) togive a simpler proof.Proof. We have an exat sequene of BT-groups over S′′

0→H → G → G
′′ → 0,whih indues an exat sequene of Lie algebras 0 → Lie(G ′′∨) → Lie(G ∨) →

Lie(H ∨)→ 0 ompatible with Hasse-Witt maps. Sine H is of multipliativetype, we get Lie(H ∨) = 0 and an isomorphism of Lie algebras Lie(G ′′∨) ≃
Lie(G ∨). By the hoie of the regular system (ti,j)1≤i≤c,1≤j≤d, there is a basis
(v1, · · · , vc) of Lie(G ′′∨) over OS′′ suh that ϕG ′′ is given by the matrix

h =




0 0 · · · 0 −t1,d
1 0 · · · 0 −t2,d
0 1 · · · 0 −t3,d... . . . ...
0 0 · · · 1 −tc,d



.
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p-Adic Monodromy of a Barsotti-Tate Group 439Now the lemma results from Proposition 4.11(ii). �

8.6. Proof of Theorem 1.3. The one-dimensional ase is treated in 7.3.If dim(G) ≥ 2, we apply the preeding disussion to obtain the morphism
f : S′′ → S and the BT-groups G = G×S S

′′ and G ′′, whih is the quotient of
G by the maximal subgroup of G of multipliative type. Let U ′′ be the ommonordinary lous of G and G ′′ over S′′, and ξ be a geometri point of U ′′. Then
f maps U ′′ into the ordinary lous U of G. We denote by

ρG : π1(U
′′, ξ)→ AutZp

(Tp(G , ξ))the monodromy representation assoiated to G , and the same notation for ρG ′′ .By the funtoriality of monodromy, we have Im(ρG ) ⊂ Im(ρG). On the otherhand, the anonial map G → G ′′ indues an isomorphism of Tate modules
Tp(G , η)

∼
−→ Tp(G

′′, η) ompatible with the ation of π1(U
′′, η). Therefore,the group Im(ρG ) is identi�ed with Im(ρG ′′). Sine G ′′ is one-dimensional, weonlude the proof by Lemma 8.5 and Theorem 7.3.Referenes[AN℄ J. Ahter and P. Norman, Loal monodromy of p-divisible groups, toappear in Transations of A.M.S., (2006).[BBM℄ P. Berthelot, L. Breen and W. Messing, Théorie de DieudonnéCristalline II, Let. notes in Math. 930, Springer-Verlag, (1982).[Bou℄ N. Bourbaki, Algèbre Commutative, Masson, Paris (1985).[Ch1℄ L. Chai, Loal monodromy for deformations of one dimensional formalgroups, J. reine angew. Math. 524, (2000), 227-238.[Ch2℄ L. Chai, Methods for p-adi monodromy, to appear in Jussieu J. Math.,(2006).[CO℄ L. Chai and F. Oort, Monodromy and irreduibility of leaves, availableat the webpage of F. Oort, (2008).[DR℄ P. Deligne and K. Ribet, Values of abelian L-funtions at negativeintegers over totally real �elds. Inven. Math. 59, (1980), 227-286.[Dem℄ M. Demazure, Letures on p-Divisible Groups, Let. notes in Math.

302, Springer-Verlag, (1972).[DG℄ M. Demazure and A. Grothendiek, Shéma en Groupes I (SGA 3I), Let. notes in Math. 151, Springer-Verlag, (1970).[Eke℄ T. Ekedahl, The ation of monodromy on torsion points of Jaobians,Arithmeti Algebrai Geometry, G. van der Geer, F. Oort and J. Steen-brink, ed. Progress in Math. 89, Birkhäuser, (1991), 41-49.[FC℄ G. Faltings and L. Chai, Degeneration of Abelian Varieties, ErgebnisseBd 22, Springer-Verlag,(1990).[Gro℄ B. Gross, Rami�ation in p-adi Lie extensions, Journée de GéométrieAlgébrique de Rennes III, Astérisque 65, (1979), 81-102.[EGA℄ A. Grothendiek, Éléments de Géométrie algébrique IV, Étude loaledes shémas et des morphismes de shémas, Publ. Math. Inst. HautesÉtud. Si. 20, 24, 28, 32 (1964-1967).
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