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Abstract. We consider relativistic many-particle operators which –
according to Brown and Ravenhall – describe the electronic states of
heavy atoms. Their ground state energy is investigated in the limit of
large nuclear charge and velocity of light. We show that the leading
quasi-classical behavior given by the Thomas-Fermi theory is raised
by a subleading correction, the Scott correction. Our result is valid for
the maximal range of coupling constants, including the critical one.
As a technical tool, a Sobolev-Gagliardo-Nirenberg-type inequality is
established for the critical atomic Brown-Ravenhall operator. More-
over, we prove sharp upper and lower bounds on the eigenvalues of the
hydrogenic Brown-Ravenhall operator up to and including the critical
coupling constant.
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1 Introduction and main result

The description of atoms and molecules, in particular of their energies, has
been a primer for the development of quantum mechanics. However, it became
soon clear that atoms with more than one electron are not accessible to ex-
plicit solutions. This motivated the development of approximate models for
large Coulomb systems. One of the most simple and – simultaneously – the
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most fundamental models was introduced by Thomas [73], Fermi [27, 28], and
Lenz [41] who proposed the energy functional which we will also use here. It
predicts that the ground state energy of atoms would decrease with the atomic
number Z to leading order as Z7/3. In order to get a refined description, Scott
[54] conjectured that the electrons close to the nucleus should raise the energy
by Z2/2. Considerably later Schwinger [52] argued also for Scott’s prediction;
Schwinger [53] and Englert and Schwinger [13, 14, 15] even refined these con-
siderations by adding more lower order terms [53] (see also Englert [12]). In
fact, a contribution to the Z5/3-term can be traced back to Dirac [10]. — The
challenge to address the question whether the predicted formulae would yield
asymptotically correct results when compared with the N -particle Schrödinger
theory was for a long time unsuccessful. It was Lieb and Simon who proved in
their seminal paper [44] that the prediction of Thomas, Fermi, and Lenz is in-
deed asymptotically correct. However, establishing the Scott correction resisted
the mathematical efforts and became Problem 10B of Simon’s 15 Problems in
Mathematical Physics [62]. Eventually, the Scott correction was established
mathematically by Hughes [37, 38] (lower bound), and Siedentop and Weikard
[55, 56, 57, 58, 59] (lower and upper bound). In fact, even the existence of the
Z5/3-correction conjectured by Schwinger was proved by Fefferman and Seco
[23, 24, 25, 18, 26, 21, 19, 20, 22]. Later these results were extended in various
ways, e.g., to ions and molecules [1, 39, 66, 4].

Despite of the mathematical success in establishing the large Z asymptotics
of the Schrödinger theory, these considerations remain questionable from a
physical point of view, since large atoms force electrons into orbits that are close
to the nucleus where the electrons move with high speed which should require a
relativistic treatment. The atom is shrinking with increasing Z: already in non-
relativistic quantum mechanics the bulk of the electrons has a distance Z−1/3

from the nucleus; the electrons contributing to the Scott correction even live
on the scale Z−1. Schwinger [53] has estimated these effects concluding that
a correction to the Scott correction occurs whereas the leading term should be
unaffected by the change of model. Sørensen [51] was the first who proved that
the latter is indeed the case for a simplified ad hoc naive relativistic model, the
Chandrasekhar multi-particle operator, in the limit of large Z and large velocity
of light c. The value of the Scott correction is again of order Z2, a result which
was announced [64] and proven [65] by Solovej, Sørensen, and Spitzer (see also
Sørensen [50] for the non-interacting case). In a previous paper [31] we gave
a short alternative proof, roling the problem back to the non-relativistic Scott
correction. Nevertheless, a question from the physical point of view remains:
Although the Chandrasekhar model is believed to represent some qualitative
features of relativistic systems, there is no reason to assume that it should
give quantitatively correct results. Therefore, to obtain not only qualitatively
correct results it is interesting, in fact mandatory, to consider a Hamiltonian
which – as the one by Brown and Ravenhall [6] – is derived from QED such that
it yields the leading relativistic effects in a quantitative correct manner. (See
also Sucher [69, 70, 71].) The first step in this direction was taken by Cassanas
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and Siedentop [7] who showed that, similarly to the Chandrasekhar case, the
leading energy is not affected. To show in which way the Scott correction is
changed for this model is our concern in this paper.

1.1 Relativistic energy form

According to Brown and Ravenhall [6] the energy of an atom with N electrons
in a state ψ ∈ QB

N is given by

EB
N (ψ)

:=

〈
ψ,




N∑

ν=1

(
cαν · pν + c2βν − c2 − Z

|xν |

)
+

∑

1≤µ<ν≤N

1

|xµ − xν |


ψ
〉
.

(1.1)

This involves the free Dirac operator reduced by the rest mass, acting in
L2(R3,C4), with the four Dirac matrices in standard representation,

α =

(
0 σ

σ 0

)
, β =

(
1 0
0 −1

)
,

where σ are the three Pauli matrices in standard representation, i.e.,

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

We use atomic units in which m = e2 = ~ = 1. The parameter Z is the atomic
number and c the velocity of light.
The Hilbert space of an electron is chosen as the positive spectral subspace of
the Dirac operator,

HB := χ[c2,∞)(cα · p + c2β)
(
L2(R3,C4)

)
,

and, correspondingly, the Hilbert space of N electrons HB
N is the antisymmetric

tensor product of the one-particle space, i.e., HB
N :=

∧N
ν=1 HB. Finally, the form

domain of (1.1) is QB
N := HB

N ∩ S(R3N ,C4N

) with S the Schwartz space of
rapidly decreasing functions. As is shown in [17], the Brown-Ravenhall form
EB

N is closable and bounded from below if and only if

κ :=
Z

c
≤ κB :=

2

2/π + π/2
. (1.2)

(See also Tix [74, 76], who improved the bound given in [17] to an explicit
positive bound.) For the physical value, about 1/137, of the Sommerfeld fine
structure, which equals 1/c in atomic units used here, the critical atomic num-
ber Z exceeds 124 slightly. This includes all known elements.
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In the following we will assume that the atom described by (1.1) is neutral,
i.e., Z = N , an assumption that we make mainly for the sake of brevity and
clarity of presentation, since the Scott correction is independent of the ioniza-
tion degree N/Z ≥ const > 0. Similarly, it might seem that our treatment is
restricted to spherically symmetric systems (atoms). However, on the energy
scale considered here, molecular Hamiltonians essentially separate – in nature
the distances between nuclei with charges ZZ1, ..., ZZK remain on a scale much
larger than Z−1/3 – into spherically symmetric one-center problems (atoms).
Therefore, the molecular case follows from the atomic case by additional local-
ization. However, for the sake of brevity and clarity, we will spare the reader
the corresponding tedious technicalities, restrict to the atomic case, and freely
use the resulting symmetry.
Thus, according to Friedrichs, the one-particle form EB

1 defines for κ ≤ κB a
distinguished self-adjoint operator in HB. Through a unitary transformation
it may be represented as a self-adjoint operator in the Hilbert space H :=
L2(R3,C2) of two-spinors. More precisely, using the notation p := |p|, ωp :=
p/p we set

E(p) :=
√

p2 + 1, φν(p) :=

√
E(p) + (−1)ν

2E(p)
, ν = 0, 1, (1.3)

and introduce the following bounded operators on H,

Φ0(p) := φ0(p), Φ1(p) := φ1(p) σ · ωp. (1.4)

The operator Φc : H → HB, ψ 7→ (Φ0(p/c)ψ,Φ1(p/c)ψ), maps H unitarily
onto HB [7]. Therefore, the form EB

1 defines the (two-spinor) Brown-Ravenhall
operator in H,

Bc[Z/|x|] :=Φ−1
c

(
cα · p + c2β − c2 − Z/|x|

)
Φc

=c2E(p/c) − c2 − Uc(Z/|x|), (1.5)

where Uc(A) := Φ0(p/c)AΦ0(p/c) + Φ1(p/c)AΦ1(p/c). In the case c = 1 we
denote this operator by BZ . Further properties of BZ and its relation to the
corresponding Chandrasekhar operator and Schrödinger operator

CZ := (p2 + 1)1/2 − 1 − Z/|x|, SZ := 1
2p

2 − Z/|x| (1.6)

all realized in H, can be found in Sections 2 and 3 below and in Appendix C.

1.2 Main result

We are interested in the ground state energy

EB
c (Z) := inf{EB

Z (ψ) |ψ ∈ QB
Z , ‖ψ‖ = 1}

of the energy form (1.1) for large atomic number Z and large velocity of light
c satisfying (1.2). Note that we picked N = Z. It was shown in [7], that
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similarly to the Chandrasekhar case [51], the leading behavior of EB
c (Z) is not

affected by relativistic effects and is, as in the Schrödinger case [44], given by
the minimal Thomas-Fermi energy

ETF(Z) := inf{ETF(ρ) | ρ ∈ L5/3(R3), ρ ≥ 0, D(ρ, ρ) <∞}. (1.7)

The latter is defined in terms of the Thomas-Fermi energy functional

ETF(ρ) :=

∫

R3

[
3

5
γTF ρ(x)5/3 − Z

|x|ρ(x)

]
dx +D(ρ, ρ)

where, in our units, γTF = (3π2)2/3/2 and

D(ρ, σ) :=
1

2

∫

R3

∫

R3

ρ(x)σ(y)

|x − y| dxdy

is the Coulomb scalar product. By scaling, one finds ETF(Z) = ETF(1)Z7/3.
This paper concerns the correction to the leading behavior. For the formulation
of the main result, we abbreviate the negative part of an operator by A− :=
−Aχ(−∞,0)(A) and introduce for 0 < κ ≤ κB the spectral shift

s(κ) := κ−2 trH

[
(Bκ)− − (Sκ)−

]
. (1.8)

(We use the term “spectral shift” for s for convenience although it is used
in slightly different meaning otherwise.) It describes the shift of the Brown-
Ravenhall bound state energies compared to those of the Schrödinger operator.
In Section 3 we show that s is well-defined and discuss some of its properties. In
particular, we prove that the function s is non-negative on the interval (0, κB]
and can be continuously extended to zero where it satisfies

s(κ) = O(κ2) as κ→ 0. (1.9)

We are now ready to state our main result.

Theorem 1.1 (Scott correction). There exists a constant C > 0 such that
for all Z ≥ 1 and all c ≥ Z/κB one has

∣∣EB
c (Z) − ETF(Z) −

(
1
2 − s(Z/c)

)
Z2
∣∣ ≤ CZ47/24. (1.10)

Put differently, Theorem 1.1 asserts that in the limit Z → ∞ we have uniformly
in the quotient κ = Z/c ∈ (0, κB]

EB
c (Z) = ETF(Z) +

(
1
2 − s(κ)

)
Z2 + o(Z2). (1.11)

(We do not claim that the error Z47/24 in (1.10) is sharp, so we only write o(Z2)
here.) The second term

(
1
2 − s(κ)

)
Z2 in (1.11) is the so-called Scott correction

in the Brown-Ravenhall model. It does not exceed the Scott correction Z2/2 in
the non-relativistic model [55]. Indeed, if κ = Z/c stays away from zero then
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there is a relativistic lowering of the ground state energy at order Z2. On the
other hand, in the non-relativistic limit c→ ∞ with κ = Z/c→ 0, one recovers
– non-surprisingly – the value of the Schrödinger case. In this case (1.9) implies

EB
c (Z) = ETF(Z) + 1

2Z
2 + O(c−2Z4 + Z47/24). (1.12)

The Scott correction in the Brown-Ravenhall model, however, exceeds the Scott
correction predicted by the naive Chandrasekhar model treated in [65] and [31].
This follows from the fact that sums of bound state energies of the atomic Chan-
drasekhar operator are dominated by those of the Brown-Ravenhall operator,
cf. the proof of Theorem 3.1 below.

1.3 Outline of the paper

The central strategy of our paper is to compare the ground state energy of
the Brown-Ravenhall operator with that of the Schrödinger operator. The
latter is known up to the required accuracy o(Z2) and the leading contribution
agrees with the Brown-Ravenhall energy. The subtraction of the corresponding
ground state energies results in a renormalized effective model which accurately
describes the energy differences and is amenable to analysis. The germ of this
idea has been presented in the simpler context of the Chandrasekhar model [31].
The full blown renormalization required is developed in this paper. A virtue of
our approach is that it leads to an explicit formula for the spectral shift which
can be evaluated numerically. We believe it would be interesting to compare
this formula with experimental data.
We show that the difference between the Brown-Ravenhall and Schrödinger
ground state energies on the multi-particle level coincides, up to the required
accuracy, with a spectral shift on the one-particle level. A crucial step in our
analysis is therefore a bound on the corresponding spectral shift for rather gen-
eral spherically symmetric potentials. This is presented in Section 3, where we
show that sums of differences of Brown-Ravenhall and Schrödinger eigenvalues
decay rather rapidly as the angular momentum increases.
In Section 2 we address various aspects of hydrogenic Brown-Ravenhall oper-
ators. An essential feature and source of difficulties, which does not occur in
the naive Chandrasekhar model, is the non-locality of the potential energy. In
particular, instead of the usual Coulomb potential |x|−1 we face the ‘twisted’
non-local operator Uc(|x|−1). Estimating the difference between the corre-
sponding potential energies is the topic in Subsection 2.3. Since, in contrast
to the Schrödinger case, the eigenvalues of the hydrogenic Brown-Ravenhall
operator are not known explicitly, we prove upper and lower bounds in Sub-
section 2.1. Our bounds are sharp with respect to their dependence on the
quantum numbers n and l. An upper bound is given by the Dirac eigenvalues,
a consequence of the mini-max principle for eigenvalues in the gap. For the
lower bound we overcome the non-locality of the potential by a non-trivial com-
parison argument with a super-critical Chandrasekhar operator. In Subsection
2.2 we prove a new Sobolev-type inequality, from which we derive estimates on
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the eigenfunctions of the hydrogenic Brown-Ravenhall operator. The technical
challenge here is to prove such a result up to and including the critical coupling
constant.
Finally, we present the proof of our main result, Theorem 1.1, in Section 4.
For the readers’ convenience we collect various facts in the appendices. Ap-
pendix A recalls the partial wave decomposition of the Hilbert space of two-
spinors, Appendix B establishes some useful properties of the twisting opera-
tors, and Appendix C collects basic facts on hydrogenic Brown-Ravenhall and
Chandrasekhar operators. Appendix D fills in some details in the proof of The-
orem 2.2 and, eventually, Appendix E defines the one-particle density matrix
giving the main contribution of the energy.

2 The hydrogenic Brown-Ravenhall operator

In this section we set c = 1 and investigate the Brown-Ravenhall operator with
Coulomb potential

Bκ =
√

p2 + 1 − 1 − κU(|x|−1) (2.1)

in the Hilbert space H = L2(R3,C2) of two-spinors, where we recall that

U(|x|−1) = Φ0(p)|x|−1Φ0(p) + Φ1(p)|x|−1Φ1(p) (2.2)

with Φν defined in (1.4). In Subsection 2.1 we prove sharp upper and lower
bounds on the eigenvalues of Bκ. In Subsection 2.2 we prove Lp estimates on
the eigenfunctions of this operator. Technically, this is expressed as a Sobolev-
type inequality for the massless version of Bκ, which is a non-negative opera-
tor. Finally, in Subsection 2.3 we compare the potential energy of the opera-
tor Bκ, namely

〈
ψ,U(|x|−1)ψ

〉
, with the corresponding local potential energy〈

ψ, |x|−1ψ
〉
. For comparison purpose also the corresponding Chandrasekhar

and Schrödinger operator Cκ and Sκ occur (see (1.6)).
According to [17] and [40] the operators Bκ and Cκ are well-defined for all
κ ≤ κ# with # = B,C and

κB =
2

2/π + π/2
, κC := 2/π; (2.3)

see also Appendix C. Of course, for the Schrödinger operator no upper bound
on κ is needed.

2.1 Estimates on eigenvalues of the hydrogen atom

In contrast to the Schrödinger or Dirac models, the eigenvalues of Bκ and Cκ

are not known explicitly. In order to obtain upper and lower bounds on these
eigenvalues, we use that the spectra of Bκ, Cκ and Sκ may be classified in
terms of angular momenta.
As usual write L := x× p for the operators of orbital angular momentum and
J := L+ 1

2σ for the operators of total angular momentum. The four operators
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Bκ, J2, J3, L2 commute pairwise, and this also holds, if Cκ or Sκ replace Bκ.
This allows us to decompose the Hilbert space H into orthogonal subspaces
which reduce such a quadruple of operators, i.e.,

H =
⊕

j∈N0+ 1
2

⊕

l=j±1/2

Hj,l, Hj,l :=

j⊕

m=−j

Hj,l,m. (2.4)

Here Hj,l,m is the maximal joint eigenspace of J2 with eigenvalues j(j + 1), of
L2 with eigenvalue l(l+1), and J3 with eigenvalue m. More details concerning
the partial wave decomposition (2.4) can be found in Appendix A.
We denote by bj,l(κ), cl(κ), and sl(κ) the reduced operators corresponding to
fixed angular momenta j and l, where, strictly speaking, we consider bj,l(κ)
and cl(κ) in momentum space whereas sl(κ) in position space. We refer to
Appendix C for precise definitions of bj,l(κ) and cl(κ) and for further discussion.

Of course, sl(κ) = − 1
2

d2

dr2 + l(l+1)
2r2 − κ

r .
The main result of this subsection is that for large quantum numbers n, j, and
l, the eigenvalues of bj,l(κ) and cl(κ) behave similarly to the explicitly known
ones of the Schrödinger operator sl(κ).

Theorem 2.1 (Energies of Brown-Ravenhall hydrogen). There is a
constant C < ∞ such that for all j ∈ N0 + 1

2 , and l = j ± 1
2 , n ∈ N and

κ ∈ (0, κB] one has

−C κ2

(n+ l)2
≤ λn(bj,l(κ)) ≤ − κ2

2(n+ l)2
. (2.5)

Here and below, we denote by λ1(A) ≤ λ2(A) ≤ . . . the eigenvalues, re-
peated according to multiplicities, below the bottom of the essential spec-
trum of the self-adjoint, lower semi-bounded operator A. Note that −κ2(2(n+
l)2)−1 = λn(sl(κ)) on the right hand side of (2.5) is the n-th eigenvalue of the
Schrödinger operator corresponding to angular momentum l. In particular, we
conclude from (2.5) that the partial traces in Hj,l (cf. (3.1)) satisfy

0 ≤ trj,l

(
[Bκ + µ]− − [Sκ + µ]−

)
<∞ (2.6)

for all µ ≥ 0. In the proof of Theorem 2.1 we use heavily the corresponding
result for the Chandrasekhar case, which we state next.

Theorem 2.2 (Energies of Chandrasekhar hydrogen). There is a con-
stant C <∞ such that for all l ∈ N0, n ∈ N and κ ∈ (0, κC ] one has

−C κ2

(n+ l)2
≤ λn(cl(κ)) ≤ − κ2

2(n+ l)2
. (2.7)

We break the proofs of Theorems 2.1 and 2.2 into three parts, corresponding to
the upper bound and the lower bound for subcritical and, respectively, critical
values of the coupling constant.
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2.1.1 Upper bound on hydrogen eigenvalues

We begin with the Chandrasekhar case.

Proof of Theorem 2.2. Upper bound. The second inequality in (2.7) is an im-

mediate consequence of the inequality
√
p2 + 1−1 ≤ p2/2 and the known form

of the Schrödinger eigenvalues in the subspace corresponding to fixed angular
momentum l.

Next, we turn to the Brown-Ravenhall case.

Proof of Theorem 2.1. Upper bound. We first recall some facts about the eigen-
values of the hydrogenic Dirac operator Dκ := α · p + β − κ|x|−1; see Darwin
[8], Gordon [32] and also Bethe and Salpeter [5] for a textbook presentation.
The following subspaces of L2(R3,C4),

H̃j,l,m =

{
x 7→

(
ir−1f(r)Ωj,l,m(ωx)

−r−1g(r)Ωj,2j−l,m(ωx)

)
: f, g ∈ L2(R+)

}
,

reduce the Dirac operator Dκ with κ ∈ (0, 1). Under the natural identification
of H̃j,l,m with L2(R+,C

2) the part of Dκ in H̃j,l,m is unitarily equivalent to

dj,l(κ) =

(
1 − κ

r − d
dr − (j−l)(2j+1)

r
d
dr − (j−l)(2j+1)

r −1 − κ
r

)
.

The non-decreasing sequence λn(dj,l(κ)) of eigenvalues of dj,l(κ) in the gap
(−1, 1) is independent of l and given explicitly by

λn(dj,l(κ)) =


1 − κ2

(
n− 1 +

√
(j + 1/2)2 − κ2

)2

+ κ2




1/2

, n ∈ N. (2.8)

The Dirac eigenvalues reduced by the rest energy are bounded from above by
the Schrödinger eigenvalues: for all n, l, j, and κ ∈ (0, 1)

1 − λn(dj,l(κ)) ≥ κ2

2(n+l)2 = −λn(sl(κ)). (2.9)

To show (2.9), we use

√
(j + 1/2)2 − κ2 ≤

√
(l + 1)2 − κ2 ≤

√
(n+ l)2 − κ2 + 1 − n

and expand the outer square root in (2.8) up to first order which gives an upper
bound.
Hence the upper bound in Theorem 2.1 will follow if we can show that

λn(bj,l(κ)) ≤ −1 + λn(dj,l(κ)). (2.10)
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To prove this, we fix (j, l) and abbreviate Λ+ := χ[1,∞)(dj,l(0)) and Λ− :=
1 − Λ+. It follows from the definition of the Brown-Ravenhall operator that
bj,l(κ) is unitarily equivalent to the operator Λ+(dj,l − 1)Λ+ in the Hilbert
space Λ+(L2(R+,C

2)). The variational principle for eigenvalues in gaps by
Griesemer et al. [34, 35] under the weakened hypotheses of Dolbeault et al.
[11] states that

λn(dj,l(κ))

= inf
V ⊂Λ+(L2(R+,C2)),

dim V =n

sup

{
(f, dj,l(κ)f)

‖f‖2
: 0 6= f ∈ V ⊕ Λ−(L2(R+,C

2))

}
.

Since the supremum decreases when restricted to 0 6= f ∈ V , one obtains (2.10).

2.1.2 Lower bounds on hydrogen eigenvalues. Subcritical case

Proof of Theorem 2.2. Subcritical case. Since we will reduce the Brown-
Ravenhall case in Theorem 2.1 to the Chandrasekhar case, we actually prove
a slightly stronger statement. As explained in (C.8), the operators cl(κ) are
lower bounded for all l ≥ 1 up to κC

l > κB.
We assume that either l ≥ 1 and 0 < κ ≤ κB or else that l = 0 and 0 < κ ≤
κBκC/κC

1 . For any 0 < δ < 1 there exist Mδ > 0 and cδ > 0 such that

√
p2 + 1 − 1 ≥

{
(1 − δ)p if p ≥Mδ

cδ p
2/2 if p ≤Mδ.

.

Denoting by χi the characteristic function of the centered ball in R3 with radius
Mδ, and putting χo := 1 − χi, the Schwarz inequality implies the operator
inequality

|x|−1 ≤ (1 + δ−1)χi(p)|x|−1χi(p) + (1 + δ)χo(p)|x|−1χo(p),

and hence
√

p2 + 1 − 1 − κ|x|−1 ≥χi(p)
(
cδp

2/2 − (1 + δ−1)κ|x|−1
)
χi(p) (2.11)

+ χo(p)
(
(1 − δ)|p| − (1 + δ)κ|x|−1

)
χo(p) .

Now choose δ as the the unique solution of the equation (1+δ)/(1−δ) = κC
1 /κ

B

in the interval (0, 1). Then the restrictions on κ imply that (1 + δ)κ ≤ (1 −
δ)κC

1 ≤ (1 − δ)κC
l for l ≥ 1 and (1 + δ)κ ≤ (1 − δ)κC for l = 0. In any

case, the second operator in the above sum is non-negative. The variational
principle hence implies that the n-th eigenvalue of cl(κ) is greater or equal to
the n-th eigenvalue of χi(p)

(
cδp

2/2 − (1 + δ−1)κ|x|−1
)
χi(p). Again by the

variational principle, the latter is greater or equal to the n-th eigenvalue of
cδp

2/2 − (1 + δ−1)κ|x|−1, which is −const κ2(n+ l)−2.
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Proof of Theorem 2.1. Subcritical case. We assume that either j ≥ 3/2 and
0 < κ ≤ κB or else that j = 1/2 and 0 < κ ≤ κBκC/κC

1 . We claim that

λn(cl(κ)) = λ2n−1(cl(κ) ⊗ 1C2) ≤ λ2n−1(bj,l(κ)) . (2.12)

Once we have proved this, the assertion follows easily from what we have shown
in the proof of Theorem 2.2 above.
To establish (2.12) we use the same notation as in the proof of the upper bound
in Theorem 2.1. By the variational principle,

λn(bj,l(κ))

= sup
f1,...,fn−1∈

Λ+(L2(R+,C2))

inf{〈f, (dj,l(κ) − 1)f〉 : ‖f‖ = 1, f ∈ Λ+(L2(R+,C
2)), f ⊥ fν}

= sup
f1,...,fn−1∈
L2(R+,C2)

inf{〈Flf, cl(κ)Flf〉 : ‖f‖ = 1, f ∈ Λ+(L2(R+,C
2)), f ⊥ fν}

with Fl the Fourier-Bessel transform, see (A.5). The infimum does not increase
if the condition f ∈ Λ+(L2(R+,C

2)) is relaxed to f ∈ L2(R+,C
2). This gives

the eigenvalues of the operator cl(κ) ⊗ 1C2 , proving (2.12).

2.1.3 Lower bounds on hydrogen eigenvalues. Critical case

Proof of Theorem 2.2. Critical case. It remains to prove that

λn(c0(κ)) ≥ −const κ2n−2

for κBκC/κC
1 ≤ κ ≤ κC . We may assume that κ = κC and will prove that for

all τ > 0

N(−τ, c0(κC)) := trχ(−∞,−τ)(c0(κ
C)) ≤ const τ−1/2. (2.13)

Let χ2
i + χ2

o = 1 be a smooth radial quadratic partition of unity with χi

supported in the unit ball and χo supported outside the ball of radius 1/2
about the origin. It was shown in [31, Eq. (19)] that the localization error can
be estimated by a bounded exponentially decaying potential v(r) ≤ const e−r,
i.e.,

√
p2 + 1 − 1 − κC |x|−1 ≥ χi

(√
p2 + 1 − 1 − κC |x|−1 − v(|x|)

)
χi

+ χo

(√
p2 + 1 − 1 − κC |x|−1 − v(|x|)

)
χo.

By the variational principle it suffices to consider the eigenvalue counting func-
tion corresponding to the interior and exterior term separately. The interior
term is further estimated according to

χi

(√
p2 + 1 − 1 − κC |x|−1 − v(|x|)

)
χi

≥χi

(
|p| − κC |x|−1 − const

)
χi.

Documenta Mathematica 14 (2009) 463–516



The Scott Correction 475

As shown by Lieb and Yau [46] and explained in Corollary D.1, the number of
negative eigenvalues of the latter operator acting in the subspace corresponding
to l = 0 is finite, i.e., for all τ > 0

Nl=0

(
−τ, χi

(
|p| − κC |x|−1 − const

)
χi

)
≤ const . (2.14)

For the exterior problem, we note that by the variational principle

Nl=0

(
−τ, χo

(√
p2 + 1 − 1 − κC |x|−1 − v(|x|)

)
χo

)

≤ Nl=0

(
−τ,

√
p2 + 1 − 1 − χ(x)(κC |x|−1 + v(|x|))

)
(2.15)

where χ denotes the characteristic function of the support of χo. With the
singularity gone, the result follows as in the subcritical case. Namely, sim-
ilarly as in (2.11) we cut in momentum space according to small and large
momenta. Again, by the variational principle, the right-hand side of (2.15) is
then bounded from above by

Nl=0(−const τ, |p| − w(|x|)) +Nl=0(−const τ, p2 − w(|x|)),
where w(r) = const χ(r)(κCr−1 + v(r)). The first term is estimated with the
help of Daubechies’ inequality [9]

Nl=0(−τ, |p| − w(|x|)) ≤ τ−1/2 trl=0(|p| − w(|x|))1/2
−

≤ const τ−1/2

∫ ∞

0

w(r)3/2 dr

with the latter integral being finite. For the second term we estimate w(r) ≤
const r−1 and use that

Nl=0(−τ, p2 − const |x|−1) ≤ const τ−1/2.

This concludes the proof of Theorem 2.2.

Our proof of Theorem 2.1 in the critical Brown-Ravenhall case is based on a
reduction to the Chandrasekhar case. The next lemma compares the number of
eigenvalues of the critical operators b1/2,l(κ

B) with those of the two operators
cl′(κ

C
l′ ) with l′ = 0, 1 and critical coupling constants κC

0 = 2/π and κC
1 = π/2,

cf. (C.8).

Lemma 2.3. There is a constant such that for l = 0, 1 and all τ > 0 one has

N
(
−τ, b1/2,l(κ

B)
)
≤ const

[
N
(
− τ

const , c0(κ
C
0 )
)

+N
(
− τ

const , c1(κ
C
1 )
)]
.

Proof. We start with the observation that (κC
0 )−1 + (κC

1 )−1 = 2(κB)−1. Using
the explicit form of the reduced operators (cf. Appendix C), this implies the
identities

b1/2,0(κ
B) = κB

(
(κC

0 )−1φ0b̃0,0φ0 + (κC
1 )−1φ1b̃1,1φ1

)
,

b1/2,1(κ
B) = κB

(
(κC

0 )−1φ1b̃0,1φ1 + (κC
1 )−1φ0b̃1,0φ0

)
,

(2.16)
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where the operators b̃l,ν are defined in L2(R+) through quadratic forms

〈f, b̃l,νf〉 :=

∫ ∞

0

E(p) − 1

2φν(p)2
|f(p)|2 dp− κC

l

∫ ∞

0

∫ ∞

0

f(p)kC
l (p, q)f(q) dp dq.

In case ν = 1 it hence follows from 2φ1(p)
2 ≤ 1 that 〈f, b̃l,1f〉 ≥ 〈f, cl(κC

l )f〉.
In case ν = 0 we use the inequality

(E(p) − 1)φ0(p)
−2 ≥

√
p2 + 4 − 2 = 2(E(p/2) − 1) (2.17)

which is most easily seen by writing both sides in terms of E(p). It implies

〈f, b̃l,0f〉 ≥ 2〈uf, cl(κC
l )uf〉

where the unitary scaling transformation u is defined through (uf)(p) :=√
2f(2p). The proof is completed by the variational principle.

We are now ready to give a

Proof of Theorem 2.1. Critical case. The previous lemma implies that it suf-
fices to show that for l = 0, 1

N
(
−τ, cl(κC

l )
)
≤ const τ−1/2.

In case l = 0 this was established in (2.13), and the case l = 1 follows similarly
with the analogue of (2.14) given in Corollary D.1.

2.2 Sobolev inequality for the critical Brown-Ravenhall oper-
ator

Having studied the eigenvalues of Bκ in the previous subsection, we now turn
to integrability properties of its eigenfunctions. The Lq-norm of two-spinors ψ
is given by

‖ψ‖q :=

(∫

R3

|ψ(x)|qdx
)1/q

,

where the modulus, | · |, refers to the Euclidean norm in C2. For q = 2 we drop
the subscript. We aim at proving the following

Theorem 2.4 (Lq-properties of eigenfunctions). Let 2 ≤ q < 3. There
exists a constant Cq <∞ such that for any κ ∈ (0, κB] and all ψ ∈ Q(Bκ) with
〈ψ,Bκψ〉 ≤ 0 one has ψ ∈ Lq with

‖ψ‖q ≤ Cq ‖ψ‖ . (2.18)

Note that (2.18) applies, in particular, to eigenfunctions of Bκ corresponding
to negative eigenvalues. The proof of Theorem 2.4, which is spelled out below,
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relies on a Sobolev inequality for the massless atomic Brown-Ravenhall operator
in H given by

B(0)
κ := |p| − κ

2

(
|x|−1 + ωp · σ |x|−1 ωp · σ

)
.

This operator is bounded below (in fact, non-negative) if and only if κ ≤ κB.

Theorem 2.5 (Sobolev inequality). For any 2 ≤ q < 3 there exists a

constant Cq > 0 such that for all ψ ∈ Q(B
(0)
κB ),

‖ψ‖2
q ≤ Cq

〈
ψ,B

(0)

κBψ
〉θ

‖ψ‖2(1−θ), θ = 6(1
2 − 1

q ). (2.19)

It is illustrative to compare (2.19) with the ‘standard’ Sobolev-Gagliardo-
Nirenberg inequalities,

‖ψ‖2
q ≤ C′

q 〈ψ, |p|ψ〉θ ‖ψ‖2(1−θ), θ = 6(1
2 − 1

q ), 2 ≤ q ≤ 3, (2.20)

see, e.g., [43, Thm. 8.4]. Hence Theorem 2.5 says that, if the endpoint q = 3
is avoided, an inequality of the same form remains true after subtracting the
maximal possible multiple of 1

2

(
|x|−1 + ωp · σ |x|−1 ωp · σ

)
from |p|. More-

over, one can show that (2.19) does not hold with q = 3, not even if the L3-norm
is replaced by the weak L3-norm.

Note that if κ < κB then (2.19) with B
(0)
κ instead of B

(0)

κB follows from (2.20)
– but with a constant that deteriorates as κ → κB. The main point is to
derive an inequality which holds uniformly in κ up to and including the critical
constant. Our proof is based on the somewhat surprising fact that the Brown-
Ravenhall operator with coupling constant κB can be bounded from below by
the Chandrasekhar operator with smaller coupling constant κC .
Before we start the proof of (2.19), we provide the

Proof of Theorem 2.4. The Sobolev inequality (2.19) implies

‖ψ‖2
q ≤ Cq

〈
ψ,B(0)

κ ψ
〉θ

‖ψ‖2(1−θ) ≤ Cq

〈
ψ,
[
B(0)

κ −Bκ

]
ψ
〉θ‖ψ‖2(1−θ)

≤ Cq‖B(0)
κ −Bκ‖θ‖ψ‖2.

Tix showed [75, Thm. 1] (see also Balinsky and Evans [3]) that the difference

B
(0)
κ − Bκ extends to a bounded operator with norm uniformly bounded for

any κ ∈ (0, κB].

2.2.1 Comparison of critical operators

The first step in the proof of the Sobolev inequality (2.19) is a comparison of

B
(0)
κ with the massless atomic Chandrasekhar operator in H, which is given by

C(0)
κ := |p| − κ|x|−1.
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It is bounded below if and only if κ ≤ κC . As discussed in Appendix C the parts

of B
(0)
κ and C

(0)
κ in the subspace Hj,l,m are unitarily equivalent to operators

b
(0)
j (κ) and c

(0)
l (κ) in L2(R+), which depend only on j in the Brown-Ravenhall

case and only on l in the Chandrasekhar case. For the comparison argument

it is important to note that the reduced operators b
(0)
j (κ) and c

(0)
l (κ) are lower

bounded for κ up to and including the critical coupling constants κB
j and κC

l

respectively. They are defined in (C.7) and, as is explained there, exceed κB

and κC , if j ≥ 3/2 or l ≥ 1.

We begin by observing that all the critical operators b
(0)
j (κB

j ) and c
(0)
l (κC

l ) have
the same ‘generalized ground state’, namely p. The corresponding ground state
representation formula (in momentum space) is given in

Lemma 2.6 (Ground state representation). If f ∈ Q(b
(0)
j (κB

j )) and
g(p) = pf(p), then

〈f, b(0)j (κB
j )f〉 =

κB
j

2

∫ ∞

0

∫ ∞

0

|g(p) − g(q)|2kB
j (p, q)

dp

p

dq

q
. (2.21)

Similarly, if f ∈ Q(c
(0)
l (κC

l )) and g(p) = pf(p), then

〈f, c(0)l (κC
l )f〉 =

κC
l

2

∫ ∞

0

∫ ∞

0

|g(p) − g(q)|2kC
l (p, q)

dp

p

dq

q
. (2.22)

where kB
j and kC

l are defined in (C.4).

Proof. We write k for one of the functions kB
j or kC

l and κ for the corresponding

constant κB
j or κC

l . Expanding the square and using k(p, q) = k(q, p), we find

1

2

∫ ∞

0

∫ ∞

0

|g(p) − g(q)|2k(p, q) dp

p

dq

q

=

∫ ∞

0

|g(p)|2
(∫

k(p, q)
dq

q

)
dp

p
−
∫ ∞

0

∫ ∞

0

g(p)k(p, q)g(q)
dp

p

dq

q

=

∫ ∞

0

p|f(p)|2
(∫

k(p, q)
dq

q

)
dp−

∫ ∞

0

∫ ∞

0

f(p)k(p, q)f(q) dp dq.

By definitions (C.7) and (C.8) of κ we have
∫ ∞

0

k(p, q)
dq

q
= κ−1,

which implies the assertion.

Next, we bound B
(0)

κB from below by C
(0)

κC .

Lemma 2.7 (Comparison of critical operators). There is a positive con-

stant such that for any ψ ∈ Q(B
(0)

κB ) ∩ H⊥
1/2,1

〈
ψ,B

(0)

κBψ
〉
≥ const

〈
ψ,C

(0)

κCψ
〉
. (2.23)
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An inequality of the form (2.23) cannot hold for ψ ∈ H1/2,1, since the right
hand side is bounded from below by a constant times 〈ψ, |p|ψ〉 while the left
hand side is not.

Proof. By orthogonality it suffices to prove the inequality on each subspace
Hj,l. First let (j, l) = (1/2, 0). We may also fix m = ±1/2 and choose ψ ∈
H1/2,0,m. Its Fourier transform is of the form ψ̂(p) = p−1f(p)Ω 1

2 ,0,m
(ωp), see

Appendix A. Setting f(p) =: pg(p) one finds using (C.2) and Lemma 2.6

〈ψ,B(0)

κBψ〉 = 〈f, b(0)1/2(κ
B)f〉 =

κB

2

∫ ∞

0

∫ ∞

0

|g(p) − g(q)|2 kB
1/2(p, q)

dp

p

dq

q
.

Similarly, using (C.3)

〈ψ,C(0)

κCψ〉 = 〈f, c(0)0 (κC)f〉 =
κC

2

∫ ∞

0

∫ ∞

0

|g(p) − g(q)|2 kC
0 (p, q)

dp

p

dq

q
.

Recalling the explicit expressions (C.4) and (C.5) for kB
1/2 and kC

0 and estimat-
ing Q1 ≥ 0 we conclude that

〈ψ,B(0)

κBψ〉 ≥ (1 + (2/π)2)−1〈ψ,C(0)

κCψ〉,

which proves the assertion on the subspace H1/2,0. Now assume that ψ ∈(
H1/2,0 ⊕ H1/2,1

)⊥
. Since κB

j is monotone increasing in j, see Appendix C, we
have on that subspace

|p| ≥
κB

3/2

2

(
|x|−1 + ωp · σ |x|−1 ωp · σ

)
.

We conclude that

〈ψ,B(0)
κBψ〉 ≥

κB
3/2 − κB

1/2

κB
3/2

〈ψ, |p|ψ〉 ≥
κB

3/2 − κB
1/2

κB
3/2

〈ψ,C(0)
κCψ〉,

proving the assertion.

2.2.2 Proof of the Sobolev inequality

We are now ready to give a

Proof of Theorem 2.5. By scaling, (2.19) is equivalent to the inequality

‖ψ‖2
q ≤ C′

q

(〈
ψ,B

(0)
κBψ

〉
+ ‖ψ‖2

)
.

This, together with the triangle inequality, shows that it is enough to prove
the inequality separately on the subspaces H1/2,1 and H⊥

1/2,1. On the latter
subspace, the claim follows immediately from Lemma 2.7 above and the Sobolev
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inequality for the critical Chandrasekhar operator [30, Corollary 2.5]. We now
reduce the claim for the subspace H1/2,1 to that for H1/2,0. For this purpose,

we note that the helicity operator H = ωp · σ, cf. (B.1), commutes with B
(0)
κ

and, by (B.2), maps Hj,l into Hj,2j−l. Hence if ψ ∈ H1/2,1 then by the Sobolev
inequality on H1/2,0

〈
ψ,B

(0)

κBψ
〉

+ ‖ψ‖2 =
〈
Hψ,B

(0)

κB Hψ
〉

+ ‖Hψ‖2 ≥ const ‖Hψ‖2
q.

By Lemma B.1 the helicity H = H−1 is bounded on Lq(R3,C2).

2.3 Estimates on the electric potential

The goal of this subsection is to compare twisted and untwisted electric poten-
tials. We begin with an estimates for point charges and then turn to smeared
out charges.

Lemma 2.8. Let l ≥ 1 and ψ ∈ Hj,l. Then

∣∣〈ψ,
(
|x|−1 − U(|x|−1)

)
ψ
〉∣∣ ≤ const

l2
〈ψ,p2ψ〉. (2.24)

Proof. By orthogonality it suffices to prove the assertion for ψ ∈ Hj,l,m. Its

Fourier transform is of the form ψ̂(p) = f(p)p−1Ωj,l,m(ωp), cf. Appendix A,
and we compute similarly as in (C.11)

〈ψ,
(
|x|−1 − U(|x|−1)

)
ψ〉

=
1

π

∫ ∞

0

dp f(p)

∫ ∞

0

dq f(q)
{
[1 − φ0(p)φ0(q)]Ql

(
1
2

(
q
p + p

q

))

−φ1(p)φ1(q)Q2j−l

(
1
2

(
q
p + p

q

))}

=
1

2π
(A1 +A2)

with

A1 :=

∫ ∞

0

dp f(p)

∫ ∞

0

dq f(q)

1∑

ν=0

(φν(p) − φν(q))
2
Ql

(
1
2

(
q
p + p

q

))
,

A2 :=2

∫ ∞

0

dp f(p)

∫ ∞

0

dq f(q)φ1(p)φ1(q)

×
[
Ql

(
1
2

(
q
p + p

q

))
−Q2j−l

(
1
2

(
q
p + p

q

))]
.

We estimate these terms separately. For the first term we use (B.5) and (B.6)
together with Abel’s argument to turn Hermitian integral operators into mul-
tiplication operators by means of the Schwarz inequality (see also [46, Ineq.
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(6.9)]). Since the Ql are positive, we obtain

A1 ≤
∫ ∞

0

dp
|f(p)|2
E(p)4

∫ ∞

0

dq

(
p

q

)2

E(p)2

×
1∑

ν=0

(φν(p) − φν(q))2E(q)2Ql

(
1
2

(
q
p + p

q

))

≤5

8

∫ ∞

0

dp
|f(p)|2
E(p)4

∫ ∞

0

dq

(
p

q

)2

(p− q)2Ql

(
1
2

(
q
p + p

q

))

=
5

8

∫ ∞

0

dp
|f(p)|2
E(p)4

p3

∫ ∞

0

dq

q2
(1 − q)2Ql

(
1
2

(
q + q−1

))
.

We now use the bounds p3/E(p)4 ≤ p2 and, for q ≥ 1, (1− q)2 ≤ q2 − 1 which
yield

∫ ∞

0

dq

q2
(1 − q)2Ql

(
1
2

(
q + q−1

))
= 2

∫ ∞

1

dq

q2
(1 − q)2Ql

(
1
2

(
q + q−1

))

≤ 4

∫ ∞

1

dxQl(x) =
4

l(l+ 1)
,

where the last step involved [16, 324(18)]. Thus,

A1 ≤ 5

2l(l+ 1)

∫ ∞

0

dp p2|f(p)|2 =
5

2l(l+ 1)
〈ψ,p2ψ〉.

We estimate the term A2 similarly by the Schwarz inequality,

A2 ≤ 2

∫ ∞

0

dp|f(p)|2 |φ1(p)|2

×
∫ ∞

0

dq
p

q

∣∣∣Ql

(
1
2

(
q
p + p

q

))
−Q2j−l

(
1
2

(
q
p + p

q

))∣∣∣

≤ 4

∫ ∞

0

dp|f(p)|2p2

×
∫ ∞

1

dq

q

∣∣Ql

(
1
2

(
q + q−1

))
−Q2j−l

(
1
2

(
q + q−1

))∣∣ .

Due to the pointwise monotonicity (C.10) the difference inside the modulus is
of definite sign. Without loss of generality, we may therefore assume 2j = 2l+1.
Using the integral representation (C.1) we can bound

∫ ∞

1

dq

q

[
Ql

(
1
2

(
q + q−1

))
−Ql+1

(
1
2

(
q + q−1

))]

=

∫ ∞

1

dzz−l−2 (z − 1)

∫ 1
2 (z+z−1)

1

dx√
x2 − 1

1√
1 − 2xz + z2

≤ π√
2

∫ ∞

1

dzz−l−5/2 (z − 1) =
π√

2(l + 1
2 )(l + 3

2 )
.
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Adding the estimates for A1 and A2 we arrive at (2.24).

Note that our proof shows that one can choose different powers of |p| on the
right hand side of (2.24).

Lemma 2.9. There exists a constant such that for any electric potential v of a
spherically symmetric non-negative charge density

|〈ψ, (v − U(v))ψ〉| ≤ const v(0) 〈ψ,p2ψ〉.

Proof. We denote by τ : R3 → [0,∞) the spherically symmetric, non-negative
charge density corresponding to v, i.e., v(x) =

∫
τ(x−y) |y|−1dy. The Fourier

transform of τ obeys the estimates

|τ̂(p)| =

√
2

π p2

∣∣∣∣
∫ ∞

0

r sin(|p|r) τ(r)dr
∣∣∣∣ ≤

v(0)

(2π)3/2 |p| .

By Fourier transform the scalar product on the left side of the assertion becomes

〈ψ, (v − U(v))ψ〉

=

√
2

π

∫∫
ψ̂(p)∗

τ̂ (p − q)

|p − q|2 (1 − Φ0(p)Φ0(q) − Φ1(p)Φ1(q)) ψ̂(q)dpdq.

Using Lemma B.2 we estimate the absolute value of the preceding expression
from above by the sum of two terms, B1 and B2. The first term can be further
bounded as follows,

B1 = const

∫∫
|τ̂ (p − q)||ψ̂(p)||ψ̂(q)| dpdq

≤ const v(0)

∫
dp |ψ̂(p)|2

∫ ( |p|
|q|

)5/2
1

|p − q| dq

≤ const v(0)

∫
|ψ̂(p)|2p2 dp,

where we use the Schwarz inequality in the second step. The second term is
estimated similarly

B2 = const

∫∫
|τ̂ (p − q)|

√
|p| |q|

|p − q| |ψ̂(p)||ψ̂(q)| dpdq

≤ const v(0)

∫
dp |ψ̂(p)|2

∫ ( |p|
|q|

)2 √|p| |q|
|p − q|2 dq

≤ const v(0)

∫
|ψ̂(p)|2|p|2 dp.

This proves the assertion.
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3 Spectral shift from Schrödinger to Brown-Ravenhall opera-
tors

The main theme of this section is the (integrated) spectral shift, i.e., the differ-
ence of sums of eigenvalues of the Brown-Ravenhall or Chandrasekhar operator

B[v] :=
√

p2 + 1 − 1 − U(v), C[v] :=
√

p2 + 1 − 1 − v,

(cf. (2.2)) and the Schrödinger operator S[v] := 1
2p

2 − v, all acting in the
Hilbert space H = L2(R3,C2) of two-spinors. We have set c = 1.
Concerning the potential v : R3 → R we will always assume that the above oper-
ators can be defined through the Friedrichs extension starting from S(R3,C2).
For example, the condition 0 ≤ v(x) ≤ κ# |x|−1 with # = B, C (cf. (2.3)) en-
sures that the Brown-Ravenhall, respectively the Chandrasekhar operator are
well-defined and bounded from below (see [17] and [40]).
We assume throughout that the potential v is radially symmetric which allows
us to investigate the spectral shift on each subspace Hj,l in the decomposition
(2.4) separately. We write Λj,l for the orthogonal projection onto Hj,l. For the
reduced traces we use the notations

trj,l(A) := tr(Λj,lA), trj(A) := trj,j+1/2(A) + trj,j−1/2(A). (3.1)

3.1 Estimate on the spectral shift

One of the key observations in our proof of the Scott correction is that the
spectral shift between the one-particle Brown-Ravenhall and the Schrödinger
operator decreases sufficiently fast for high angular momenta.

Theorem 3.1 (Spectral shift: Brown-Ravenhall case). There exists a
constant C <∞ such that for any κ ≤ κB, any v : [0,∞) → [0,∞) satisfying

v(r) ≤ κ r−1, (3.2)

any µ > 0 and any j ∈ N0 + 1/2 one has

trj

(
[B[v] + µ]− − [S[v] + µ]−

)
≤ C κ4 j−2. (3.3)

We derive this result from a corresponding theorem for the Chandrasekhar
operator. For a proof of the latter we need to strengthen [31, Thm. 2]. In
particular, we need to consider C[v] for potentials v satisfying (3.2) also in case
κC < κ ≤ κB. Those operators are not densely defined in the Hilbert space H.
However, according to (C.8) below, they are densely defined in the subspaces
Hj,l with j ≥ 3/2. Another new aspect is that we trace the dependence on the
coupling constant.

Theorem 3.2 (Spectral shift: Chandrasekhar case). There exists a
constant C <∞ such that for all l ∈ N0, j = l ± 1

2 , for all κ satisfying

κ ≤
{
κC if l = 0,
κB if l ≥ 1,
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for all µ ≥ 0 and for all v : [0,∞) → [0,∞) satisfying (3.2), one has

0 ≤ trj,l

(
[C[v] + µ]− − [S[v] + µ]−

)
≤ C

κ4

(l + 1
2 )2

. (3.4)

One of the key points to be appreciated in the above theorems is an effective
cancellation in the differences in (3.4) and (3.3). This can already be seen for
Coulomb potentials v(r) = κr−1, where

trj,l [Sκ]− = (2j + 1)
κ2

2

∞∑

n=1

1

(n+ l)2
,

which does not decay at all as j → ∞. Moreover, for fixed j and l the above
trace vanishes only like κ2 as κ → 0. It is rather remarkable that such cancel-
lations occur uniformly for all attractive potential v satisfying (3.2).
The following proof of Theorem 3.2 follows the ideas of [31, Thm. 2]. It is
not only included to render the paper self-contained, but also to establish the
above mentioned improvement, which is important for the present paper.

Proof of Theorem 3.2. We note that both traces trj,l [C[v] + µ]− and
trj,l [S[v] + µ]− are finite. This follows by the variational principle from
the case v(r) = κr−1, cf. Theorem 2.2 in the Chandrasekhar case. Thus, for
l < 3 say, it is enough to show the claim for κ in a neighborhood of 0. More
precisely, we can assume κ ≤ 1√

8
(l + 1

2 ) which covers all κ ≤ κB for l ≥ 3.

Moreover, by an approximation argument it is sufficient to consider µ > 0 and
bounded potentials v, cf. [31].
We denote by γj,l the orthogonal projection onto the eigenspace of C[v] corre-
sponding to angular momenta j, l and eigenvalues less or equal than −µ. The
identity

1
2p

2 = C0 + 1
2C

2
0 (3.5)

and the variational principle (cf. [43, Thm. 12.1]) imply

0 ≤ 2 trj,l

(
[C[v] + µ]− − [S[v] + µ]−

)
≤ tr

[
C2

0γj,l

]
. (3.6)

Using the eigenvalue equation and the bound (3.2) on the potential we estimate
this term further as follows.

tr
[
C2

0γj,l

]
≤ trj,l [C[v]]

2
− + tr

[
v2γj,l

]
≤ trj,l [Cκ]

2
− + κ2 tr

[
|x|−2γj,l

]
.

Using Hardy’s inequality and (3.5)

tr
[
|x|−2γj,l

]
≤
(
l + 1

2

)−2
tr
[
p2γj,l

]

=
(
l+ 1

2

)−2 (
tr
[
C2

0γj,l

]
+ 2 tr [C0γj,l]

)
.

Since κ < l + 1
2 , the last two estimates may be summarized as

tr
[
C2

0γj,l

]
≤
(

1 − κ2

(l + 1
2 )2

)−1(
trj,l [Cκ]

2
− +

2κ2

(l + 1
2 )2

tr [C0γj,l]

)
. (3.7)
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We shall estimate the two terms on the right hand side separately. From [31,
Lemma 3] we recall the following angular momentum barrier inequality on Hj,l,

C0 ≥ 2κr−1χ{r≤Rl(κ)}, Rl(κ) = 1
8κ (l + 1

2 )2. (3.8)

(Here we use that κ ≤ 1√
8
(l + 1

2 ).) This implies

tr [C0γj,l] ≤ κ tr
[
|x|−1γj,l

]
≤ 1

2
tr [C0γj,l] +

1

4
tr [wlγj,l]

=
3

4
tr [C0γj,l] −

1

4
tr [C[wl]γj,l]

where wl(r) := 4κr−1χ{r≥Rl(κ)}. Hence, using the variational principle fol-
lowed by Daubechies’ inequality [9] (cf. also [31, Prop. 1])

tr [C0γj,l] ≤ trj,l [C[wl]]−

≤ const (2l+ 1)

(∫ ∞

0

wl(r)
3/2 dr +

∫ ∞

0

wl(r)
2 dr

)
≤ const κ2. (3.9)

In order to estimate the first term on the right hand side of (3.7) we use (3.8)
to obtain on Hj,l

Cκ ≥ 1
2C0 − κr−1χ{r≥Rl(κ)} ≥ 1

2C[wl].

with wl as above. Hence again by Daubechies’ inequality

trj,l [Cκ]
2
− ≤const (2l+ 1)

(∫ ∞

0

wl(r)
5/2 dr +

∫ ∞

0

wl(r)
3 dr

)

≤const κ4(l + 1
2 )−2.

Combing this with (3.9), (3.7), and (3.6) completes the proof.

Having finished the proof of Theorem 3.2 it is easy to give the

Proof of Theorem 3.1. Since the trace trj [B[v] + µ]− is finite according to The-

orem 2.1 we may assume that either κ ≤ κC and j = 1/2, or else that j ≥ 3/2.
In this case, the claim essential boils down to Theorem 3.2. To see this, we
note the identity

B[v] = U(C[v]) = 1
2 (U(p)∗C[v]U(p) + U(p)C[v]U(p)∗) (3.10)

involving the unitary operator U(p) := Φ0(p)+iΦ1(p) (see also (2.1)). Equality
(3.10) as well as the unitarity of U(p) are easily derived from the fact that
Φ2

0(p) + Φ2
1(p) = 1.

Even if v satisfies (3.2) only with a κC < κ ≤ κB, identity (3.10) remains
valid on all subspaces Hj with j ≥ 3/2. Hence by the concavity of the sum of
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negative eigenvalues [72] of B[v] + µ one has for any µ ≥ 0

trj [B[v] + µ]−

≤1

2
trj [U∗(p)C[v]U(p) + µ]− +

1

2
trj [U(p)C[v]U∗(p) + µ]−

= trj [C[v] + µ]− . (3.11)

By (3.4) the trace in (3.3) is thus bounded from above by

trj

(
[C[v] + µ]− − [S[v] + µ]−

)
≤ const κ4j−2,

as claimed.

3.2 Properties of the spectral shift

In this subsection we discuss some properties of the spectral shift s(κ) defined
in (1.8).

Lemma 3.3 (Properties of the spectral shift). The spectral shift s is a
continuous, non-negative function on (0, κB] satisfying s(κ) = O(κ2) as κ ↓ 0.

Proof. According to (2.6) and Theorem 3.1 one has

0 ≤ sj(κ) := κ−2 trj

(
[Bκ]− − [Sκ]−

)
≤ const κ2j−2.

Therefore the sum s(κ) =
∑

j sj(κ) converges, is non-negative and satisfies
the claimed asymptotic estimate as κ ↓ 0. By the min-max principle each
eigenvalue depends continuously on κ. Thus the continuity of their sum follows
from the estimates in Theorem 2.1 and the Weierstraß criterion for uniform
convergence.

4 Proof of the Scott correction

The strategy of the proof of the main results is similar to the one used for
the Chandrasekhar operator [31]. We employ the Schrödinger operator as a
regularization for the relativistic problem, i.e., we will use it to eliminate the
main contribution to the energy (the Thomas-Fermi energy) and focus only
on the energy shift of the low lying states. For these the electron-electron
interaction plays no role and the unscreened problem remains. We define

ES(Z) := inf{ES
Z (ψ) |ψ ∈ QS

Z , ‖ψ‖ = 1}

to be the ground state energy in the Schrödinger case,

ES
N (ψ) :=

〈
ψ,




N∑

ν=1

(
1

2
p2

ν − Z|xν |−1

)
+

∑

1≤µ<ν≤N

|xµ − xν |−1


ψ
〉
.
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It is defined on QS
N := HS

N ∩S(R3N ,C2N

), where HS
N :=

∧N
ν=1 H is the Hilbert

space of anti-symmetric two-spinors. We recall that we suppose neutrality, i.e.,
N = Z.

The asymptotics of the Schrödinger ground-state energy up to Scott correction
reads [55]

ES(Z) = ETF(Z) + 1
2 Z

2 + O(Z47/24). (4.1)

For our purpose this remainder estimate is sufficient. However, even the coef-
ficient of the Z5/3-term in the asymptotic expansion is known [23, 24, 25, 18,
26, 21, 19, 20, 22].

Our main result, Theorem 1.1, will follow from (4.1) if we can show that in the
limit Z → ∞ the difference of the Schrödinger and Brown-Ravenhall ground-
state energy satisfies

ES(Z) − EB
c (Z) = s(Z/c)Z2 + O(Z47/24) (4.2)

uniformly in κ = Z/c ∈ (0, κB]. We break the proof of this assertion into an
upper and lower bound.

4.1 Upper bound on the energy difference

The Thomas-Fermi functional (1.7) has a unique minimizer ̺Z , the Thomas-
Fermi density (Lieb and Simon [44]). It scales as ̺Z(x) := Z2̺1(Z

1/3x). We
set

φTF(x) := Z|x|−1 −
∫

R3

̺Z(y)

|x − y| dy, (4.3)

the Thomas-Fermi potential, and

LTF(x) :=

∫

|x−y|<RZ(x)

̺Z(y)

|x − y| dy,

the exchange hole potential. Here RZ(x) is defined as the (unique) minimal
radius for which

∫
|x−y|≤RZ(x)

̺Z(y)dy = 1
2 . The corresponding one-particle

operators – self-adjointly realized in H – are

STF = S[φTF + LTF], BTF = Bc[φTF + LTF].

Here we use a notation analogous to that in (1.5).

We shall express the many-particle ground-state energies ES(Z) and EB
c (Z)

in terms of quantities involving the above one-particle operators. In the
Schrödinger case, this was achieved in [55, 58] in terms of the Thomas-Fermi
potential φTF. Our point in the proof of the following proposition is to replace
φTF by the exchange hole reduced potential φTF + LTF.
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Proposition 4.1. Let J :=
[
Z1/9

]
+ 1

2 . Then, as Z → ∞,

ES(Z)

= −
J−1∑

j=1/2

trj

[
S[Z|x|−1]

]
− −

Z+1/2∑

j=J

trj [STF]− −D(̺Z , ̺Z) +O(Z47/24).

(4.4)

Since φTF + LTF has a Coulomb tail, the trace trj [STF]− is finite for each j,
but not summable with respect to j. It is therefore essential to restrict the
second sum to a finite number of angular momenta. However, the value of the
cut-off, j ≤ Z + 1/2, is not chosen optimally here, since for our argument it is
largely arbitrary.

Proof of Proposition 4.1. According to the correlation inequality [47]

ES(Z) ≥ −
Z+1/2∑

j=1/2

trj [STF]− −D(̺Z , ̺Z).

Note that the Z electrons can certainly be accommodated in the first Z angular
momentum channels (which is a very crude bound). Estimating φTF+LTF from
above by the Coulomb potential for small angular momenta, we obtain

ES(Z) ≥ −
J−1∑

j=1/2

trj

[
S[Z|x|−1]

]
− −

Z+1/2∑

j=J

trj [STF]− −D(̺Z , ̺Z). (4.5)

Moreover, see [55, 58],

ES(Z)

≤ −
J−1∑

j=1/2

trj

[
S[Z|x|−1]

]
− −

∞∑

j=J

trj [S[φTF]]− −D(̺Z , ̺Z) + const Z47/24.

Hence it suffices to prove that

−
Z+1/2∑

j=J

trj [STF]− ≥ −
∞∑

j=J

trj [S[φTF]]− − const Z5/3 (4.6)

(Note that the lower bound in [31] contains an error by estimating [31, Equation
(43)] too generously. Really, only the first Z lowest negative eigenvalues need
to occur on the right hand side instead of all. In particular, there will be never
more than Z total angular momentum channels occupied. This fact is taken
into account here yielding a suitable lower bound. The problem in [31] can be
circumvented in exactly the same way.) We decompose LTF = L< +L> where

L< = χ{|x|<R}LTF, L> = χ{|x|≥R}LTF,
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with a constant R (independent of Z) to be chosen below. For ε > 0 to be
specified later we estimate using the variational principle for sums of eigenvalues

trj [STF]−

≤ trj(
1
2 (1−2ε2)p2−φTF)− + ε2 trj(

1
2p

2− ε−2L<)− + ε2 trj(
1
2p

2− ε−2L>)−.
(4.7)

By the subsequent lemma the first (and main) term is bounded according to

Z+1/2∑

j=J

trj(
1
2 (1 − 2ε2)p2 − φTF)− −

∞∑

j=J

trj(
1
2p

2 − φTF)−

≤ tr(1
2 (1 − 2ε2)p2 − φTF)− − tr(1

2p
2 − φTF)− ≤ const ε2Z7/3.

For the second term on the right side of (4.7) we use the Lieb-Thirring inequal-
ity [45] to obtain

ε2
Z+1/2∑

j=J

trj(
1
2p

2 − ε−2L<)− ≤ ε2 tr(1
2p

2 − ε−2L<)−

≤ const ε−3

∫
L<(x)5/2 dx ≤ const ε−3Z2/3.

In the last inequality we used a bound of Siedentop and Weikard [58, Proof of
Lemma 2]. It is at this point that R is chosen. The penultimate inequality in
[58, Proof of Lemma 2] asserts after scaling that L>(x) ≤ const |x|−1. Hence
by comparison with the exact hydrogen solution

ε2
Z+1/2∑

j=J

trj(
1
2p

2 − ε−2L>)− ≤ ε2
Z+1/2∑

j=1/2

trj(
1
2p

2 − ε−2const |x|−1)−

=const ε−2

Z+1/2∑

j=1/2

∞∑

n=1

2j + 1

(n+ j − 1/2)2
≤ const ε−2Z.

Choosing ε = Z−1/3 all the error terms are O(Z5/3), proving (4.6).

In the previous proof we used

Lemma 4.2. For all 0 < ε ≤ 1/2, as Z → ∞,

tr(1
2 (1 − ε2)p2 − φTF)− ≤ tr(1

2p
2 − φTF)− + const ε2Z7/3. (4.8)

Note that there are only a finite number of eigenvalues, since φTF decays like
|x|−4.
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Proof. Let dε
TF be the projection onto the negative eigenvalues of 1

2 (1− ǫ2)p2−
φTF. Then, by the variational principle

tr(1
2 (1 − ε2)p2 − φTF)− − tr(1

2p
2 − φTF)−

≤ − tr dε
TF(1

2 (1 − ε2)p2 − φTF) + tr dε
TF(1

2p
2 − φTF) = ε2

2 tr dε
TFp

2. (4.9)

Hence the claim will follow, if we show that tr dε
TFp

2 ≤ const Z7/3. Note
that dε

TF depends on both ε and Z, and by rescaling one may get rid of the
ε dependence at the expense of changing Z. We may therefore assume that
ε = 0 and write dTF = d0

TF.
Thus, it remains to prove

tr dTFp
2 ≤ const Z7/3. (4.10)

Note that this says that the kinetic energy is bounded by the order of the total
energy tr dTF(1

2p
2 −φTF), which is well-known to be of order Z7/3. Using that

φTF is bounded by a constant times min{Z|x|−1, |x|−4} (see [44]) we get for
any R > 0

1
2 tr dTFp

2 ≤ tr dTFφTF

≤ const



(∫

{|x|<R}
(Z|x|−1)5/2 dx

)2/5(∫
dTF(x,x)5/3 dx

)3/5

+R−4

∫
dTF(x,x) dx

)
.

The Cwikel-Lieb-Rozenblum inequality (for a textbook presentation, see, e.g.,
[63]) guarantees that

∫
dTF(x,x) dx ≤ const

∫
φTF(x)3/2dx = const Z.

Moreover, by the Lieb-Thirring inequality [45]

∫
dTF(x,x)5/3 dx ≤ const tr dTFp

2.

We can estimate for any δ > 0

(∫

{|x|<R}
(Z|x|−1)5/2 dx

)2/5(∫
dTF(x,x)5/3 dx

)3/5

≤ const ZR1/5
(
tr dTFp

2
)3/5

≤ δ tr dTFp
2 + const δ−3/2Z5/2R1/2.
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In summary, we have shown that

(
1
2 − const δ

)
tr dTFp

2 ≤ const
(
δ−3/2Z5/2R1/2 +R−4Z

)
.

Choosing δ small (of order one) and R = Z−1/3 we obtain (4.10).

Next, we bound the many-particle ground state energy of the Brown-Ravenhall
operator from below by one-body quantities which match the corresponding
quantities in the Schrödinger case (4.4).

Lemma 4.3. For all J ∈ N0 + 1/2 and Z ∈ N

EB
c (Z) ≥ −

J−1∑

j=1/2

trj

[
Bc[Z|x|−1]

]
− −

Z+1/2∑

j=J

trj [BTF]− −D(̺Z , ̺Z).

Proof. This follows by the same argument leading to (4.5).

We are now ready to give a

Proof of Theorem 1.1 – first part. Choosing J =
[
Z1/9

]
+ 1

2 and combining
Proposition 4.1 and Lemma 4.3 we obtain

ES(Z) − EB
c (Z) ≤

J−1∑

j=1/2

trj

([
Bc[Z|x|−1]

]
− −

[
S[Z|x|−1]

]
−

)
(4.11)

+

Z+1/2∑

j=J

trj

(
[BTF]− − [STF]−

)
+ O(Z47/24).

We note that by scaling x 7→ x/c, the operators S[Z|x|−1] and Bc[Z|x|−1]
are unitarily equivalent to the operators Z2κ−2Sκ and Z2κ−2Bκ where κ =
Z/c. Similarly, STF and BTF are unitarily equivalent to the operators
Z2κ−2S[κ|x|−1 − χc] and Z2κ−2B[κ|x|−1 − χc] acting in H, where

χc(x) := c−4

∫

|x−y|>cRZ(c−1x)

̺Z(c−1y)

|x − y| dy.

This implies that the first two terms on the right-hand side of (4.11), which we
denote by Σ1(Z, c) and Σ2(Z, c), can be rewritten as

Σ1(Z, c) =Z2κ−2
J−1∑

j=1/2

trj

(
[Bκ]− − [Sκ]−

)
,

Σ2(Z, c) =Z2κ−2

Z+1/2∑

j=J

trj

([
B[κ|x|−1 − χc]

]
− −

[
S[κ|x|−1 − χc]

]
−

)
.
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Inequality (2.6) and Theorem 3.1 guarantee that the terms in the first sum are
non-negative and that the terms in both sums are bounded from above by a
constant times κ4j−2 independently of Z and c. Therefore, the first sum can
be bounded from above by an absolutely convergent series,

Σ1(Z, c) ≤ Z2κ−2
∞∑

j=1/2

trj

(
[Bκ]− − [Sκ]−

)
= Z2 s(κ).

By the same token

Σ2(Z, c) ≤ const Z2κ2
∞∑

j=J

j−2 = O(Z17/9),

uniformly in c. This concludes the proof of the upper bound on the energy
difference.

4.2 Lower bound on the energy difference

Similarly to [55] we define one-particle density matrices dS and dB on H as
sums

d# = d#
< + d>, # = S,B. (4.12)

The contribution of small total angular momenta, d#
< =

∑
l<L d

#
l , is defined

in Appendix E.1. It comes from the eigenspinors of the atomic problems. The
contribution of large angular momentum, d> =

∑∞
l=L dl, is defined in Ap-

pendix E.2. It corresponds to the Macke orbitals of [55] and, in particular, co-
incides for the Schrödinger and Brown-Ravenhall case. The angular-momentum
cut-off L will be chosen in a Z-dependent way, namely,

L := [Z1/12].

Important properties of the density matrices, whose construction is explained
in more detail in Appendix E, are:

• The densities

ρ#(x) := trC2

(
d#(x,x)

)
, ρ#

l (x) := trC2

(
d#

l (x,x)
)
,

ρ#
<(x) :=

∑

l<L

ρ#
l (x), ρ>(x) :=

∑

l≥L

ρl(x).

of d#, d#
l , and d> are all spherically symmetric.

• The dimension of the ranges of the density matrices dS and dB is at most
Z, in particular tr d# ≤ Z. Moreover,

tr d#
l =

∫
ρ#

l (x) dx = 2(2l+ 1)(K − l), 0 ≤ l < L, (4.13)

with K = [const Z1/3] and a suitable constant.
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For a lower bound on the ground state energy in the Schrödinger case, we recall
from [55] and [31, Proposition 4] the following

Proposition 4.4. For large Z,

ES(Z) = tr
[
S[Z|x|−1] dS

]
+D(ρS , ρS) + O(Z47/24).

To obtain an upper bound on the ground state energy in the Brown-Ravenhall
case, we use the reduced Hartree-Fock variational principle. It involves the
density

ρB
U (x) := trC2

(
Uc(d

B)(x,x)
)

of the twisted density matrix Uc(d
B).

For further reference, we also set

ρB
U,l(x) := trC2

(
Uc(d

B
l )(x,x)

)
, ρB

U,<(x) :=
∑

l<L

ρB
U,l(x),

ρU,>(x) :=
∑

l≥L

ρU,l(x).

Applying to (1.1) the Hartree-Fock variational principle – in the strengthened
version of Lieb [42] (see also Bach [2]) – and omitting the manifestly negative
exchange energy we arrive at

Proposition 4.5. For all Z and c,

EB
c (Z) ≤ tr[Bc[Z|x|−1] dB ] +D(ρB

U , ρ
B
U ).

Combining Propositions 4.4 and 4.5 we find

EB
c (Z) − ES(Z)

≤ tr[Bc[Z|x|−1]dB]− tr[S[Z|x|−1]dS ] +D(ρB
U − ρS , ρB

U + ρS)+ const Z47/24.

Now we use the inequality p2 ≥ 2c2(E(p/c) − 1) for the kinetic energy corre-
sponding to d>. Moreover, we write

D(ρB
U − ρS , ρB

U + ρS) = D(ρU,> − ρ>, ρU,> + ρ>) + 2D(ρB
U,<, ρ

B
U + ρS)

−D(ρB
U,< + ρS

<, ρ
B
U,< + ρS

<) − 2D(ρB
U,< + ρS

<, ρ>)

and drop the two negative terms on the right hand side. We arrive at

EB
c (Z) − ES(Z) ≤ tr

[
Bc[

Z
|x| ]d

B
<

]
− tr

[
S[ Z

|x| ]d
S
<

]
+ tr

[(
Z
|x| − Uc(

Z
|x|)
)
d>

]

︸ ︷︷ ︸
=:R1

+D(ρU,> − ρ>, ρU,> + ρ>)︸ ︷︷ ︸
=:R2

+2D(ρB
U,<, ρ

B
U + ρS)

︸ ︷︷ ︸
=:R3

+const Z47/24. (4.14)

As we shall see, the first two terms will yield the Scott correction. In the follow-
ing subsections we prove that R1, R2, and R3 are relatively small remainder
terms. Hence, we wish to control the effects of the twisting operation Uc, which
stems from the electronic projection, on the electrostatic Coulomb energy.
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4.2.1 Controlling the electron projection for high angular mo-
menta

Our task in this subsection is to prove that for large angular momenta, the
twisted and untwisted electrostatic energy are asymptotically equal.
We start by comparing the electric potential energy with or without electron
projection for large angular momentum. This will imply that the term R1 in
(4.14) is relatively small.

Lemma 4.6. In the limit Z → ∞ one has uniformly in κ = Z/c ∈ (0, κB]

∫
(ρ>(x) − ρU,>(x))

dx

|x| = tr
[(
|x|−1 − Uc(|x|−1)

)
d>

]
= O(Z11/12).

Proof. Let {ψα} stand for the Macke orbitals building up d> which we label
by α = (j, l,m, n); see (E.1) and preceding equations in Appendix E.2. By the
scaling x 7→ x/c one has the relation

〈
ψα,

[
|x|−1 − Uc(|x|−1)

]
ψα

〉
= c

〈
ψ(c)

α ,
[
|x|−1 − U1(|x|−1)

]
ψ(c)

α

〉

where ψ
(c)
α (x) := c−3/2ψα(x/c). Assuming that α corresponds to a fixed (large)

(j, l) we may use Lemma 2.8 to estimate the right-hand side by a constant times

c

l2

〈
ψ(c)

α ,p2ψ(c)
α

〉
=

1

l2 c

〈
ψα,p

2ψα

〉
.

Using that Z/c ≤ κB we obtain the estimate

tr
[(
|x|−1 − Uc(|x|−1)

)
d>

]
≤ const

κB

Z

∞∑

l=L

1

l2

∑

j=l±1/2

trj,l

[
p2d>

]
.

The proof is completed using Lemma E.1 from Appendix E.3.

Next, we estimate the difference of Coulomb energies corresponding to large
total angular momenta. This shows that the term R2 in (4.14) may be ne-
glected.

Lemma 4.7. In the limit Z → ∞,one has uniformly in κ = Z/c ∈ (0, κB]

R2 = D(ρU,> − ρ>, ρ> + ρU,>) = O(Z5/3).

Proof. We define v := (ρ> +ρU,>)∗ | · |−1 to be the electric potential generated
by ρ> + ρU,> which is obviously spherically symmetric and obeys

v(0) = tr
[
d>

(
|x|−1 + Uc(|x|−1)

)]

= 2 tr
[
d>|x|−1

]
− tr

[
d>

(
|x|−1 − Uc(|x|−1)

)]
.
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According to [55] (see also (E.8)) the first term on the right side is O(Z4/3).
Moreover the second term is O(Z11/12) by Lemma 4.6, hence much smaller
than the first term. Now,

D(ρ> − ρU,>, ρ> + ρU,>) = 1
2 tr [d> (v − Uc(v))] . (4.15)

Decomposing the trace in (4.15) into the orbitals contributing to d> and scaling
x 7→ x/c enables us to employ Lemma 2.9 to obtain the bound

tr [d> (v − Uc(v))] ≤
const

c2
v(0) tr

[
d>p2

]
.

This concludes the proof, since again from [55] (see (E.8)) we conclude that
the trace on the right-hand side is O(Z7/3).

4.2.2 Contribution from low angular momenta to the Coulomb
energy

We now show that the term R3 in (4.14) is negligible.

Lemma 4.8. In the limit Z → ∞ one has uniformly in κ = Z/c ∈ (0, κB]

R3 = D(ρB
U,<, ρ

B
U + ρS) = O(Z11/6 logZ).

Proof. We first treat the termD(ρB
U,<, ρU,>+ρ>). By construction the densities

ρB
U,j are spherically symmetric and satisfy according to (4.13)

∫
ρB

U,l(x) dx =

∫
ρB

l (x) dx = 2(2l+ 1)(K − l), 0 ≤ l < L. (4.16)

Recalling the choice of K and L we see that
∫
ρB

U,<(x) dx = O(Z1/2). (4.17)

It follows from (E.8) and Lemma 4.6 that

∫
ρU,>(x) + ρ>(x)

|x| dx = O(Z4/3).

Hence Newton’s theorem [49] yields

D(ρB
U,<, ρU,> + ρ>) ≤ 1

2

∫
ρB

U,<(x)dx

∫
ρU,>(y) + ρ>(y)

|y| dy = O(Z11/6).

In the remainder of the proof we are concerned with the term
D(ρB

U,<, ρ
B
U,< + ρS

<). Noting that

D(ρB
U,<, ρ

B
U,< + ρS

<) ≤ 3

2
D(ρB

U,<, ρ
B
U,<) +

1

2
D(ρS

<, ρ
S
<).
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and that according to [55, Prop. 3.5] D(ρS
<, ρ

S
<) = O(Z11/6), it suffices to

consider D(ρB
U,<, ρ

B
U,<). We split the lowest angular momentum corresponding

to l ≤ 2Z/c− 1/4 =: l0 off and define

dB
⊢ :=

∑

l≤l0

dB
l , dB

⊣ :=

L−1∑

l>l0

dB
l ,

and
ρB

U,⊢ := trC2

(
Uc(d

B
⊢ )(x,x)

)
, ρB

U, ⊣ := trC2

(
Uc(d

B
⊣ )(x,x)

)
.

Note that in case l0 < 0 there is no need for this procedure. Accordingly, we
estimate

D(ρB
U,<, ρ

B
U,<) ≤ 2D(ρB

U,⊢, ρ
B
U, ⊢) + 2D(ρB

U,⊣, ρ
B
U,⊣).

For an estimate of the second part corresponding to l0 < l < L, we apply the
following angular momentum barrier inequality

Bc[0] ≥ Uc

(
2Z

|x| χ{|x|≤rl}

)
(4.18)

on Hj,l, where rl =
(
(l + 1/2)2c2 − 4Z2

)
/(4Zc2) and l > 2Z/c. This bound

follows by applying U1 to the inequality in [31, Lemma 2.6] with Rl = [(l +
1/2)2 − 4κ2]/(4κ) and scaling x 7→ x/c.
Inequality (4.18) implies

tr
[
Uc

(
|x|−1

)
dB

l

]
≤ 1

2Z
tr
[
Bc[0] dB

l

]
+ tr

[
Uc

(
|x|−1χ{|x|>rl}

)
dB

l

]

≤ 1

2
tr
[
Uc

(
|x|−1

)
dB

l

]
+

4Z

(l + 1/2)2 − 4Z2/c2
tr[dB

l ].

Here the last inequality used the fact that eigenfunctions of dB
l are eigenfunc-

tions of Bc[Z|x|−1] with negative eigenvalue. Now, note that

(l + 1/2)2 − 4Z2/c2 = (l + 1/2 + 2Z/c)(l+ 1/2 − 2Z/c) ≥ const (l + 1/2)2

for l ≥ l0. Hence, using (4.16) and summing over l we obtain

∫
ρB

U,⊣(x)

|x| dx =
L−1∑

l>l0

tr
[
Uc(|x|−1)dB

l

]

≤ const Z

L−1∑

l=0

(l + 1/2)−2

∫
ρB

l (x) dx = O(Z4/3 logZ).

Accordingly, Newton’s theorem and (4.17) yield

D(ρB
U,⊣, ρ

B
U,⊣) ≤ 1

2

∫
ρB

U,⊣(x) dx

∫
ρB

U,⊣(x)

|x| dx = O(Z11/6 logZ).
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Finally, we consider the contribution from l ≤ l0. Note that then l ≤ 2κB −
1/4 < 2. We claim that the electrostatic energy corresponding to the electrons
in this subspace is bounded by

D
(
ρB

U,⊢, ρ
B
U,⊢
)
≤ const cK2. (4.19)

Since by the choice of l0 one has 2Z/c ≥ l + 1/4 ≥ 1/4, estimate (4.19) will
imply that D

(
ρB

U,⊢, ρ
B
U,⊢
)
≤ const ZK2 = O(Z5/3) and hence complete the

proof of Lemma 4.8. By scaling it suffices to prove (4.19) for c = 1, which we
will assume in the sequel. The Hardy-Littlewood-Sobolev inequality (see, e.g.,
[43, Thm. 4.3]) implies that

D
(
ρB

U,⊢, ρ
B
U,⊢
)
≤ const

∥∥ρB
U, ⊢
∥∥2

6/5
. (4.20)

The triangle inequality together with the definition of U and (B.2) yields

‖ρU,⊢‖6/5 ≤
∑

α∈A

∑

ν=0,1

‖Φνψα‖2
12/5, (4.21)

where {ψα|α ∈ A} stands for the collection of normalized eigenfunctions build-
ing up dB

⊢ , i.e., the corresponding sum ranges over all indices (j, l,m, n). We
further estimate with the help of Lemma B.1 and Theorem 2.4,

‖Φνψα‖2
12/5 ≤ const ‖ψα‖2

12/5 ≤ const .

This, together with (4.20), (4.21) and the fact that the number of indices in A
is bounded by a constant times K proves (4.19).

4.2.3 Finishing the proof

We repeat (4.14),

ES(Z) − EB
c (Z) ≥ tr[S[ Z

|x| ]d
S
<] − tr[Bc[

Z
|x| ]d

B
<] −R1 −R2 −R3 − const Z

47
24 .

By Lemmata 4.6, 4.7, and 4.8 we have uniformly in κ = Z/c ∈ (0, κB]

R1 = O(Z23/12), R2 = O(Z5/3), R3 = O(Z11/6 logZ),

so these terms are of lower order than Z47/24. Next, we scale x 7→ x/c and
obtain

tr[S[Z|x|−1]dS
<] − tr[Bc[Z|x|−1]dB

<] = Z2s(κ) −R4

where s(κ) is introduced in (1.8) and

R4 := Z2κ−2
L−1∑

l=0

(2l + 1)
∑

j=l±1/2

∞∑

n=K−l+1

(λn(sl(κ)) − λn(bj,l(κ)) .
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By Theorem 2.1 there is a constant such that for all 0 < κ ≤ κB

0 ≤ R4 ≤ Z2κ−2
L−1∑

l=0

(2l + 1)
∑

j=l±1/2

∞∑

n=K−l+1

|λn(bj,l(κ)|

≤ const Z2
L−1∑

l=0

(2l + 1)

∞∑

n=K−l+1

(n+ l)−2

≤ const Z2L2K−1 = O(Z11/6).

This concludes the proof of the lower bound and hence of our main result.
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Note added in proof. After this paper has been submitted, one of us (R. F.)
found an easier proof of a stronger inequality than (2.19). This proof is based
on an inequality from [65] as well as Lemma 2.6 in the present paper; see [29].

A Partial wave analysis

For the convenience of the reader and for normalization of the notation we
gather some fact on the partial wave analysis of the Brown-Ravenhall operator.
We denote by Yl,m the normalized spherical harmonics on the unit sphere S2

(see, e.g., [48], p. 421) with the convention that Yl,m ≡ 0 if |m| > l, and we
define for j ∈ N0 + 1

2 , l ∈ N0, and m = −j, . . . , j the spherical spinors

Ωj,l,m(ω) :=








√
j+m
2j Y

l,m− 1
2
(ω)

√
j−m
2j Y

l,m+
1
2
(ω)


 if j = l + 1

2 ,



−
√

j−m+1
2j+2 Y

l,m− 1
2
(ω)

√
j+m+1
2j+2 Y

l,m+
1
2
(ω)


 if j = l − 1

2 .

(A.1)

The set of admissible indices is I := {(j, l,m) : j ∈ N− 1/2, l = j± 1/2, m =
−j, ..., j}. It is known that the functions Ωj,l,m, (j, l,m) ∈ I, form an orthonor-
mal basis of the Hilbert space L2(S2; C2). They are joint eigenfunctions of J2,
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J3, and L2 with eigenvalues given by j(j + 1), l(l + 1), and m. The subspace
Hj,l,m corresponding to the joint eigenspace of total angular momentum J2

with eigenvalue j(j + 1) and angular momentum L2 with eigenvalue l(l+ 1) is
then given by

Hj,l,m = span{x 7→ |x|−1 f(|x|)Ωj,l,m(ωx) | f ∈ L2(R+)}

where ωx := x/|x|. This leads to the orthogonal decomposition

H =
⊕

j∈N0+ 1
2

⊕

l=j±1/2

Hj,l, Hj,l =

j⊕

m=−j

Hj,l,m, (A.2)

of the Hilbert space of two spinors.
We note that the Fourier transform,

ψ̂(p) := (2π)−3/2

∫

R3

e−ip·xψ(x) dx, (A.3)

leaves the spaces Hj,l invariant. Namely, if we decompose ψ according to (A.2),

ψ(x) =
∑

(j,l,m)∈I
r−1ψj,m,l(r)Ωj,l,m(ωx),

then

ψ̂(p) =
∑

(j,l,m)∈I
p−1 (Flψj,m,l) (p)Ωj,l,m(ωp) (A.4)

with the Fourier-Bessel transform

(Flf)(p) = i−l

√
2

π

∫ ∞

0

f(r)jl(rp)rp dr. (A.5)

Here jl is a spherical Bessel function. Moreover,

‖ψ‖2 =
∑

(j,l,m)∈I

∫ ∞

0

|ψj,m,l(r)|2dr =
∑

(j,l,m)∈I

∫ ∞

0

|(Flψj,m,l)(p)|2dp = ‖ψ̂‖2.

B Properties of the twisting operators

We define the helicity operator H = ωp · σ on H by

Ĥψ(p) := σ · ωpψ̂(p). (B.1)

It follows from the pointwise identity

(ωp · σ)Ωj,l,m(ωp) = −Ωj,2j−l,m(ωp), (B.2)
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see, e.g., Greiner [33, p. 171, (12)], that H is an isomorphism between Hj,l and
Hj,2j−l. Moreover, since (σ · a) (σ · b) = a · b + iσ · (a × b) for any a, b ∈ R3,
we infer that H is an involution on H, i.e., H = H−1.
We shall need to consider H on Lp spaces with p 6= 2. The relevant properties
are summarized in the next lemma, together with those of the operators

Φ̂νψ(p) := Φν(p) ψ̂(p), (B.3)

introduced in (1.4). Note that while Φ0 acts trivially on the spin, Φ1 involves
the helicity H.

Lemma B.1 (Lp-properties of H and Φν). The operators H and Φν , ν =
0, 1, extend to bounded operators from Lp(R3,C2) to Lp(R3,C2) for any p ∈
(1,∞).

Proof. The Lp-boundedness of H follows from that of the Riesz transformation,
see [68, Ch. II-III]. Therefore, to prove the statement about the operators
Φν , it suffices to consider the operators φν defined analogously as in (B.3)
on L2(R3). Since p 7→ φν(p) is smooth away from the origin and pk∂kφν is
bounded for k = 0, 1, 2, the Hörmander-Mihlin multiplier theorem [68, Thm.
IV.3] implies that φν extend to bounded operators from Lp(R3) to Lp(R3) for
any p ∈ (1,∞).

Lemma B.2. For all p,q ∈ R3

1 − Φ0(p)Φ0(q) − Φ1(p)Φ1(q)

=
1

2

1∑

ν=0

(Φν(p) − Φν(q))2 +
1

2
(Φ1(q)Φ1(p) − Φ1(p)Φ1(q)) . (B.4)

and furthermore

|Φ0(p) − Φ0(q)|2 ≤ |p − q|2
8E(p)2E(q)2

|Φ1(p) − Φ1(q)|2 ≤ |p − q|2
E(p)E(q)

|Φ1(q)Φ1(p) − Φ1(p)Φ1(q)| ≤
√
|p||q||p − q|
E(p)E(q)

Proof. The first equality is an immediate consequence of the definition of Φ0

and Φ1. From this definition we also conclude by an explicit calculation that

|Φ0(p) − Φ0(q)|2 = (φ0(p) − φ0(q))2 ≤ |p − q|2
8E(p)2E(q)2

. (B.5)

Moreover, for a proof of the next inequality we write

|Φ1(p) − Φ1(q)|2 = (φ1(p) − φ1(q))2 + φ1(p)φ1(q)|ωp − ωq|2,
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and estimate the last two terms with the help of the inequalities

(φ1(p) − φ1(q))
2 ≤ (|p| − |q|)2

2E(p)2E(q)2
≤ |p− q|2

2E(p)2E(q)2
, (B.6)

and

φ1(p) ≤ 1√
2

|p|
E(p)

and |ωp − ωq|2 ≤ |p− q|2
|p||q| . (B.7)

Finally, for a proof of the last inequality we use

|Φ1(q)Φ1(p) − Φ1(p)Φ1(q)| = 2φ1(p)φ1(q) |σ · (ωp × ωq)|
≤ 2φ1(p)φ1(q)|ωp − ωq|.

Using again (B.7) concludes the proof of the third inequality.

C Basics of relativistic hydrogenic operators

In this section we collect – following [17] – some basic properties of the op-
erators Bκ and Cκ which describe hydrogenic atoms in the Brown-Ravenhall
respectively Chandrasekhar model. For pedagogical reasons we first discuss
their massless analogues,

B(0)
κ := |p| − κ

2

(
|x|−1 + ωp · σ |x|−1 ωp · σ

)
, C(0)

κ := |p| − κ|x|−1. (C.1)

C.1 Massless case

Expanding ψ̂ as in (A.4) and using (B.2) yields [17] the following partial diag-
onalization of the massless operators,

〈ψ,B(0)
κ ψ〉 =

∑

(l,m,s)∈I
〈Flψj,m,l, b

(0)
j (κ)Flψj,m,l〉, (C.2)

〈ψ,C(0)
κ ψ〉 =

∑

(l,m,s)∈I
〈Flψj,m,l, c

(0)
l (κ)Flψj,m,l〉. (C.3)

Here the operators b
(0)
j (κ) and c

(0)
l (κ) are densely defined in L2(R+) through

their quadratic forms,

〈f, b(0)j (κ)f〉 :=

∫ ∞

0

p |f(p)|2dp− κ

∫ ∞

0

∫ ∞

0

f(p) kB
j (p, q) f(q) dq dp,

〈f, c(0)l (κ)f〉 :=

∫ ∞

0

p |f(p)|2dp− κ

∫ ∞

0

∫ ∞

0

f(p) kC
l (p, q) f(q) dq dp,

with maximal form domain denoted by Q(b
(0)
j (κ)) and Q(c

(0)
l (κ)). In the above

expression, the integral kernels kB
j and kC

l are given by

kB
j (p, q) :=

1

2π

[
Qj−1/2

(
1
2

(
p
q + q

p

))
+Qj+1/2

(
1
2

(
p
q + q

p

))]
, (C.4)

kC
l (p, q) :=

1

π
Ql

(
1
2

(
p
q + q

p

))
, (C.5)
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where Ql are the Legendre functions of the second kind, i.e.,

Ql(z) = 1
2

∫ 1

−1

Pl(t)(z − t)−1dt (C.6)

with Pl standing for Legendre polynomials; see Stegun [67] for the notation
and some properties of these special functions.
It was proved in [17] and [40, Eq. (5.33)] that the operators (C.1) are self-
adjoint and lower bounded if and only if κ ≤ κ#, # = B,C, cf. (2.3). More

can be said about the reduced operators b
(0)
j (κ) and c

(0)
l (κ). They are lower

bounded (in fact, non-negative) if and only if

1

κ
≥ 1

κB
j

:=

∫ ∞

0

kB
j (1, t)

dt

t
, (C.7)

1

κ
≥ 1

κC
l

:=

∫ ∞

0

kC
l (1, t)

dt

t
. (C.8)

This follows by the same lines of reasoning as in [17].
Since [67, (8.4)] P0(t) = 1, P1(t) = t, we have

Q0(t) =
1

2
log

t+ 1

t− 1
, Q1(t) =

t

2
log

t+ 1

t− 1
− 1, (C.9)

such that κC
0 = 2/π, κC

1 = π/2 and thus κB
1/2 = 2/(2/π + π/2).

The critical coupling constants κB
j and κC

l are strictly increasing in j and l

and, in particular, κB
1/2 = κB and κC

0 = κC . This follows from the pointwise
monotonicity

Ql(t) ≥ Ql′(t) for l′ ≥ l and t > 1 (C.10)

which, in turn, is evident from the integral representation

Ql(x) =

∫ ∞

x+
√

x2−1

z−l−1

√
1 − 2xz + z2

dz, x > 1;

see Whittaker and Watson [77, p. 334, Chap. X, Sec. 3.2].

C.2 Massive case

Similarly as in the previous subsection, one obtains the following partial di-
agonalization of the massive hydrogenic Brown-Ravenhall and Chandrasekhar
operators,

〈ψ,Bκ ψ〉 =
∑

(l,m,s)∈I
〈Flψj,m,l, bj,l(κ)Flψj,m,l〉, (C.11)

〈ψ,Cκψ〉 =
∑

(j,l,m)∈I
〈Flψj,m,l, cl(κ)Flψj,m,l〉. (C.12)

Documenta Mathematica 14 (2009) 463–516



The Scott Correction 503

Here the operators bj,l(κ) and cl(κ) are densely defined in L2(R+) through
their quadratic forms,

〈f, bj,l(κ)f〉

:=

∫ ∞

0

(E(p) − 1)|f(p)|2dp− κ

∫ ∞

0

∫ ∞

0

f(p) kB
j,l(p, q) f(q) dq dp, (C.13)

〈f, cl(κ)f〉

:=

∫ ∞

0

(E(p) − 1)|f(p)|2dp− κ

∫ ∞

0

∫ ∞

0

f(p) kC
l (p, q) f(q) dq dp (C.14)

with maximal form domain denoted by Q(bj,l(κ)) and Q(cl(κ)), cf. [17]. In the
above expression, the integral kernel kB

j,l depends, in contrast to the massless
case, on both j and l and is given by

kB
j,l(p, q)

:=
1

π

[
φ0(p)Ql

(
1
2

(
p
q + q

p

))
φ0(q) + φ1(p)Q2j−l

(
1
2

(
p
q + q

p

))
φ1(q)

]
.

The form (C.13) defines a self-adjoint semi-bounded operator bj,l(κ) if and
only if κ ≤ κB

j (Evans et al. [17]). A trivially modified argument shows that

(C.14) defines a self-adjoint semi-bounded operator cl(κ) if and only if κ ≤ κC
l .

In fact, the semiboundedness of the massive cases and the massless cases are
equivalent, since the differences of the massive and massless forms are bounded
(Tix [75, Thm. 1]). (One even knows that bj,l(κ)+1 is non-negative (Tix [76]).)

D Critical Chandrasekhar operator on a finite domain

Lieb and Yau [46] have shown that the critical Chandrasekhar operator
|p| − κC |x|−1 when restricted to a ball has only discrete spectrum with eigen-
values accumulating at infinity at the rate predicted by the semiclassical result
for |p| alone. This is remarkable since the semiclassical phase-space volume
corresponding to |p| − κ|x|−1 is infinite.
We aim at proving an analogous result for the Chandrasekhar operator re-
stricted to a ball and restricted to the subspace of fixed angular momentum.
In the proof of Theorem 2.1 it is essential to handle coupling constants which
are larger than κC , all the way up to and including κC

1 .
In order to define the above operator we consider for R > 0 and l ∈ N the
Hilbert space

Fl(R) :=
{
f ∈ L2(0,∞)

∣∣ (F−1
l f

)
(r) = 0 for all r ≥ R

}
,

where Fl denotes the Fourier-Bessel transformation, cf. (A.5). The quadratic

form given by 〈f, c(0)l (κ)f〉 with domain Fl(R)∩Q(c
(0)
l (κ)) defines for all κ ≤ κC

l

a self-adjoint, non-negative operator in Fl(R) which we will denote by c
(0)
l (κ,R).
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Lemma D.1. Let l ∈ N. There is a constant such that for all R > 0, µ > 0,
and κ ≤ κC

l

tr
(
c
(0)
l (κ,R) − µ

)
−
≤ const µ2R. (D.1)

We have not tried to track the l-dependence of the constant, since the cases
l = 0, 1 will be enough for our purpose.

Proof. For a proof of (D.1) we basically follow the argument in [46]. The start-
ing point is the following reduction to a simpler variational problem involving
only functions. Namely, for any non-negative function h : R+ → R+, let

t(p) :=
κC

l

πh(p)

∫ ∞

0

Ql

(
1
2 (p

q + q
p )
)
h(q) dq .

Then

− tr
(
cl(κ

C
l , R) − µ

)
− ≥ inf

{∫ ∞

0

σ(p) (p− µ− t(p)) dp
∣∣ 0 ≤ σ ≤Ml

}
(D.2)

where Ml := R supr>0(2/π)r2j2l (r). The proof of (D.2) is analogous to the one
of [46, Eq. (7.8)]. We merely replace the Fourier transformation in R3 by the
Fourier-Bessel transformation Fl in R+.
From now on we assume that l ≥ 1 and comment on the necessary changes in
case l = 0 at the end. We choose h of the form

h(p) =

{
p−1 − (A/2)p−2 if p > A,
(2A)−1 if p ≤ A.

Below we shall show that the constant A can be picked in such a way that for
some δ > 0

p− µ− t(p) ≥
{

0 if p ≥ δ−1A,
−const A−1µ2 if p < δ−1A.

(D.3)

In view of (D.2) this will prove the result, since then

inf

{∫ ∞

0

σ(p) (p− µ− t(p)) dp
∣∣ 0 ≤ σ ≤Ml

}

≥− const A−1µ2Ml

∫ δ−1A

0

dp = −const δ−1µ2Ml.

To prove (D.3) we recall that
∫∞
0
Ql

(
1
2 (t + 1

t )
)

dt
t = π(κC

l )−1, cf. (C.8), and
hence by a straightforward calculation

p− t(p) = p
κC

l

π

∫ ∞

0

Ql

(
1
2 (t+ 1

t )
) (

1
t − h(tp)

h(p)

)
dt

= p
κC

l

π

{
A/2p

1−A/2p (F (1) − F (A/p)) if p ≥ A,

(−F (1) + F (p/A)) if p < A.
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Here for 0 < s ≤ 1 we have set

F (s) :=

∫ s

0

Ql

(
1
2 (t+ 1

t )
) (

1
t − 1

s

)2
dt .

Since Ql(τ) ≤ Q1(τ), which vanishes like a constant times τ−2 as τ → ∞, one
has F (s) → 0 as s → 0. Choosing δ ∈ (0, 1) such that F (s) ≤ 1

2F (1) for all
0 < s ≤ δ, we have shown that for all p ≥ δ−1A one has

p− t(p) ≥ A F (1)

8(1 −A/2p)
≥ A

F (1)

8
.

For A ≤ p < δ−1A we use the monotonicity, dF/ds ≥ 0, to bound

p− t(p) ≥ 0.

Finally, for 0 ≤ p < A we drop the term F (p/A) ≥ 0 to obtain

p− t(p) ≥ −p
2
F (1) ≥ −AF (1)

2
.

Choosing A := 8µ/F (1) yields the claimed inequality (D.3).
In case l = 0, the function h can be chosen as before. However, the corre-
sponding expressions F (1) − F (s) should be interpreted as a single integral,
and estimated with slightly more care.

Corollary D.2. Let l ∈ N. Then there is a constant such that for all 0 <
κ ≤ κC

l , all µ > 0 and all functions χ on R+ with χ = 0 on [R,∞) for some
R > 0 one has

Nl(0, χ
(
|p| − κ|x|−1 − µ

)
χ) ≤ const µR.

Proof. The variational principle implies that

Nl(0, χ
(
|p| − κ|x|−1 − µ

)
χ) ≤ N(µ, c

(0)
l (κ,R)).

Indeed, if Vl is the negative spectral subspace of χ
(
|p| − κ|x|−1 − µ

)
χ with

fixed l, then any f ∈ FlχVl ⊂ Fl(R) satisfies 〈f, (c(0)l (κ,R) − µ) f〉 < 0.
Hence, in order to prove the assertion, it suffices to show that

N(µ, c
(0)
l (κ,R)) ≤ const µR.

For a proof, we note that the elementary inequality χ(−∞,µ)(E) ≤ (E−λ)−
λ−µ ,

valid for any µ < λ, together with Lemma D.1 implies that

N(µ, c
(0)
l (κ,R)) ≤ (λ − µ)−1 tr(c

(0)
l (κ,R) − λ)− ≤ const (λ− µ)−1λ2R.

The proof is completed by optimizing over λ.
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E The trial density matrix

In this section we define the density matrices dS and dB that we use to bound
the Schrödinger energy, respectively the Brown-Ravenhall energy, from above.
Both density matrices are split into two parts corresponding to low and high
angular momenta

dS := dS
< + d>, dB := dB

< + d>.

Low angular momenta correspond to orbits whose perinucleon is close to the
nucleus, while high angular momenta ensure that the orbits are never close to
the nucleus. We will cut between these two at L := [Z1/12].

E.1 Low angular momenta

In the vicinity of the nucleus the nuclear attraction dominates the interaction
with the other electrons. This motivates to choose the orbitals as the ones
of the Bohr atom, i.e., as the eigenfunctions of the unscreened operator with
nuclear charge Z. The corresponding density matrices d#

< are of the form

d#
< =

L−1∑

l=0

d#
j , d#

l =
∑

j=l±1/2, j≥1/2

d#
j,l

and

d#
j,l =

j∑

m=−j

K−l∑

n=1

|ψ#
j,l,m,n〉〈ψ

#
j,l,m,n|.

Here K = [const Z1/3] with some positive constant, i.e., on the order of the last
occupied shell of the Bohr atom. We now turn to the definition of the orbitals
ψ#

j,l,m,n for which we consider the cases # = B,S separately.

In the Brown-Ravenhall case we choose ψB
j,l,m,n such that its Fourier transform

is
ψ̂B

j,l,m,n(p) = p−1fB
j,l,n(p)Ωj,l,m(ωp),

where fB
j,l,n is the n-th eigenfunction of the operator Vc bj,l(Z/c)V

∗
c in L2(R+).

Here the unitary scaling operator Vc is defined by (Vcf)(p) := c−1/2f(p/c) and
we recall that the operator bj,l(κ) was defined in Subsection C.2. The opera-
tors Vc bj,l(Z/c)V

∗
c appear as the angular momentum reductions of Bc[Z|x|−1].

Indeed, by (C.11) and scaling one has

〈ψ,Bc[Z|x|−1]ψ〉 = c2
∑

(j,l,m)∈I
〈ψ̂j,m,l, Vc bj,l(Z/c)V

∗
c ψ̂j,m,l〉.

In the Schrödinger case we choose

ψS
j,l,m,n(x) = r−1fS

l,n(r)Ωj,l,m(ωx),

where fS
l,n is the n-th eigenfunction of − 1

2
d2

dr2 + l(l+1)
2r2 − Z

r in L2(R+) with
Dirichlet boundary conditions.
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E.2 High angular momenta

For large angular momenta, the electrons are sufficiently far from the center
moving – classically speaking – slowly. This motivates to pick non-relativistic
orbitals in both in the relativistic and non-relativistic case. Moreover, for large
quantum numbers the correspondence principle would predict quasi-classical
behavior (in the quantum sense) as well. This motivates the following choice
which we take – with slight modifications – from [55]:

d> :=
∑

l≥L

dl, dl :=
∑

j=l±1/2

j∑

m=−j

∑

n∈Z

wn,l|ϕn,lΩj,l,m〉〈ϕn,lΩj,l,m|. (E.1)

We repeat at this point the construction of the Macke orbitals ϕn,l and their
weights wn,l. We will also present a new estimate not directly given in that
paper.
The semi-classical mean-field in which the electrons move is the Thomas-Fermi
potential φTF (see (4.3)). According to Hellmann [36] the semi-classical electron
density for fixed angular momentum is

σH
l (r) :=

2(2l+ 1)

π

√
2

[
nZφTF(r) − (l + 1

2 )2

2r2

]

+

, (E.2)

where we added the factor nZ = (1 − aZ−1/2)2/3 for normalization purposes
with some fixed positive a and where we replaced the self-generated field of
the sum of the radial densities σl by the Thomas-Fermi potential. We will
write ρH

l for the functions σH
l when a = 0, i.e., no normalization factor occurs.

In passing we note that the densities ρH
l are the minimizers of the Hellmann

functional with external potential given by the Thomas-Fermi density and no
other interaction between the electrons (see [61]).
The functions σH

l vanish for large l and we define

k′ := min{l ∈ N |σH
l ≡ 0}.

By scaling, k′ is of the order Z1/3. Moreover, since the function r 7→ φTF(r)r2

has exactly one maximum, the support of σH
l is an interval [r1(l), r2(l)].

We cannot use the density σH
l directly in defining semi-classical orbitals, since

the derivative of its square root is not square integrable. Thus we pick two
points,

x1(l) := r1(l) + T (l + 1
2 )Z−1, x2(l) := r2(l) − SZ−2/3 (E.3)

for some positive S and T ∈ (0, 4), and set

ρl(r) :=





2(2l + 1)α2r2l+2, r ∈ [0, x1(l)],

σH
l (r), r ∈ [x1(l), x2(l)],

2(2l + 1)β2 exp(−23/2Z2/3r), r ∈ [x2(l),∞).

(E.4)

Documenta Mathematica 14 (2009) 463–516



508 R. Frank, H. Siedentop, S. Warzel

The constants α and β are chosen such that ρl is continuous. We suppress their
dependence on l in the notation.
Next, we define for l < k′ and n ∈ Z the Macke orbitals

ϕn,l(r) :=

√
ζ′l(r)

r
eiπkn,lζl(r) (E.5)

where ζl : [0,∞) → [0, 1) is the Macke transform

ζl(r) :=

∫ r

0 ρl(t)dt∫∞
0 ρl(t)dt

. (E.6)

For l ≥ k′ we set ϕn,l :≡ 0. The integral

Nj,l,m :=
1

2(2l+ 1)

∫ ∞

0

ρl(r)dr,

which is independent of j and m, will represent the number of electrons in the
angular momentum channel (j, l,m). Moreover, we set εl := Nj,l,m − [Nj,l,m].
If [Nj,l,m] is odd, we pick kn,l = 2n, otherwise kn,l = 2n− 1. The weights are
chosen as

wn,l :=





1 |kn,l| ≤ [Nj,l,m] − 1

εl/2 |kn,l| = [Nj,l,m] + 1

0 otherwise

(E.7)

which guarantees that
∑

n∈Z
wn,l = Nj,l,m.

Strictly speaking, our trial density matrix differs from the one used in [55],
since we label the orbitals by the modulus of total angular momentum, by
the third component of total angular momentum, and by the orbital angular
momentum. This, however, is merely a minor rearrangement of terms.
We also adapt to atomic units used in this paper which changes the value of
the Thomas-Fermi constant and gives a factor 1/2 in front of all three kinetic
energy terms in the Hellmann-Weizsäcker functional.

E.3 Energy estimates for high angular momenta

For the convenience of the reader, we gather from [55] (based on the construc-
tion in [60]) two estimates on the order of the average kinetic and potential
energy of the Schrödinger operator associated with the semi-classical density
matrix d>,

tr(p2d>) = O(Z7/3), tr(|x|−1d>) = O(Z4/3). (E.8)

We also need a more detailed estimate on the kinetic energy.

Lemma E.1. Let L = [Z1/12]. Then for large Z,

∞∑

l=L

l−2 tr(p2dl) = O(Z2/L). (E.9)
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Proof. The definition of dl implies (cf. [55, (2.3)]) that for angular momenta
l < k′ one has

tr(p2dl) =

∫ ∞

0

[√
ρl

′2
+
αl

3
ρ3

l +
l(l+ 1)

r2
ρl

]
dr + Fl (E.10)

where we set

Fl :=
αl

3

(
−1 + 6εl − 3ε2l

N2
j,l,m

+
2ε3l − 6ε2l + 4εl

N3
j,l,m

)∫ ∞

0

ρ3
l dr,

αl :=
π2

4(2l+ 1)2
,

and emphasize that αl should not be confused with α from (E.4). According
to [55, Proposition 3.6]

∞∑

l=L

l−2 Fl ≤
∞∑

l=L

Fl ≤ const Z5/3

where L = [Z1/12]. The first term on the right-hand side of (E.10) is estimated
according to

∫ ∞

0

[√
ρl

′2
+
αl

3
ρ3

l +
l(l+ 1)

r2
ρl

]
dr

≤
∫ ∞

0

[
αl

3
ρH

l (r)3 +
(l + 1

2 )2

r2
ρH

l (r)

]
dr +Gl +Hl + Il. (E.11)

with

Gl :=

∫ x1(l)

0

[
√
ρl

′2
+
αl

3
ρ3

l +

(
l + 1

2

)2

r2
ρl

]
dr ≤ const Z2

(
l +

1

2

)−3/2

,

Hl :=

∫ ∞

x2(l)

[
√
ρl

′2
+
αl

3
ρ3

l +

(
l+ 1

2

)2

r2
ρl

]
dr ≤ const Z7/6

(
l +

1

2

)

where the inequalities were obtained by integration as in [55, (3.4)]. Inequality
[55, (3.9)] for the gradient term in the middle region reads

Il :=

∫ x2(l)

x1(l)

√
ρl

′2
dr ≤ const

(
l +

1

2

)

×
[
Z2

(
l +

1

2

)−3

+ Z + Z2

(
l +

1

2

)−5/2

+
Z5/3

(
l + 1

2

)−1/2

min{l+ 1
2 , Z

1/4}

]
.
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This implies

∞∑

l=L

l−2Gl ≤ const Z2
∞∑

l=L

l−7/2 ≤ const Z2L−5/2,

∞∑

l=L

l−2Hl ≤
k′∑

l=L

l−2Hl ≤ const Z7/6 log k′ ≤ const Z7/6 logZ

∞∑

l=L

l−2 Il ≤ const
[
Z2L−3 + Z logZ + Z2L−5/2 + Z5/3L−3/2

]

≤ const Z43/24.

It thus remains to estimate the sum of the first terms on the right-hand side
of (E.11). We begin with the first summand,

∞∑

l=L

1

l2

∫ ∞

0

αl

3
ρH

l (r)3dr ≤ const

∞∑

l=L

1

l

∫ ∞

0

(Z/r − l2/r2)
3/2
+ dr

=const Z2
∑

l≥L

1

l2

∫ ∞

0

r−3/2(1 − r−1)
3/2
+ dr = O(Z2/L)

where we used that the Thomas-Fermi potential is bounded from above by Z/r.
This leaves the second summand,

∞∑

l=L

1

l2

∫ ∞

0

(
l + 1

2

)2

r2
ρH

l (r)dr ≤ const

∞∑

l=L

l

∫ ∞

0

r−2(Z/r − l2/r2)
1/2
+ dr

= const Z2
∞∑

l=L

1

l2

∫ ∞

0

r−5/2(1 − r−1)
1/2
+ dr = O(Z2/L),

which completes the proof of Lemma E.1.
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