p-Adic L-Functions of Automorphic Forms
 and Exceptional Zeros

Holger Deppe

Received: May 13, 2015

Communicated by Otmar Venjakob

Abstract

We construct p-adic L-functions for automorphic representations of GL_{2} of a number field F, and show that the corresponding p-adic L-function of a modular elliptic curve E over F has an extra zero at the central point for each prime above p at which E has split multiplicative reduction, a part of the exceptional zero conjecture.

2010 Mathematics Subject Classification: 11F41, 11F67, 11F70, 11G40 Keywords and Phrases: p-adic L-function, automorphic forms, exceptional zero conjecture, Mazur-Tate-Teitelbaum conjecture

Introduction

Let F be a number field (with adele ring \mathbb{A}_{F}), and p a prime number. Let $\pi=\bigotimes_{v} \pi_{v}$ be an automorphic representation of $\mathrm{GL}_{2}\left(\mathbb{A}_{F}\right)$. Attached to π is the complex L-function $L(s, \pi), s \in \mathbb{C}$, of Jacquet-Langlands JL70. Under certain conditions on π, we can also define a p-adic L-function $L_{p}(s, \pi)$ of π, with $s \in \mathbb{Z}_{p}$. It is related to $L(s, \pi)$ by the interpolation property: For every character $\chi: \mathcal{G}_{p} \rightarrow \mathbb{C}^{*}$ of finite order we have

$$
L_{p}(0, \pi \otimes \chi)=\tau(\chi) \prod_{\mathfrak{p} \mid p} e\left(\pi_{\mathfrak{p}}, \chi_{\mathfrak{p}}\right) \cdot L\left(\frac{1}{2}, \pi \otimes \chi\right)
$$

where $e\left(\pi_{\mathfrak{p}}, \chi_{\mathfrak{p}}\right)$ is a certain Euler factor (see theorem 4.12 for its definition) and $\tau(\chi)$ is the Gauss sum of χ.
$L_{p}(s, \pi)$ was defined by Haran Har87] in the case where π has trivial central character and $\pi_{\mathfrak{p}}$ is an ordinary spherical principal series representation for all $\mathfrak{p} \mid p$. For a totally real field F, Spieß Sp14 has given a new construction of $L_{p}(s, \pi)$ that also allows for $\pi_{\mathfrak{p}}$ to be a special (Steinberg) representation for some $\mathfrak{p} \mid p$. In this article, we generalize Spieß' construction of $L_{p}(s, \pi)$ to
automorphic representations π of GL_{2} over any number field, with arbitrary central character, and show that L_{p} has the conjectured number of exceptional zeros at the central point. We assume that π is ordinary at all primes $\mathfrak{p} \mid p$ (cf. definition (2.3), that π_{v} is discrete of weight 2 at all real infinite places v, and is the principal series representation $\sigma\left(|\cdot|^{1 / 2},|\cdot|^{-1 / 2}\right)$ at the complex places. We define a p-adic measure μ_{π}, which heuristically is the image under the global reciprocity map of a product of certain local distributions $\mu_{\pi_{\mathfrak{p}}}$ on $F_{\mathfrak{p}}^{*}$ attached to $\pi_{\mathfrak{p}}$ for $\mathfrak{p} \mid p$ and a Whittaker function times the Haar measure on the group of p-ideles $\mathbb{I}^{p}=\prod_{v \nmid p}^{\prime} F_{v}^{*}$.
Then we can define the p-adic L-function of π as an integral with respect to μ_{π} over the Galois group \mathcal{G}_{p} of the maximal abelian extension that is unramified outside p and ∞; it is naturally a t-variable function, where t is the \mathbb{Z}_{p}-rank of \mathcal{G}_{p} :

$$
L_{p}(\underline{s}, \pi):=L_{p}\left(s_{1}, \ldots, s_{t}, \pi\right):=\int_{\mathcal{G}_{p}} \prod_{i=1}^{t} \exp _{p}\left(s_{i} \ell_{i}(\gamma)\right) \mu_{\pi}(d \gamma)
$$

for $s_{1}, \ldots, s_{t} \in \mathbb{Z}_{p}$, where the ℓ_{i} are \mathbb{Z}_{p}-valued homomorphisms corresponding to the t independent \mathbb{Z}_{p}-extensions of F (cf. section 4.7 for their definition). For a modular elliptic curve E over F corresponding to π (i.e. the local Lfactors of the Hasse-Weil L-function $L(E, s)$ and of the automorphic L-function $L\left(s-\frac{1}{2}, \pi\right)$ coincide at all places v of $\left.F\right)$, our construction allows us to define the p-adic L-function of E as $L_{p}(E, \underline{s}):=L_{p}(\underline{s}, \pi)$. The condition that π be ordinary at all $\mathfrak{p} \mid p$ means that E must have good ordinary or multiplicative reduction at all places $\mathfrak{p} \mid p$ of F.
The exceptional zero conjecture (formulated by Mazur, Tate and Teitelbaum MTT86 for $F=\mathbb{Q}$, and by Hida Hi09 for totally real F) states that

$$
\begin{equation*}
\operatorname{ord}_{s=0} L_{p}(E, s) \geq n, \tag{1}
\end{equation*}
$$

where n is the number of $\mathfrak{p} \mid p$ at which E has split multiplicative reduction, and gives an explicit formula for the value of the n-th derivative $L_{p}^{(n)}(E, 0)$ as a multiple of certain L-invariants times $L(E, 1)$. The conjecture was proved in the case $F=\mathbb{Q}$ by Greenberg and Stevens GS93] and independently by Kato, Kurihara and Tsuji, and for totally real fields F by Spieß $\mathrm{Sp14}$. In this article, we prove (1) for all number fields F.

The structure of this article is as follows: In chapter 2 we describe the local distributions $\mu_{\pi_{\mathfrak{p}}}$ on $F_{\mathfrak{p}}^{*}$; they are the image of a Whittaker functional under a map δ on the dual of $\pi_{\mathfrak{p}}$. For constructing δ, we describe $\pi_{\mathfrak{p}}$ in terms of what we call the "Bruhat-Tits graph" of $F_{\mathfrak{p}}^{2}$: the directed graph whose vertices (resp. edges) are the lattices of $F_{\mathfrak{p}}^{2}$ (resp. inclusions between lattices). Roughly speaking, it is a covering of the (directed) Bruhat-Tits tree of $\mathrm{GL}_{2}\left(F_{\mathfrak{p}}\right)$ with fibres $\cong \mathbb{Z}$. When $\pi_{\mathfrak{p}}$ is the Steinberg representation, $\mu_{\mathfrak{p}}$ can actually be extended to all of $F_{\mathfrak{p}}$.
In chapter 3 we attach a p-adic distribution μ_{ϕ} to any map $\phi\left(U, x^{p}\right)$ of an open compact subset $U \subseteq F_{p}^{*}:=\prod_{\mathfrak{p} \mid p} F_{\mathfrak{p}}^{*}$ and an idele $x^{p} \in \mathbb{I}^{p}$ (satisfying certain
conditions). Integrating ϕ over all the infinite places, we get a cohomology class $\kappa_{\phi} \in H^{d}\left(F^{* \prime}, \mathcal{D}_{f}(\mathbb{C})\right)$ (where $d=r+s-1$ is the rank of the group of units of $F, F^{* \prime} \cong F^{*} / \mu_{F}$ is a maximal torsion-free subgroup of F^{*}, and $\mathcal{D}_{f}(\mathbb{C})$ is a space of distributions on the finite ideles of F). We show that μ_{ϕ} can be described solely in terms of κ_{ϕ}, and μ_{ϕ} is a (vector-valued) p-adic measure if κ_{ϕ} is "integral", i.e. if it lies in the image of $H^{d}\left(F^{* \prime}, \mathcal{D}_{f}(R)\right)$, for a Dedekind ring R consisting of " p-adic integers".
In chapter 4 we define a map ϕ_{π} by

$$
\phi_{\pi}\left(U, x^{p}\right):=\sum_{\zeta \in F^{*}} \mu_{\pi_{p}}(\zeta U) W^{p}\left(\begin{array}{cc}
\zeta x^{p} & 0 \\
0 & 1
\end{array}\right)
$$

$\left(U \subseteq F_{p}^{*}\right.$ compact open, $\left.x^{p} \in \mathbb{I}^{p}\right) . \phi_{\pi}$ satisfies the conditions of chapter 3, and we show that $\kappa_{\pi}:=\kappa_{\phi_{\pi}}$ is integral by "lifting" the map $\phi_{\pi} \mapsto \kappa_{\pi}$ to a function mapping an automorphic form to a cohomology class in $H^{d}\left(\mathrm{GL}_{2}(F)^{+}, \mathcal{A}_{f}\right)$, for a certain space of functions \mathcal{A}_{f}. (Here $\mathrm{GL}_{2}(F)^{+}$is the subgroup of $M \in$ $\mathrm{GL}_{2}(F)$ with totally positive determinant.) For this, we associate to each automorphic form φ a harmonic form ω_{φ} on a generalized upper-half space \mathcal{H}_{∞}, which we can integrate between any two cusps in $\mathbb{P}^{1}(F)$.
Then we can define the p-adic L-function $L_{p}(\underline{s}, \pi):=L_{p}\left(\underline{s}, \kappa_{\pi}\right)$ as above, with $\mu_{\pi}:=\mu_{\phi_{\pi}}$. By a result of Harder Ha87, $H^{d}\left(\mathrm{GL}_{2}(F)^{+}, \mathcal{A}_{f}\right)_{\pi}$ is onedimensional, which implies that $L_{p}(\underline{s}, \pi)$ has values in a one-dimensional \mathbb{C}_{p}-vector space. Finally, we formulate an exceptional zero conjecture (conjecture 4.15) for all number fields F, and show that $L_{p}(\underline{s}, \pi)$ satisfies (11).

Acknowledgements

This paper is based on my Ph.D. thesis " p-adic L-functions of automorphic forms" De13, submitted at Bielefeld University in August 2013.
I would like to thank Michael Spieß for suggesting and advising the thesis, and for many helpful discussions. I am also thankful to Werner Hoffmann for a useful discussion, to the referee for pointing out a few mistakes in an earlier version of this paper, and to the CRC 701, 'Spectral Structures and Topological Methods in Mathematics', for providing financial support during most of my studies.

Contents

InTRODUCTION 689
1 Preliminaries 692
$1.1 \quad p$-adic measures 693
2 LOCAL RESULTS 693
2.1 Gauss sums 693
2.2 Tamelv ramified representations of $\mathrm{GL}_{2}(F)$ 694
2.3 The Bruhat-Tits graph 695
2.4 Distributions on the Bruhat-Tits graph 701
2.5 Local distributions 703
2.6 Semi-local theory 707
3 COHOMOLOGY CLASSES AND GLOBAL MEASURES 708
3.1 Definitions 708
3.2 Global measures 710
3.3 Exceptional zeros 714
3.4 Integral cohomology classes 715
$4 \quad p$-ADIC L-FUNCTIONS OF AUTOMORPHIC FORMS 716
4.1 Upper half-space 717
4.2 Automorphic forms 720
4.3 Cohomology of $\mathrm{GL}_{2}(F)$ 722
4.4 Eichler-Shimura map 725
4.5 Whittaker model 727
$4.6 \quad p$-adic measures of automorphic forms 729
4.7 Vanishing order of the p-adic L-function 732

1 Preliminaries

Let \mathcal{X} be a totally disconnected locally compact topological space, R a topological Hausdorff ring. We denote by $C(\mathcal{X}, R)$ the ring of continuous maps $\mathcal{X} \rightarrow R$, and let $C_{c}(\mathcal{X}, R) \subseteq C(\mathcal{X}, R)$ be the subring of compactly supported maps. When R has the discrete topology, we also write $C^{0}(\mathcal{X}, R):=C(\mathcal{X}, R)$, $C_{c}^{0}(\mathcal{X}, R):=C_{c}(\mathcal{X}, R)$.
We denote by $\mathfrak{C o}(\mathcal{X})$ the set of all compact open subsets of \mathcal{X}, and for an R module M we denote by $\operatorname{Dist}(\mathcal{X}, M)$ the R-module of M-valued distributions on \mathcal{X}, i.e. the set of maps $\mu: \mathfrak{C o}(\mathcal{X}) \rightarrow M$ such that $\mu\left(\bigcup_{i=1}^{n} U_{i}\right)=\sum_{i=1}^{n} \mu\left(U_{i}\right)$ for any pairwise disjoint sets $U_{i} \in \mathfrak{C o}(\mathcal{X})$.
For an open set $H \subseteq \mathcal{X}$, we let $1_{H} \in C(\mathcal{X}, R)$ be the R-valued indicator function of H on \mathcal{X}.
Throughout this paper, we fix a prime p and embeddings $\iota_{\infty}: \overline{\mathbb{Q}} \hookrightarrow \mathbb{C}, \iota_{p}$: $\overline{\mathbb{Q}} \hookrightarrow \mathbb{C}_{p}$. Let $\overline{\mathcal{O}}$ denote the valuation ring of $\overline{\mathbb{Q}}$ with respect to the p-adic valuation induced by ι_{p}.

We write $G:=\mathrm{GL}_{2}$ throughout the article, and let B denote the Borel subgroup of upper triangular matrices, T the maximal torus (consisting of all diagonal matrices), and Z the center of G.
For a number field F, we let $G(F)^{+} \subseteq G(F)$ and $B(F)^{+} \subseteq B(F)$ denote the corresponding subgroups of matrices with totally positive determinant, i.e. $\sigma(\operatorname{det}(g))$ is positive for each real embedding $\sigma: F \hookrightarrow \mathbb{R}$. (If F is totally complex, this is an empty condition, so we have $G(F)^{+}=G(F), B(F)^{+}=B(F)$ in this case.) Similarly, we define $G(\mathbb{R})^{+}$and $G(\mathbb{C})^{+}=G(\mathbb{C})$.

$1.1 \quad p$-ADIC MEASURES

Definition 1.1. Let \mathcal{X} be a compact totally disconnected topological space. For a distribution $\mu: \mathfrak{C o}(\mathcal{X}) \rightarrow \mathbb{C}$, consider the extension of μ to the \mathbb{C}_{p}-linear map $C^{0}\left(\mathcal{X}, \mathbb{C}_{p}\right) \rightarrow \mathbb{C}_{p} \otimes_{\mathbb{Q}} \mathbb{C}, f \mapsto \int f d \mu$. If its image is a finitely-generated \mathbb{C}_{p}-vector space, μ is called a p-adic measure.

We denote the space of p-adic measures on \mathcal{X} by $\operatorname{Dist}^{b}(\mathcal{X}, \mathbb{C}) \subseteq \operatorname{Dist}(\mathcal{X}, \mathbb{C})$. It is easily seen that μ is a p-adic measure if and only if the image of μ, considered as a map $C^{0}(\mathcal{X}, \mathbb{Z}) \rightarrow \mathbb{C}$, is contained in a finitely generated $\overline{\mathcal{O}}$-module. A p-adic measure can be integrated against any continuous function $f \in C\left(\mathcal{X}, \mathbb{C}_{p}\right)$.

2 Local Results

For this chapter, let F be a finite extension of $\mathbb{Q}_{p}, \mathcal{O}_{F}$ its ring of integers, ϖ its uniformizer and $\mathfrak{p}=(\varpi)$ the maximal ideal. Let q be the cardinality of $\mathcal{O}_{F} / \mathfrak{p}$, and set $U:=U^{(0)}:=\mathcal{O}_{F}^{\times}, U^{(n)}:=1+\mathfrak{p}^{n} \subseteq U$ for $n \geq 1$.
We fix an additive character $\psi: F \rightarrow \overline{\mathbb{Q}}^{*}$ with $\operatorname{ker} \psi \supseteq \mathcal{O}_{F}$ and $\mathfrak{p}^{-1} \nsubseteq \operatorname{ker} \psi$. 1 We let $|\cdot|$ be the absolute value on F^{*} (normalized by $|\varpi|=q^{-1}$), ord $=\operatorname{ord}_{\varpi}$ the additive valuation, and $d x$ the Haar measure on F normalized by $\int_{\mathcal{O}_{F}} d x=$ 1. We define a (Haar) measure on F^{*} by $d^{\times} x:=\frac{q}{q-1} \frac{d x}{|x|}\left(\right.$ so $\left.\int_{\mathcal{O}_{F}^{\times}} d^{\times} x=1\right)$.

2.1 Gauss sums

Recall that the conductor of a character $\chi: F^{*} \rightarrow \mathbb{C}^{*}$ is by definition the largest ideal $\mathfrak{p}^{n}, n \geq 0$, such that $\operatorname{ker} \chi \supseteq U^{(n)}$, and that χ is unramified if its conductor is $\mathfrak{p}^{0}=\mathcal{O}_{F}$.

Definition 2.1. Let $\chi: F^{*} \rightarrow \mathbb{C}^{*}$ be a quasi-character with conductor \mathfrak{p}^{f}. The Gauss sum of χ (with respect to ψ) is defined by

$$
\tau(\chi):=\left[U: U^{(f)}\right] \int_{\varpi-f U} \psi(x) \chi(x) d^{\times} x
$$

[^0]For a locally constant function $g: F^{*} \rightarrow \mathbb{C}$, we define

$$
\int_{F^{*}} g(x) d x:=\lim _{n \rightarrow \infty} \int_{x \in F^{*},-n \leq \operatorname{ord}(x) \leq n} g(x) d x
$$

whenever that limit exists.
Lemma 2.2. Let $\chi: F^{*} \rightarrow \mathbb{C}^{*}$ be a quasi-character with conductor \mathfrak{p}^{f}. For $f=0$, assume $|\chi(\varpi)|<q$. Then we have

$$
\int_{F^{*}} \chi(x) \psi(x) d x= \begin{cases}\frac{1-\chi(\varpi)^{-1}}{1-\chi(\varpi) q^{-1}} & \text { if } f=0 \\ \tau(\chi) & \text { if } f>0\end{cases}
$$

(Cf. Sp14, lemma 3.4.)

2.2 Tamely Ramified representations of $\mathrm{GL}_{2}(F)$

For an ideal $\mathfrak{a} \subset \mathcal{O}_{F}$, let $K_{0}(\mathfrak{a}) \subseteq G\left(\mathcal{O}_{F}\right)$ be the subgroup of matrices congruent to an upper triangular matrix modulo \mathfrak{a}.
Let $\pi: \mathrm{GL}_{2}(F) \rightarrow \mathrm{GL}(V)$ be an irreducible admissible infinite-dimensional representation on a \mathbb{C}-vector space V, with central quasicharacter χ. It is wellknown (e.g Ge75], Thm. 4.24) that there exists a maximal ideal $\mathfrak{c}(\pi)=\mathfrak{c} \subset \mathcal{O}_{F}$, the conductor of π, such that the space $V^{K_{0}(\mathfrak{c}), \chi}=\{v \in V \mid \pi(g) v=\chi(a) v \forall g=$ $\left.\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in K_{0}(\mathfrak{c})\right\}$ is non-zero (and in fact one-dimensional). A representation π is called tamely ramified if its conductor divides \mathfrak{p}.
If π is tamely ramified, then π is the spherical resp. special representation $\pi\left(\chi_{1}, \chi_{2}\right)$ (in the notation of Ge75 or Sp14):
If the conductor is \mathcal{O}_{F}, π is (by definition) spherical and thus a principal series representation $\pi\left(\chi_{1}, \chi_{2}\right)$ for two unramified quasi-characters χ_{1} and χ_{2} with $\chi_{1} \chi_{2}^{-1} \neq|\cdot|^{ \pm 1}$ (Bu98, Thm. 4.6.4).
If the conductor is \mathfrak{p}, then $\pi=\pi\left(\chi_{1}, \chi_{2}\right)$ with $\chi_{1} \chi_{2}^{-1}=|\cdot|^{ \pm 1}$.
For $\alpha \in \mathbb{C}^{*}$, we define a character $\chi_{\alpha}: F^{*} \rightarrow \mathbb{C}^{*}$ by $\chi_{\alpha}(x):=\alpha^{\operatorname{ord}(x)}$.
So let now $\pi=\pi\left(\chi_{1}, \chi_{2}\right)$ be a tamely ramified irreducible admissible infinitedimensional representation of $\mathrm{GL}_{2}(F)$; in the special case, we assume χ_{1} and χ_{2} to be ordered such that $\chi_{1}=|\cdot| \chi_{2}$.
Set $\alpha_{i}:=\chi_{i}(\varpi) \sqrt{q} \in \mathbb{C}^{*}$ for $i=1,2$. (We also write $\pi=\pi_{\alpha_{1}, \alpha_{2}}$ sometimes.)
Set $a:=\alpha_{1}+\alpha_{2}, \nu:=\alpha_{1} \alpha_{2} / q$. Define a distribution $\mu_{\alpha_{1}, \nu}:=\mu_{\alpha_{1} / \nu}:=$ $\psi(x) \chi_{\alpha_{1} / \nu}(x) d x$ on F^{*}.
For later use, we will need the following condition on the α_{i} :
Definition 2.3. Let $\pi=\pi_{\alpha_{1}, \alpha_{2}}$ be tamely ramified. π is called ordinary if a and ν both lie in $\overline{\mathcal{O}}^{*}$ (i.e. they are p-adic units in $\overline{\mathbb{Q}}$). Equivalently, this means that either $\alpha_{1} \in \overline{\mathcal{O}}^{*}$ and $\alpha_{2} \in q \overline{\mathcal{O}}^{*}$, or vice versa.

Proposition 2.4. Let $\chi: F^{*} \rightarrow \mathbb{C}^{*}$ be a quasi-character with conductor \mathfrak{p}^{f}; for $f=0$, assume $|\chi(\varpi)|<\left|\alpha_{2}\right|$. Then the integral $\int_{F^{*}} \chi(x) \mu_{\alpha_{1} / \nu}(d x)$ converges
and we have

$$
\int_{F^{*}} \chi(x) \mu_{\alpha_{1} / \nu}(d x)=e\left(\alpha_{1}, \alpha_{2}, \chi\right) \tau(\chi) L\left(\frac{1}{2}, \pi \otimes \chi\right)
$$

where
$e\left(\alpha_{1}, \alpha_{2}, \chi\right)= \begin{cases}\frac{\left(1-\alpha_{1} \chi(\varpi) q^{-1}\right)\left(1-\alpha_{2} \chi(\varpi)^{-1} q^{-1}\right)\left(1-\alpha_{2} \chi(\varpi) q^{-1}\right)}{\left(1-\chi(\varpi) \alpha^{-1}\right)}, & f=0 \text { and } \pi \text { spherical, } \\ \frac{\left(1-\alpha_{1} \chi(\varpi) q^{-1}\right)\left(1-\alpha_{2}(\varpi)^{-1} q^{-1}\right)}{\left(1-\chi(\varpi) \alpha_{2}^{-1}\right)}, & f=0 \text { and } \pi \text { special, } \\ \left(\frac{\alpha_{1}}{\nu}\right)^{-f}=\left(\frac{\alpha_{2}}{q}\right)^{f}, & f>0,\end{cases}$ and where we assume the right-hand side to be continuously extended to the potential removable singularities at $\chi(\varpi)=q / \alpha_{1}$ or $=q / \alpha_{2}$.
Proof. This follows immediately from lemma 2.2 and the definition of the (Jacquet-Langlands) L-function.

2.3 The Bruhat-Tits graph

Let $\tilde{\mathcal{V}}$ denote the set of lattices (i.e. submodules isomorphic to \mathcal{O}_{F}^{2}) in F^{2}, and let $\tilde{\mathcal{E}}$ be the set of all inclusion maps between two lattices; for such a map $e: v_{1} \hookrightarrow v_{2}$ in $\tilde{\mathcal{E}}$, we define $o(e):=v_{1}, t(e):=v_{2}$. Then the pair $\tilde{\mathcal{T}}:=(\tilde{\mathcal{V}}, \tilde{\mathcal{E}})$ is naturally a directed graph, connected, with no directed cycles (specifically, $\tilde{\mathcal{E}}$ induces a partial ordering on $\tilde{\mathcal{V}}$). For each $v \in \tilde{\mathcal{V}}$, there are exactly $q+1$ edges beginning (resp. ending) in v, each.
Recall that the Bruhat-Tits tree $\mathcal{T}=(\mathcal{V}, \overrightarrow{\mathcal{E}})$ of $G(F)$ is the directed graph whose vertices are homothety classes of lattices of F^{2} (i.e. $\mathcal{V}=\tilde{\mathcal{V}} / \sim$, where $v \sim \varpi^{i} v$ for all $i \in \mathbb{Z}$), and the directed edges $\bar{e} \in \overrightarrow{\mathcal{E}}$ are homothety classes of inclusions of lattices. We can define maps $o, t: \overrightarrow{\mathcal{E}} \rightarrow \mathcal{V}$ analogously. For each edge $\bar{e} \in \overrightarrow{\mathcal{E}}$, there is an opposite edge $\bar{e}^{\prime} \in \overrightarrow{\mathcal{E}}$ with $o\left(\bar{e}^{\prime}\right)=t(\bar{e}), t\left(\bar{e}^{\prime}\right)=o(\bar{e})$; and the undirected graph underlying \mathcal{T} is simply connected. We have a natural "projection map" $\pi: \tilde{\mathcal{T}} \rightarrow \mathcal{T}$, mapping each lattice and each homomorphism to its homothety class. Choosing a (set-theoretic) section $s: \mathcal{V} \rightarrow \tilde{\mathcal{V}}$, we get a bijection $\mathcal{V} \times \mathbb{Z} \xlongequal{\cong} \tilde{\mathcal{V}}$ via $(v, i) \mapsto \varpi^{i} s(v)$.
The group $G(F)$ operates on $\tilde{\mathcal{V}}$ via its standard action on F^{2}, i.e. $g v=\{g x \mid x \in$ $v\}$ for $g \in G(F)$, and on $\tilde{\mathcal{E}}$ by mapping $e: v_{1} \rightarrow v_{2}$ to the inclusion map $g e: g v_{1} \rightarrow g v_{2}$. The stabilizer of the standard vertex $v_{0}:=\mathcal{O}_{F}^{2}$ is $G\left(\mathcal{O}_{F}\right)$.
For a directed edge $\bar{e} \in \overrightarrow{\mathcal{E}}$ of the Bruhat-Tits tree \mathcal{T}, we define $U(\bar{e})$ to be the set of ends of \bar{e} (cf. Se80 / Sp14 $)$; it is a compact open subset of $\mathbb{P}^{1}(F)$, and we have $g U(\bar{e})=U(g \bar{e})$ for all $g \in G(F)$.
For $n \in \mathbb{Z}$, we set $v_{n}:=\mathcal{O}_{F} \oplus \mathfrak{p}^{n} \in \tilde{\mathcal{V}}$, and denote by e_{n} the edge from v_{n+1} to v_{n}; the "decreasing" sequence $\left(\pi\left(e_{-n}\right)\right)_{n \in \mathbb{Z}}$ is the geodesic from ∞ to 0 . (The geodesic from 0 to ∞ traverses the $\pi\left(v_{n}\right)$ in the natural order of $n \in \mathbb{Z}$.) We have $U\left(\pi\left(e_{n}\right)\right)=\mathfrak{p}^{-n}$ for each n.
On \mathcal{T}, we have the height function $h: \mathcal{V} \rightarrow \mathbb{Z}$ (cf. BL95) defined as follows: The geodesic ray from $v \in \mathcal{V}$ to ∞ must contain some $\pi\left(v_{n}\right)(n \in \mathbb{Z})$, since
it has non-empty intersection with $A:=\left\{\pi\left(v_{n}\right) \mid n \in \mathbb{Z}\right\}$; we define $h(v):=$ $n-d\left(v, \pi\left(v_{n}\right)\right)$ for any such v_{n}. This is easily seen to be well-defined, and satisfies $h\left(\pi\left(v_{n}\right)\right)=n$ for all $n \in \mathbb{Z}$. We have the following lemma:

Lemma 2.5. (a) For all $\bar{e} \in \mathcal{E}$, we have

$$
h(t(\bar{e}))= \begin{cases}h(o(\bar{e}))+1 \quad \text { if } \infty \in U(\bar{e}) \\ h(o(\bar{e}))-1 & \text { otherwise }\end{cases}
$$

(b) For $a \in F^{*}, b \in F, \bar{v} \in \mathcal{V}$ we have

$$
h\left(\left(\begin{array}{ll}
a & b \\
0 & 1
\end{array}\right) \bar{v}\right)=h(\bar{v})-\operatorname{ord}_{\varpi}(a)
$$

(Cf. Sp14, lemma 3.6)
Let R be a ring, M an R-module. We let $C(\tilde{\mathcal{V}}, M)$ be the R-module of maps $\phi: \tilde{\mathcal{V}} \rightarrow M$, and $C(\tilde{\mathcal{E}}, M)$ the R-module of maps $\tilde{\mathcal{E}} \rightarrow M$. Both are $G(F)$ modules via $(g \phi)(v):=\phi\left(g^{-1} v\right),(g c)(e):=c\left(g^{-1} e\right)$.
We let $\mathcal{C}_{c}(\tilde{\mathcal{V}}, M) \subseteq C(\tilde{\mathcal{V}}, M)$ and $\mathcal{C}_{c}(\tilde{\mathcal{E}}, M) \subseteq C(\tilde{\mathcal{E}}, M)$ be the $(G(F)$-stable) submodules of maps with compact support, i.e. maps that are zero outside a finite set. We get pairings

$$
\begin{equation*}
\langle-,-\rangle: C_{c}(\tilde{\mathcal{V}}, R) \times C(\tilde{\mathcal{V}}, M) \rightarrow M, \quad\left\langle\phi_{1}, \phi_{2}\right\rangle:=\sum_{v \in \tilde{\mathcal{V}}} \phi_{1}(v) \phi_{2}(v) \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\langle-,-\rangle: C_{c}(\tilde{\mathcal{E}}, R) \times C(\tilde{\mathcal{E}}, M) \rightarrow M, \quad\left\langle c_{1}, c_{2}\right\rangle:=\sum_{e \in \tilde{\mathcal{E}}} c_{1}(v) c_{2}(v) . \tag{3}
\end{equation*}
$$

We define Hecke operators $T, N: \mathcal{C}(\tilde{\mathcal{V}}, M) \rightarrow \mathcal{C}(\tilde{\mathcal{V}}, M)$ by

$$
T \phi(v)=\sum_{t(e)=v} \phi(o(e)) \quad \text { and } \quad N \phi:=\varpi \phi\left(\text { i.e. } N \phi(v)=\phi\left(\varpi^{-1} v\right)\right)
$$

for all $v \in \tilde{\mathcal{V}}$. These restrict to operators on $C_{c}(\tilde{\mathcal{V}}, R)$, which we sometimes denote by T_{c} and N_{c} for emphasis. With respect to (2), T_{c} is adjoint to $T N$, and N_{c} is adjoint to its inverse operator $N^{-1}: \mathcal{C}_{c}(\tilde{\mathcal{V}}, R) \rightarrow C_{c}(\tilde{\mathcal{V}}, R)$.
T and N obviously commute, and we have the following Hecke structure theorem on compactly supported functions on $\tilde{\mathcal{V}}$ (an analogue of BL95, Thm. 10):

Theorem 2.6. $C_{c}(\tilde{\mathcal{V}}, R)$ is a free $R\left[T, N^{ \pm 1}\right]$-module (where $R\left[T, N^{ \pm 1}\right]$ is the ring of Laurent polynomials in N over the polynomial ring $R[T]$, with N and T commuting).

Proof. Fix a vertex $v_{0} \in \tilde{\mathcal{V}}$. For each $n \geq 0$, let C_{n} be the set of vertices $v \in \tilde{\mathcal{V}}$ such that there is a directed path of length n from v_{0} to v in $\tilde{\mathcal{V}}$, and such that $d\left(\pi\left(v_{0}\right), \pi(v)\right)=n$ in the Bruhat-Tits tree \mathcal{T}. So $C_{0}=\left\{v_{0}\right\}$, and C_{n} is a lift of the "circle of radius n around v_{0} " in \mathcal{T}, in the parlance of BL95.
One easily sees that $\bigcup_{n=0}^{\infty} C_{n}$ is a complete set of representatives for the projection map $\pi: \tilde{\mathcal{V}} \rightarrow \mathcal{V}$; specifically, for $n>1$ and a given $v \in C_{n-1}, C_{n}$ contains exactly q elements adjacent to v in $\tilde{\mathcal{V}}$; and we can write $\tilde{\mathcal{V}}$ as a disjoint union $\bigcup_{j \in \mathbb{Z}} \bigcup_{n=0}^{\infty} N^{j}\left(C_{n}\right)$.
We further define $V_{0}:=\left\{v_{0}\right\}$ and choose subsets $V_{n} \subseteq C_{n}$ as follows: We let V_{1} be any subset of cardinality q. For $n>1$, we choose $q-1$ out of the q elements of C_{n} adjacent to v^{\prime}, for every $v^{\prime} \in C_{n-1}$, and let V_{n} be the union of these elements for all $v^{\prime} \in C_{n-1}$. Finally, we set

$$
H_{n, j}:=\left\{\phi \in C_{c}(\tilde{\mathcal{V}}, R) \mid \operatorname{Supp}(\phi) \subseteq \bigcup_{i=0}^{n} N^{j}\left(C_{i}\right)\right\} \quad \text { for each } n \geq 0, j \in \mathbb{Z}
$$

$H_{n}:=\bigcup_{j \in \mathbb{Z}} H_{n, j}$, and $H_{-1}:=H_{-1, j}:=\{0\}$. (For ease of notation, we identify $v \in \tilde{\mathcal{V}}$ with its indicator function $1_{\{v\}} \in C_{c}(\tilde{\mathcal{V}}, R)$ in this proof.)
Define $T^{\prime}: C_{c}(\tilde{\mathcal{V}}, R) \rightarrow C_{c}(\tilde{\mathcal{V}}, R)$ by

$$
T^{\prime}(\phi)(v):=\sum_{\substack{t(e)=(v), o(e) \in N^{j}\left(C_{n}\right)}} \phi(o(e)) \quad \text { for each } v \in N^{j}\left(C_{n-1}\right), j \in \mathbb{Z} ;
$$

T^{\prime} can be seen as the "restriction to one layer" $\bigcup_{n=0}^{\infty} N^{j}\left(C_{n}\right)$ of T. We have $T^{\prime}(v) \equiv T(v) \bmod H_{n-1}$ for each $v \in H_{n}$, since the "missing summand" of T^{\prime} lies in H_{n-1}.
We claim that for each $n \geq 0$, the set $X_{n, j}:=\bigcup_{i=0}^{n} N^{j} T^{n-i}\left(V_{i}\right)$ is an R-basis for $H_{n, j} / H_{n-1, j}$. By the above congruence, we can replace T by T^{\prime} in the definition of $X_{n, j}$.
The claim is clear for $n=0$. So let $n \geq 1$, and assume the claim to be true for all $n^{\prime} \leq n$. For each $v \in C_{n-1}$, the q points in C_{n} adjacent to v are generated by the $q-1$ of these points lying in V_{n}, plus $T^{\prime} v$ (which just sums up these q points). By induction hypothesis, v is generated by $X_{n-1,0}$, and thus (taking the union over all v), C_{n} is generated by $T^{\prime}\left(X_{n-1,0}\right) \cup V_{n}=X_{n, 0}$. Since the cardinality of $X_{n, 0}$ equals the R-rank of $H_{n, 0} / H_{n-1,0}$ (both are equal to $\left.(q+1) q^{n-1}\right), X_{n, 0}$ is in fact an R-basis.
Analoguously, we see that $H_{n, j} / H_{n-1, j}$ has $N^{j}\left(X_{n, 0}\right)=X_{n, j}$ as a basis, for each $j \in \mathbb{Z}$.
From the claim, it follows that $\bigcup_{j \in \mathbb{Z}} X_{n, j}$ is an R-basis of H_{n} / H_{n-1} for each n, and that $V:=\bigcup_{n=0}^{\infty} V_{n}$ is an $R\left[T, N^{ \pm 1}\right]$-basis of $C_{c}(\tilde{\mathcal{V}}, R)$.

For $a \in R$ and $\nu \in R^{*}$, we let $\tilde{\mathcal{B}}_{a, \nu}(F, R)$ be the "common cokernel" of $T-a$ and $N-\nu$ in $C_{c}(\tilde{\mathcal{V}}, R)$, namely $\tilde{\mathcal{B}}_{a, \nu}(F, R):=C_{c}(\tilde{\mathcal{V}}, R) /(\operatorname{Im}(T-a)+\operatorname{Im}(N-\nu))$;
dually, we define $\tilde{\mathcal{B}}^{a, \nu}(F, M):=\operatorname{ker}(T-a) \cap \operatorname{ker}(N-\nu) \subseteq C(\tilde{\mathcal{V}}, M)$.
For a lattice $v \in \tilde{\mathcal{V}}$, we define a valuation ord_{v} on F as follows: For $w \in F^{2}$, the set $\{x \in F \mid x w \in v\}$ is some fractional ideal $\varpi^{m} \mathcal{O}_{F} \subseteq F(m \in \mathbb{Z})$; we set $\operatorname{ord}_{v}(w):=m$. This map can also be given explicitly as follows: Let λ_{1}, λ_{2} be a basis of v. We can write any $w \in F^{2}$ as $w=x_{1} \lambda_{1}+x_{2} \lambda_{2}$; then we have $\operatorname{ord}_{v}(w)=\min \left\{\operatorname{ord}_{\varpi}\left(x_{1}\right), \operatorname{ord}_{\varpi}\left(x_{2}\right)\right\}$. This gives a "valuation" map on F^{2}, as one easily checks. We restrict it to $F \cong F \times\{0\} \hookrightarrow F^{2}$ to get a valuation ord ${ }_{v}$ on F, and consider especially the value at $e_{1}:=(1,0)$.

Lemma 2.7. Let $\alpha, \nu \in R^{*}$, and put $a:=\alpha+q \nu / \alpha$. Define a map $\varrho=\varrho_{\alpha, \nu}$: $\tilde{\mathcal{V}} \rightarrow R$ by $\varrho(v):=\alpha^{h(\pi(v))} \nu^{-\operatorname{ord}_{v}\left(e_{1}\right)}$. Then $\varrho \in \tilde{\mathcal{B}}^{a, \nu}(F, R)$.

Proof. One easily sees that $\left(v \mapsto \nu^{-\operatorname{ord}_{v}\left(e_{1}\right)}\right) \in \operatorname{ker}(N-\nu)$. It remains to show that $\varrho \in \operatorname{ker}(T-a)$:
We have the Iwasawa decomposition $G(F)=B(F) G\left(\mathcal{O}_{F}\right)=$ $\left\{\left(\begin{array}{cc}* & * \\ 0 & 1\end{array}\right)\right\} Z(F) G\left(\mathcal{O}_{F}\right)$; thus every vertex in $\tilde{\mathcal{V}}$ can be written as $\varpi^{i} v$ with $v=\left(\begin{array}{ll}a & b \\ 0 & 1\end{array}\right) v_{0}$, with $i \in \mathbb{Z}, a \in F^{*}, b \in F$.
Now the lattice $v=\left(\begin{array}{ll}a & b \\ 0 & 1\end{array}\right) v_{0}$ is generated by the vectors $\lambda_{1}=\binom{a}{0}$ and $\lambda_{2}=$ $\binom{b}{1} \in \mathcal{O}_{F}^{2}$, so $e_{1}=a^{-1} \lambda_{1}$ and thus $\operatorname{ord}_{v}\left(e_{1}\right)=\operatorname{ord}_{\varpi}\left(a^{-1}\right)=-\operatorname{ord}_{\varpi}(a)$. The $q+1$ neighbouring vertices v^{\prime} for which there exists an $e \in \tilde{\mathcal{E}}$ with $o(e)=$ $v^{\prime}, t(e)=v$ are given by $N_{i} v, i \in\{\infty\} \cup \mathcal{O}_{F} / \mathfrak{p}$, with $N_{\infty}:=\left(\begin{array}{cc}1 \\ 0 \\ 0 & 0\end{array}\right)$, and $N_{i}:=\left(\begin{array}{cc}\varpi & i \\ 0 & 1\end{array}\right)$ where $i \in \mathcal{O}_{F}$ runs through a complete set of representatives $\bmod \varpi$. By lemma 2.5, $h\left(\pi\left(N_{\infty} v\right)\right)=h(\pi(v))+1$ and $h\left(\pi\left(N_{i} v\right)\right)=h(\pi(v))-1$ for $i \neq \infty$. By considering the basis $\left\{N_{i} \lambda_{1}, N_{i} \lambda_{2}\right\}$ of $N_{i} v$ for each N_{i}, we see that $\operatorname{ord}_{N_{\infty} v}\left(e_{1}\right)=\operatorname{ord}_{v}\left(e_{1}\right)$ and $\operatorname{ord}_{N_{i} v}\left(e_{1}\right)=\operatorname{ord}_{v}\left(e_{1}\right)-1$ for $i \neq \infty$. Thus we have

$$
\begin{aligned}
(T \varrho)(v) & =\sum_{t(e)=v} \alpha^{h(\pi(o(e)))} \nu^{-\operatorname{ord}_{o(e)}\left(e_{1}\right)} \\
& =\alpha^{h(\pi(v))+1} \nu^{-\operatorname{ord}_{v} e_{1}}+q \cdot \alpha^{h(\pi(v))-1} \nu^{1-\operatorname{ord}_{v}\left(e_{1}\right)} \\
& =\left(\alpha+q \alpha^{-1} \nu\right) \alpha^{h(\pi(v))} \nu^{-\operatorname{ord}_{v} e_{1}}=a \varrho(v)
\end{aligned}
$$

and also $(T \varrho)\left(\varpi^{i} v\right)=\left(T N^{-i} \varrho\right)(v)=N^{-i}(a \varrho)(v)=a \varrho\left(\varpi^{i} v\right)$ for a general $\varpi^{i} v \in \tilde{\mathcal{V}}$, which shows that $\varrho \in \operatorname{ker}(T-a)$.

If $a^{2} \neq \nu(q+1)^{2}$ (the "spherical case"), we put $\mathcal{B}_{a, \nu}(F, R):=\tilde{\mathcal{B}}_{a, \nu}(F, R)$ and $\mathcal{B}^{a, \nu}(F, M):=\tilde{\mathcal{B}}^{a, \nu}(F, M)$.

In the "special case" $a^{2}=\nu(q+1)^{2}$, we need to assume that the polynomial $X^{2}-a \nu X+q \nu^{-1} \in R[X]$ has a zero $\alpha^{\prime} \in R$. Then the map $\varrho:=\varrho_{\alpha^{\prime}, \nu} \in$ $C(\tilde{\mathcal{V}}, R)$ defined as above lies in $\tilde{\mathcal{B}}^{a \nu, \nu^{-1}}(F, R)=\operatorname{ker}(T N-a) \cap \operatorname{ker}\left(N^{-1}-\nu\right)$ by Lemma 2.7, since $a \nu=\alpha^{\prime}+q \nu^{-1} / \alpha^{\prime}$. In other words, the kernel of the map
$\langle\cdot, \varrho\rangle: C_{c}(\tilde{\mathcal{V}}, R) \rightarrow R$ contains $\operatorname{Im}(T-a)+\operatorname{Im}(N-\nu)$; and we define

$$
\mathcal{B}_{a, \nu}(F, R):=\operatorname{ker}(\langle\cdot, \varrho\rangle) /(\operatorname{Im}(T-a)+\operatorname{Im}(N-\nu))
$$

to be the quotient; evidently, it is an R-submodule of codimension 1 of $\tilde{\mathcal{B}}_{a, \nu}(F, R)$. Dually, $T-a$ and $N-\nu$ both map the submodule $\varrho M=\{\varrho \cdot m, m \in$ $M\}$ of $C(\tilde{\mathcal{V}}, M)$ to zero and thus induce endomorphisms on $C(\tilde{\mathcal{V}}, M) / \varrho M$; we define $\mathcal{B}^{a, \nu}(F, M)$ to be the intersection of their kernels.
In the special case, since $\nu=\alpha^{2}$, Lemma 2.7 states that $\varrho\left(g v_{0}\right)=$ $\chi_{\alpha}(a d) \varrho\left(v_{0}\right)=\chi_{\alpha}(\operatorname{det} g) \varrho\left(v_{0}\right)$ for all $g=\left(\begin{array}{ll}a & b \\ 0 & d\end{array}\right) \in B(F)$, and thus for all $g \in G(F)$ by the Iwasawa decomposition, since $G\left(\mathcal{O}_{F}\right)$ fixes v_{0} and lies in the kernel of $\chi_{\alpha} \circ$ det. By the multiplicity of det, we have $\left(g^{-1} \varrho\right)(v)=$ $\varrho(g v)=\chi_{\alpha}(\operatorname{det} g) \varrho(v)$ for all $g \in G(F), v \in \tilde{\mathcal{V}}$. So $\phi \in \operatorname{ker}\langle\cdot, \varrho\rangle$ implies $\langle g \phi, \varrho\rangle=\left\langle\phi, g^{-1} \varrho\right\rangle=\chi_{\alpha}(\operatorname{det} g)\langle\phi, \varrho\rangle=0$, i.e. $\operatorname{ker}\langle\cdot, \varrho\rangle$ and thus $\mathcal{B}_{a, \nu}(F, R)$ are $G(F)$-modules.
By the adjointness properties of the Hecke operators T and N, we have pairings $\operatorname{coker}\left(T_{c}-a\right) \times \operatorname{ker}(T N-a) \rightarrow M$ and $\operatorname{coker}\left(N_{c}-\nu\right) \times \operatorname{ker}\left(N^{-1}-\nu\right) \rightarrow M$, which "combine" to give a pairing

$$
\langle-,-\rangle: \mathcal{B}_{a, \nu}(F, R) \times \mathcal{B}^{a \nu, \nu^{-1}}(F, M) \rightarrow M
$$

(since $\operatorname{ker}(T N-a) \cap \operatorname{ker}\left(N^{-1}-\nu\right)=\operatorname{ker}(T-a \nu) \cap \operatorname{ker}\left(N-\nu^{-1}\right)$), and a corresponding isomorphism $\mathcal{B}^{a \nu, \nu^{-1}}(F, M) \xrightarrow{\cong} \operatorname{Hom}\left(\mathcal{B}_{a, \nu}(F, R), M\right)$.
Definition 2.8. Let G be a totally disconnected locally compact group, $H \subseteq G$ an open subgroup. For a smooth $R[H]$-module M, we define the (compactly) induced G-representation of M, denoted $\operatorname{Ind}_{H}^{G} M$, to be the space of maps $f: G \rightarrow M$ such that $f(h g)=f(g)$ for all $g \in G, h \in H$, and such that f has compact support modulo H. We let G act on $\operatorname{Ind}_{H}^{G} M$ via $g \cdot f(x):=f(x g)$. (We can also write $\operatorname{Ind}_{H}^{G} M=R[G] \otimes_{R[H]} M$, cf. Br82], III.5.)
We further define $\operatorname{Coind}_{H}^{G} M:=\operatorname{Hom}_{R[H]}(R[G], M)$. Finally, for an $R[G]$ module N, we write $\operatorname{res}_{H}^{G} N$ for its underlying $R[H]$-module ("restriction").
By Theorem 2.6, $T_{c}-a$ (as well as $N_{c}-\nu$) is injective, and the induced map

$$
N_{c}-\nu: \operatorname{coker}\left(T_{c}-a\right)=C_{c}(\tilde{\mathcal{V}}, R) / \operatorname{Im}\left(T_{c}-a\right) \rightarrow \operatorname{coker}\left(T_{c}-a\right)
$$

(of $R\left[T, N^{ \pm 1}\right] /(T-a)=R\left[N^{ \pm 1}\right]$-modules) is also injective. Now since $G(F)$ acts transitively on $\tilde{\mathcal{V}}$, with the stabilizer of $v_{0}:=\mathcal{O}_{F}^{2}$ being $K:=G\left(\mathcal{O}_{F}\right)$, we have an isomorphism $C_{c}(\tilde{\mathcal{V}}, R) \cong \operatorname{Ind}_{K}^{G(F)} R$. Thus we have exact sequences

$$
\begin{equation*}
0 \rightarrow \operatorname{Ind}_{K}^{G(F)} R \xrightarrow{T-a} \operatorname{Ind}_{K}^{G(F)} R \rightarrow \operatorname{coker}\left(T_{c}-a\right) \rightarrow 0 \tag{4}
\end{equation*}
$$

and (for a, ν in the spherical case)

$$
\begin{equation*}
0 \rightarrow \operatorname{coker}\left(T_{c}-a\right) \xrightarrow{N-\nu} \operatorname{coker}\left(T_{c}-a\right) \rightarrow \mathcal{B}_{a, \nu}(F, R) \rightarrow 0, \tag{5}
\end{equation*}
$$

with all entries being free R-modules. Applying $\operatorname{Hom}_{R}(\cdot, M)$ to them, we get:

Lemma 2.9. We have exact sequences of R-modules

$$
0 \rightarrow \operatorname{ker}(T N-a) \rightarrow \operatorname{Coind}_{K}^{G(F)} M \xrightarrow{T-a} \operatorname{Coind}_{K}^{G(F)} M \rightarrow 0
$$

and, if $\mathcal{B}_{a, \nu}(F, M)$ is spherical (i.e. $\left.a^{2} \neq \nu(q+1)^{2}\right)$,

$$
0 \rightarrow \mathcal{B}^{a \nu, \nu^{-1}}(F, M) \rightarrow \operatorname{ker}(T N-a) \xrightarrow{N-\nu} \operatorname{ker}(T N-a) \rightarrow 0
$$

For the special case, we have to work a bit more to get similar exact sequences: By Sp14, eq. (22), for the representation $S t^{-}(F, R):=\mathcal{B}_{-(q+1), 1}(F, R)$ (i.e. $\nu=1, \alpha=-1$) with trivial central character, we have an exact sequence of G-modules

$$
\begin{equation*}
0 \rightarrow \operatorname{Ind}_{K Z}^{G} R \rightarrow \operatorname{Ind}_{K^{\prime} Z}^{G} R \rightarrow S t^{-}(F, R) \rightarrow 0 \tag{6}
\end{equation*}
$$

where $K^{\prime}=\langle W\rangle K_{0}(\mathfrak{p})$ is the subgroup of $K Z$ generated by $W:=\left(\begin{array}{cc}0 & 1 \\ w & 0\end{array}\right)$ and the subgroup $K_{0}(\mathfrak{p}) \subseteq K$ of matrices that are upper-triangular modulo \mathfrak{p}. (Since $W^{2} \in Z, K_{0}(\bar{p}) Z$ is a subgroup of K^{\prime} of order 2.) Now aany special representation (π, V) can be written as $\pi=\chi \otimes S t^{-}$for some character $\chi=$ χ_{Z} (cf. the proof of lemma 2.12 below), and is obviously G-isomorphic to the representation $\pi \otimes(\chi \circ \operatorname{det})$ acting on the space $V \otimes_{R} R(\chi \circ \operatorname{det})$, where $R(\chi \circ \operatorname{det})$ is the ring R with G-module structure given via $g r=\chi(\operatorname{det}(g)) r$ for $g \in G, r \in R$. Tensoring (6) with $R(\chi \circ \operatorname{det})$ over R gives an exact sequence of G-modules

$$
\begin{equation*}
0 \rightarrow \operatorname{Ind}_{K Z}^{G} \chi \rightarrow \operatorname{Ind}_{K^{\prime} Z}^{G} \chi \rightarrow V \rightarrow 0 \tag{7}
\end{equation*}
$$

It is easily seen that $R(\chi \circ$ det $)$ fits into another exact sequence of G-modules

$$
0 \rightarrow \operatorname{Ind}_{H}^{G} R \xrightarrow{\left(\begin{array}{cc}
\varpi & 0 \\
0 & 1
\end{array}\right)-\chi(\varpi) \mathrm{id}} \operatorname{Ind}_{H}^{G} R \xrightarrow{\psi} R(\chi \circ \operatorname{det}) \rightarrow 0,
$$

where $H:=\left\{g \in G \mid \operatorname{det} g \in \mathcal{O}_{F}^{\times}\right\}$is a normal subgroup containing K, $\left(\begin{array}{cc}\varpi & 0 \\ 0 & 1\end{array}\right)(f)(g):=f\left(\left(\begin{array}{cc}\varpi & 0 \\ 0 & 1\end{array}\right)^{-1} g\right)$ for $f \in \operatorname{Ind}_{H}^{G} R=\{f: G \rightarrow R \mid f(H g)=f(g)$ for all $g \in G\}, g \in G$, is the natural operation of G, and where ψ is the G-equivariant map defined by $1_{U} \mapsto 1$.
Now since $H \subseteq G$ is a normal subgroup, we have $\operatorname{Ind}_{H}^{G} R \cong R[G / H]$ as G modules (in fact $G / H \cong \mathbb{Z}$ as an abstract group). Let $X \subseteq G$ be a subgroup such that the natural inclusion $X /(X \cap H) \hookrightarrow G / H$ has finite cokernel; let $g_{i} H$, $i=1, \ldots n$ be a set of representatives of that cokernel. Then we have a (noncanonical) X-isomorphism $\bigoplus_{i=0}^{n} \operatorname{Ind}_{X \cap H}^{X} \rightarrow \operatorname{Ind}_{H}^{G} R$ defined via $\left(1_{(X \cap H) x}\right)_{i} \mapsto$ $1_{H x g_{i}}$ for each $i=1, \ldots, n$ (cf. Br82], III (5.4)).
Using this isomorphism and the "tensor identity" $\operatorname{Ind}_{H}^{G} M \otimes N \cong \operatorname{Ind}_{H}^{G}(M \otimes$ $\operatorname{res}_{H}^{G} N$) for any groups $H \subseteq G, H$-module M and G-module N ([Br82] III.5, Ex. 2), we have

$$
\begin{aligned}
\operatorname{Ind}_{K Z}^{G} R \otimes_{R} \operatorname{Ind}_{H}^{G} R & \cong \operatorname{Ind}_{K Z}^{G}\left(\operatorname{res}_{K Z}^{G}\left(\operatorname{Ind}_{H}^{G} R\right)\right) \\
& =\operatorname{Ind}_{K Z}^{G}\left(\left(\operatorname{Ind}_{K Z \cap H}^{K Z} R\right)^{2}\right) \\
& =\left(\operatorname{Ind}_{K Z}^{G}\left(\operatorname{Ind}_{K}^{K Z} R\right)\right)^{2}=\left(\operatorname{Ind}_{K}^{G} R\right)^{2}
\end{aligned}
$$

(since $K Z / K Z \cap H \hookrightarrow G / H$ has index 2), and similarly

$$
\operatorname{Ind}_{K^{\prime} Z}^{G} R \otimes_{R} \operatorname{Ind}_{H}^{G} R \cong\left(\operatorname{Ind}_{K^{\prime}}^{G} R\right)^{2} .
$$

Thus, we can resolve the first and second term of (7) into exact sequences

$$
\begin{gathered}
0 \rightarrow\left(\operatorname{Ind}_{K}^{G} R\right)^{2} \rightarrow\left(\operatorname{Ind}_{K}^{G} R\right)^{2} \rightarrow \operatorname{Ind}_{K Z}^{G} \chi \rightarrow 0, \\
0 \rightarrow\left(\operatorname{Ind}_{K^{\prime}}^{G} R\right)^{2} \rightarrow\left(\operatorname{Ind}_{K^{\prime}}^{G} R\right)^{2} \rightarrow \operatorname{Ind}_{\langle W\rangle K_{0}(\mathfrak{p}) Z}^{G} \chi \rightarrow 0 .
\end{gathered}
$$

Dualizing (7) and these by taking $\operatorname{Hom}(\cdot, M)$ for an R-module M, we get a "resolution" of $\mathcal{B}^{a \nu, \nu^{-1}}(F, M)$ in terms of coinduced modules:

Lemma 2.10. We have exact sequences

$$
\begin{aligned}
& 0 \rightarrow \mathcal{B}^{a \nu, \nu^{-1}}(F, M) \rightarrow \operatorname{Coind}_{K^{\prime} Z}^{G} M(\chi) \rightarrow \operatorname{Coind}_{K Z}^{G} M(\chi) \rightarrow 0, \\
& 0 \rightarrow \operatorname{Coind}_{K Z}^{G} M(\chi) \rightarrow\left(\operatorname{Coind}_{K}^{G} R\right)^{2} \rightarrow\left(\operatorname{Coind}_{K}^{G} R\right)^{2} \rightarrow 0, \\
& 0 \rightarrow \operatorname{Coind}_{K^{\prime} Z}^{G} M(\chi) \rightarrow\left(\operatorname{Coind}_{K^{\prime}}^{G} R\right)^{2} \rightarrow\left(\operatorname{Coind}_{K^{\prime}}^{G} R\right)^{2} \rightarrow 0
\end{aligned}
$$

for all special $\mathcal{B}_{a, \nu}(F, R)$ (i.e. $\left.a^{2}=\nu(q+1)^{2}\right)$, where $\chi=\chi_{Z}$ is the central character.

It is easily seen that the above arguments could be modified to get a similar set of exact sequences in the spherical case as well (replacing K^{\prime} by K everywhere), in addition to that given in lemma 2.9 but we will not need this.

2.4 Distributions on the Bruhat-Tits graph

For $\varrho \in C(\tilde{\mathcal{V}}, R)$ we define R-linear maps

$$
\begin{gathered}
\tilde{\delta}_{\varrho}: C(\tilde{\mathcal{E}}, M) \rightarrow C(\tilde{\mathcal{V}}, M), \quad \tilde{\delta}_{\varrho}(c)(v):=\sum_{v=t(e)} \varrho(o(e)) c(e)-\sum_{v=o(e)} \varrho(t(e)) c(e), \\
\tilde{\delta}^{\varrho}: C(\tilde{\mathcal{V}}, M) \rightarrow C(\tilde{\mathcal{E}}, M), \quad \tilde{\delta}^{\varrho}(\phi)(e):=\varrho(o(e)) \phi(t(e))-\varrho(t(e)) \phi(o(e)) .
\end{gathered}
$$

One easily checks that these are adjoint with respect to the pairings (2) and (3), i.e. we have $\left\langle\tilde{\delta}_{\varrho}(c), \phi\right\rangle=\left\langle c, \tilde{\delta}^{\varrho}(\phi)\right\rangle$ for all $c \in C_{c}(\tilde{\mathcal{E}}, R), \phi \in C(\tilde{\mathcal{V}}, M)$. We denote the maps corresponding to $\varrho \equiv 1$ by $\delta:=\tilde{\delta}_{1}, \delta^{*}:=\tilde{\delta}^{1}$.
For each ϱ, the map $\tilde{\delta}_{\varrho}$ fits into an exact sequence

$$
C_{c}(\tilde{\mathcal{E}}, R) \xrightarrow{\tilde{\delta}_{e}} C_{c}(\tilde{\mathcal{V}}, R) \xrightarrow{\langle\cdot,,\rangle} R \rightarrow 0
$$

but it is not injective in general: e.g. for $\varrho \equiv 1$, the map $\tilde{\mathcal{E}} \rightarrow R$ symbolized by

(and zero outside the square) lies in $\operatorname{ker} \delta$.
The restriction $\left.\delta^{*}\right|_{C_{c}(\tilde{\mathcal{V}}, R)}$ to compactly supported maps is injective since $\tilde{\mathcal{T}}$ has no directed circles, and we have a surjective map

$$
\operatorname{coker}\left(\delta^{*}: C_{c}(\tilde{\mathcal{V}}, R) \rightarrow C_{c}(\tilde{\mathcal{E}}, R)\right) \rightarrow C^{0}\left(\mathbb{P}^{1}(F), R\right) / R, \quad c \mapsto \sum_{e \in \tilde{\mathcal{E}}} c(e) 1_{U(\pi(e))}
$$

(which corresponds to an isomorphism of the similar map on the Bruhat-Tits tree \mathcal{T}). Its kernel is generated by the functions $1_{\{e\}}-1_{\left\{e^{\prime}\right\}}$ for $e, e^{\prime} \in \tilde{\mathcal{E}}$ with $\pi(e)=\pi\left(e^{\prime}\right)$.
For $\varrho_{1}, \varrho_{2} \in C(\tilde{\mathcal{V}}, R)$ and $\phi \in C(\tilde{\mathcal{V}}, M)$ it is easily checked that

$$
\left(\tilde{\delta}_{\varrho_{1}} \circ \tilde{\delta}^{\varrho_{2}}\right)(\phi)=(T+T N)\left(\varrho_{1} \cdot \varrho_{2}\right) \cdot \phi-\varrho_{2} \cdot(T+T N)\left(\varrho_{1} \cdot \phi\right)
$$

For $a^{\prime} \in R$ and $\varrho \in \operatorname{ker}\left(T+T N-a^{\prime}\right)$, applying this equality for $\varrho_{1}=\varrho$ and $\varrho_{2}=1$ shows that $\tilde{\delta}_{\varrho}$ maps $\operatorname{Im} \delta^{*}$ into $\operatorname{Im}\left(T+T N-a^{\prime}\right)$, so we get an R-linear map

$$
\tilde{\delta}_{\varrho}: \operatorname{coker}\left(\delta^{*}: C_{c}(\tilde{\mathcal{V}}, R) \rightarrow C_{c}(\tilde{\mathcal{E}}, R)\right) \rightarrow \operatorname{coker}\left(T_{c}+T_{c} N_{c}-a^{\prime}\right)
$$

Let now again $\alpha, \nu \in R^{*}$, and $a:=\alpha+q \nu / \alpha$. We let $\varrho:=\varrho_{\alpha, \nu} \in \tilde{\mathcal{B}}^{a, \nu}(F, R)$ as defined in lemma 2.7, and write $\tilde{\delta}_{\alpha, \nu}:=\tilde{\delta}_{\varrho}$. Since $\tilde{\delta}_{\alpha, \nu} \operatorname{maps} 1_{\{e\}}-1_{\{\varpi e\}}$ into $\operatorname{Im}(R-\nu)$, it induces a map

$$
\tilde{\delta}_{\alpha, \nu}: C^{0}\left(\mathbb{P}^{1}(F), R\right) / R \rightarrow \mathcal{B}_{a, \nu}(F, R)
$$

(same name by abuse of notation) via the commutative diagram

$$
\begin{gathered}
\quad \operatorname{coker} \delta^{*} \xrightarrow{\tilde{\delta}_{\alpha, \nu}} \operatorname{coker}\left(T_{c}+T_{c} N_{c}-a^{\prime}\right) \\
\downarrow_{\downarrow}^{\mid} \underset{\bmod (N-\nu)}{ } \\
C^{0}\left(\mathbb{P}^{1}(F), R\right) / R \xrightarrow[\tilde{\delta}_{\alpha, \nu}]{\longrightarrow} \mathcal{B}_{a, \nu}(F, R)
\end{gathered}
$$

with $a^{\prime}:=a(1+\nu)$, since $\varrho \in \mathcal{B}^{a, \nu}(F, R) \subseteq \operatorname{ker}\left(T+T N-a^{\prime}\right)$.
Lemma 2.11. We have $\varrho(g v)=\chi_{\alpha}\left(d / a^{\prime}\right) \chi_{\nu}\left(a^{\prime}\right) \varrho(v)$, and thus

$$
\tilde{\delta}_{\alpha, \nu}(g f)=\chi_{\alpha}\left(d / a^{\prime}\right) \chi_{\nu}\left(a^{\prime}\right) g \tilde{\delta}_{\alpha, \nu}(f),
$$

for all $v \in \tilde{\mathcal{V}}, f \in C^{0}\left(\mathbb{P}^{1}(F), R\right) / R$ and $g=\left(\begin{array}{ll}a^{\prime} & b \\ 0 & d\end{array}\right) \in B(F)$.
Proof. (a) Using lemma 2.5(b) and the fact that $\operatorname{ord}_{g v}\left(e_{1}\right)=-\operatorname{ord}_{\varpi}\left(a^{\prime}\right)+$ $\operatorname{ord}_{v}\left(e_{1}\right)$, we have

$$
\varrho\left(\left(\begin{array}{cc}
a^{\prime} & b \\
0 & d
\end{array}\right) v\right)=\alpha^{h(v)-\operatorname{ord}_{\varpi}\left(a^{\prime} / d\right)} \nu^{\operatorname{ord}_{\varpi}\left(a^{\prime}\right)-\operatorname{ord}_{v}\left(e_{1}\right)}=\chi_{\alpha}\left(d / a^{\prime}\right) \chi_{\nu}\left(a^{\prime}\right) \varrho(v)
$$

for all $v \in \tilde{\mathcal{V}}$. For f and g as in the assertion, we thus have

$$
\begin{aligned}
\tilde{\delta}_{\alpha, \nu}(g f)(v) & =\sum_{v=t(e)} \varrho(o(e)) f\left(g^{-1} e\right)-\sum_{v=o(e)} \varrho(t(e)) f\left(g^{-1} e\right) \\
& =\sum_{g^{-1} v=t(e)} \varrho(o(g e)) f(e)-\sum_{g^{-1} v=o(e)} \varrho(t(g e)) f(e) \\
& =\chi_{\alpha}\left(d / a^{\prime}\right) \chi_{\nu}\left(a^{\prime}\right) \varrho(v)\left(\sum_{g^{-1} v=t(e)} \varrho(o(e)) f(e)-\sum_{g^{-1} v=o(e)} \varrho(t(e)) f(e)\right) \\
& =\chi_{\alpha}\left(d / a^{\prime}\right) \chi_{\nu}\left(a^{\prime}\right) g \tilde{\delta}_{\alpha, \nu}(f)(v) .
\end{aligned}
$$

We define a function $\delta_{\alpha, \nu}: C_{c}\left(F^{*}, R\right) \rightarrow \mathcal{B}_{a, \nu}(F, R)$ as follows: For $f \in C_{c}\left(F^{*}, R\right)$, we let $\psi_{0}(f) \in C_{c}\left(\mathbb{P}^{1}(F), R\right)$ be the extension of $x \mapsto$ $\chi_{\alpha}(x) \chi_{\nu}(x)^{-1} f(x)$ by zero to $\mathbb{P}^{1}(F)$. We set $\delta_{\alpha, \nu}:=\tilde{\delta}_{\alpha, \nu} \circ \psi_{0}$. If $\alpha=\nu$, we can define $\delta_{\alpha, \nu}$ on all functions in $C_{c}(F, R)$.
We let F^{*} operate on $C_{c}(F, R)$ by $(t f)(x):=f\left(t^{-1} x\right)$; this induces an action of the group $T^{1}(F):=\left\{\left.\left(\begin{array}{cc}t & 0 \\ 0 & 1\end{array}\right) \right\rvert\, t \in F^{*}\right\}$, which we identify with F^{*} in the obvious way. With respect to it, we have

$$
\psi_{0}(t f)(x)=\chi_{\alpha}(t) \chi_{\nu}(t)^{-1} t \psi_{0}(f)(x)
$$

and

$$
\tilde{\delta}_{\alpha, \nu}(t f)=\chi_{\alpha}^{-1}(t) \chi_{\nu}(t) t \tilde{\delta}_{\alpha, \nu}(f)
$$

so $\delta_{\alpha, \nu}$ is $T^{1}(F)$-equivariant.
For an R-module M, we define an F^{*}-action on $\operatorname{Dist}\left(F^{*}, M\right)$ by $\int f d(t \mu):=$ $t \int\left(t^{-1} f\right) d \mu$. Let $H \subseteq G(F)$ be a subgroup, and M an $R[H]$-module. We define an H-action on $\mathcal{B}^{a \nu, \nu^{-1}}(F, M)$ by requiring $\langle\phi, h \lambda\rangle=h \cdot\left\langle h^{-1} \phi, \lambda\right\rangle$ for all $\phi \in \mathcal{B}_{a, \nu}(F, M), \lambda \in \mathcal{B}^{a \nu, \nu^{-1}}(F, M), h \in H$. With respect to these two actions, we get a $T^{1}(F) \cap H$-equivariant mapping

$$
\delta^{\alpha, \nu}: \mathcal{B}^{a \nu, \nu^{-1}}(F, M) \rightarrow \operatorname{Dist}\left(F^{*}, M\right), \quad \delta^{\alpha, \nu}(\lambda):=\left\langle\delta_{\alpha, \nu}(\cdot), \lambda\right\rangle
$$

dual to $\delta_{\alpha, \nu}$.

2.5 Local distributions

Now consider the case $R=\mathbb{C}$. Let $\chi_{1}, \chi_{2}: F^{*} \rightarrow \mathbb{C}^{*}$ be two unramified characters. We consider $\left(\chi_{1}, \chi_{2}\right)$ as a character on the torus $T(F)$ of $\mathrm{GL}_{2}(F)$, which induces a character χ on $B(F)$ by

$$
\chi\left(\begin{array}{cc}
t_{1} & u \\
0 & t_{2}
\end{array}\right):=\chi_{1}\left(t_{1}\right) \chi_{2}\left(t_{2}\right)
$$

Put $\alpha_{i}:=\chi_{i}(\varpi) \sqrt{q} \in \mathbb{C}^{*}$ for $i=1,2$. Set $\nu:=\chi_{1}(\varpi) \chi_{2}(\varpi)=\alpha_{1} \alpha_{2} q^{-1} \in \mathbb{C}^{*}$, and $a:=\alpha_{1}+\alpha_{2}=\alpha_{i}+q \nu / \alpha_{i}$ for either i. When a and ν are given by the α_{i}
like this, we will often write $\mathcal{B}_{\alpha_{1}, \alpha_{2}}(F, R):=\mathcal{B}_{a, \nu}(F, R)$ and $\mathcal{B}^{\alpha_{1}, \alpha_{2}}(F, M):=$ $\mathcal{B}^{a \nu, \nu^{-1}}(F, M)(!)$ for its dual. In the special case $a^{2}=\nu(q+1)^{2}$, we assume the χ_{i} to be sorted such that $\chi_{1}=|\cdot| \chi_{2}$.
Let $\mathcal{B}\left(\chi_{1}, \chi_{2}\right)$ denote the space of continuous maps $\phi: G(F) \rightarrow \mathbb{C}$ such that

$$
\phi\left(\left(\begin{array}{cc}
t_{1} & u \tag{8}\\
0 & t_{2}
\end{array}\right) g\right)=\chi_{\alpha_{1}}\left(t_{1}\right) \chi_{\alpha_{2}}\left(t_{2}\right)\left|t_{1}\right| \phi(g)
$$

for all $t_{1}, t_{2} \in F^{*}, u \in F, g \in G(F) . G(F)$ operates canonically on $\mathcal{B}\left(\chi_{1}, \chi_{2}\right)$ by right translation (cf. Bu98, Ch. 4.5). If $\chi_{1} \chi_{2}^{-1} \neq|\cdot|^{ \pm 1}, \mathcal{B}\left(\chi_{1}, \chi_{2}\right)$ is a model of the spherical representation $\pi\left(\chi_{1}, \chi_{2}\right)$; if $\chi_{1} \chi_{2}^{-1}=|\cdot|^{ \pm 1}$, the special representation $\pi\left(\chi_{1}, \chi_{2}\right)$ can be given as an irreducible subquotient of codimension 1 of $\mathcal{B}\left(\chi_{1}, \chi_{2}\right) 2^{2}$
Lemma 2.12. We have a G-equivariant isomorphism $\tilde{\mathcal{B}}_{a, \nu}(F, \mathbb{C}) \cong \mathcal{B}\left(\chi_{1}, \chi_{2}\right)$. It induces an isomorphism $\mathcal{B}_{a, \nu}(F, \mathbb{C}) \cong \pi\left(\chi_{1}, \chi_{2}\right)$ both for spherical and special representations.
Proof. We choose a "central" unramified character $\chi_{Z}: F^{*} \rightarrow \mathbb{C}$ satisfying $\chi_{Z}^{2}(\varpi)=\nu$; then we have $\chi_{1}=\chi_{Z} \chi_{0}{ }^{-1}, \chi_{2}=\chi_{Z} \chi_{0}$ for some unramified character χ_{0}. We set $a^{\prime}:=\sqrt{q}\left(\chi_{0}(\varpi)^{-1}+\chi_{0}(\varpi)\right)$, which satisfies $a=\chi_{Z}(\varpi) a^{\prime}$.
For a representation (π, V) of $G(F)$, by [Bu98], Ex. 4.5.9, we can define another representation $\chi_{Z} \otimes \pi$ on V via

$$
(g, v) \mapsto \chi_{Z}(\operatorname{det}(g)) \pi(g) v \quad \text { for all } g \in G(F), v \in V,
$$

and with this definition we have $\mathcal{B}\left(\chi_{1}, \chi_{2}\right) \cong \chi_{Z} \otimes \mathcal{B}\left(\chi_{0}^{-1}, \chi_{0}\right)$. Since $\mathcal{B}\left(\chi_{0}^{-1}, \chi_{0}\right)$ has trivial central character, BL95, Thm. 20 (as quoted in Sp14) states that $\mathcal{B}\left(\chi_{0}^{-1}, \chi_{0}\right) \cong \mathcal{B}_{a^{\prime}, 1}(F, \mathbb{C}) \cong \operatorname{Ind}_{K Z}^{G(F)} R / \operatorname{Im}\left(T-a^{\prime}\right)$.
Define a G-linear map $\phi: \operatorname{Ind}_{K}^{G} R \rightarrow \chi_{Z} \otimes \operatorname{Ind}_{K Z}^{G} R$ by $1_{K} \mapsto\left(\chi_{Z} \circ \operatorname{det}\right) \cdot 1_{K Z}$. Since 1_{K} (resp. $\left.\left(\chi_{Z} \circ \operatorname{det}\right) \cdot 1_{K Z}\right)$ generates $\operatorname{Ind}_{K}^{G} R\left(\right.$ resp. $\left.\chi_{Z} \otimes \operatorname{Ind}_{K Z}^{G} R\right)$ as a $\mathbb{C}[G]$-module, ϕ is well-defined and surjective.
ϕ maps $N 1_{K}=\left(\begin{array}{cc}\varpi & 0 \\ 0 & \varpi\end{array}\right) 1_{K}$ to

$$
\left(\begin{array}{cc}
\varpi & 0 \\
0 & \varpi
\end{array}\right)\left(\left(\chi_{Z} \circ \operatorname{det}\right) \cdot 1_{K Z}\right)=\chi_{Z}(\varpi)^{2} \cdot\left(\left(\chi_{Z} \circ \operatorname{det}\right) \cdot 1_{K Z}\right)=\nu \cdot \phi\left(1_{K}\right)
$$

Thus $\operatorname{Im}(N-\nu) \subseteq \operatorname{ker} \phi$, and in fact the two are equal, since the preimage of the space of functions of support in a coset $K Z g(g \in G(F))$ under ϕ is exactly the space generated by the $1_{K z g}, z \in Z(F)=Z\left(\mathcal{O}_{F}\right)\left\{\left(\begin{array}{cc}\underset{\sim}{\infty} & 0 \\ 0 & \varpi\end{array}\right)\right\}^{\mathbb{Z}}$.
Furthermore, ϕ maps $T 1_{K}=\sum_{i \in \mathcal{O}_{F} /(\varpi) \cup\{\infty\}} N_{i} 1_{K}$ (with the N_{i} as in Lemma 2.7) to

$$
\sum_{i} \chi_{Z}\left(\operatorname{det}\left(N_{i}\right)\right) \cdot\left(\left(\chi_{Z} \circ \operatorname{det}\right) \cdot N_{i} 1_{K Z}\right)=\chi_{Z}(\varpi) \cdot\left(\chi_{Z} \circ \operatorname{det}\right) T 1_{K Z}
$$

(since $\operatorname{det}\left(N_{i}\right)=\varpi$ for all i), and thus $\operatorname{Im}(T-a)$ is mapped to $\operatorname{Im}\left(\chi_{Z}(\varpi) T-\right.$ $a)=\operatorname{Im}\left(\chi_{Z}(\varpi)\left(T-a^{\prime}\right)\right)=\operatorname{Im}\left(T-a^{\prime}\right)$.

[^1]Putting everything together, we thus have G-isomorphisms

$$
\begin{aligned}
C_{c}(\tilde{\mathcal{V}}, \mathbb{C}) /(\operatorname{Im}(T-a)+\operatorname{Im}(N-\nu)) & \cong \operatorname{Ind}_{K}^{G} R /(\operatorname{Im}(T-a)+\operatorname{Im}(N-\nu)) \\
& \cong \chi_{Z} \otimes\left(\operatorname{Ind}_{K Z}^{G} R / \operatorname{Im}\left(T-a^{\prime}\right)\right) \\
& \cong \chi_{Z} \otimes \mathcal{B}\left(\chi_{0}^{-1}, \chi_{0}\right) \cong \mathcal{B}\left(\chi_{1}, \chi_{2}\right)
\end{aligned}
$$

Thus, $\mathcal{B}_{a, \nu}(F, \mathbb{C})$ is isomorphic to the spherical principal series representation $\pi\left(\chi_{1}, \chi_{2}\right)$ for $a^{2} \neq \nu(q+1)^{2}$.
In the special case, $\mathcal{B}_{a, \nu}(F, \mathbb{C})$ is a G-invariant subspace of $\tilde{\mathcal{B}}_{a, \nu}(F, \mathbb{C})$ of codimension 1, so it must be mapped under the isomorphism to the unique G invariant subspace of $\mathcal{B}\left(\chi_{1}, \chi_{2}\right)$ of codimension 1 (in fact, the unique infinitedimensional irreducible G-invariant subspace, by Bu98, Thm. 4.5.1), which is the special representation $\pi\left(\chi_{1}, \chi_{2}\right)$.

By Bu98, section 4.4, there exists thus for all pairs a, ν a Whittaker functional λ on $\mathcal{B}_{a, \nu}(F, \mathbb{C})$, i.e. a nontrivial linear map $\lambda: \mathcal{B}_{a, \nu}(F, \mathbb{C}) \rightarrow \mathbb{C}$ such that $\lambda\left(\left(\begin{array}{ll}1 & x \\ 0 & 1\end{array}\right) \phi\right)=\psi(x) \lambda(\phi)$. It is unique up to scalar multiples.
From it, we furthermore get a Whittaker model $\mathcal{W}_{a, \nu}$ of $\mathcal{B}_{a, \nu}(F, \mathbb{C})$:

$$
\mathcal{W}_{a, \nu}:=\left\{W_{\xi}: G L_{2}(F) \rightarrow \mathbb{C} \mid \xi \in \mathcal{B}_{a, \nu}(F, \mathbb{C})\right\}
$$

where $W_{\xi}(g):=\lambda(g \cdot \xi)$ for all $g \in G L_{2}(F)$. (see e.g. Bu98], Ch. 3, eq. (5.6).) Now write $\alpha:=\alpha_{1}$ for short. Recall the distribution $\mu_{\alpha, \nu}=\psi(x) \chi_{\alpha / \nu}(x) d x \in$ $\operatorname{Dist}\left(F^{*}, \mathbb{C}\right)$. For $\alpha=\nu$, it extends to a distribution on F. We have the following generalization of [Sp14], Prop. 3.10:

Proposition 2.13. (a) There exists a unique Whittaker functional $\lambda=\lambda_{a, \nu}$ on $\mathcal{B}_{a, \nu}(F, \mathbb{C})$ such that $\delta^{\alpha, \nu}(\lambda)=\mu_{\alpha, \nu}$.
(b) For every $f \in C_{c}\left(F^{*}, \mathbb{C}\right)$, there exists $W=W_{f} \in \mathcal{W}_{a, \nu}$ such that

$$
\int_{F^{*}}(a f)(x) \mu_{\alpha, \nu}(d x)=W_{f}\left(\begin{array}{cc}
a & 0 \\
0 & 1
\end{array}\right)
$$

If $\alpha=\nu$, then for every $f \in C_{c}(F, \mathbb{C})$, there exists $W_{f} \in \mathcal{W}_{a, \nu}$ such that

$$
\int_{F}(a f)(x) \mu_{\alpha, \nu}(d x)=W_{f}\left(\begin{array}{cc}
a & 0 \\
0 & 1
\end{array}\right) .
$$

(c) Let $H \subseteq U=\mathcal{O}_{F}^{\times}$be an open subgroup, and write $W_{H}:=W_{1_{H}}$. For every $f \in C_{c}^{0}\left(F^{*}, \mathbb{C}\right)^{H}$ we have

$$
\int_{F^{*}} f(x) \mu_{\alpha, \nu}(d x)=[U: H] \int_{F^{*}} f(x) W_{H}\left(\begin{array}{cc}
x & 0 \\
0 & 1
\end{array}\right) d^{\times} x .
$$

Proof. (a) By Sp14, we have a Whittaker functional of the Steinberg representation given by the composite

$$
\begin{equation*}
S t(F, \mathbb{C}):=C^{0}\left(\mathbb{P}^{1}(F), \mathbb{C}\right) / \mathbb{C} \xrightarrow{\cong} C_{c}(F, \mathbb{C}) \xrightarrow{\Lambda} \mathbb{C}, \tag{9}
\end{equation*}
$$

where the first map is the F-equivariant isomorphism

$$
C^{0}\left(\mathbb{P}^{1}(F), \mathbb{C}\right) / \mathbb{C} \rightarrow C_{c}(F, \mathbb{C}), \quad \phi \mapsto f(x):=\phi(x)-\phi(\infty),
$$

(with F acting on $C_{c}(F, \mathbb{C})$ by $(x \cdot f)(y):=f(y-x)$, and on $C^{0}\left(\mathbb{P}^{1}(F), \mathbb{C}\right) / \mathbb{C}$ by $\left.x \phi:=\left(\begin{array}{ll}1 & x \\ 0 & 1\end{array}\right) \phi\right)$, and the second is

$$
\Lambda: C_{c}(F, \mathbb{C}) \rightarrow \mathbb{C}, \quad f \mapsto \int_{F} f(x) \psi(x) d x
$$

Let now $\lambda: \mathcal{B}_{a, \nu}(F, \mathbb{C}) \rightarrow \mathbb{C}$ be a Whittaker functional of $\mathcal{B}_{a, \nu}(F, \mathbb{C})$. By lemma 2.11 for $u=\left(\begin{array}{c}1 \\ 0 \\ 0\end{array}\right) \in B(F)$,

$$
\left(\lambda \circ \tilde{\delta}_{\alpha, \nu}\right)(u \phi)=\lambda\left(u \tilde{\delta}_{\alpha, \nu}(\phi)\right)=\psi(x) \lambda\left(\tilde{\delta}_{\alpha, \nu}(\phi)\right),
$$

so $\lambda \circ \tilde{\delta}_{\alpha, \nu}$ is a Whittaker functional if it is not zero.
To describe the image of $\tilde{\delta}_{\alpha, \nu}$, consider the commutative diagram

where the vertical maps are defined by

$$
\begin{equation*}
C_{c}(\tilde{\mathcal{E}}, R) \rightarrow C_{c}(\tilde{\mathcal{E}}, R), \quad c \mapsto(e \mapsto c(e) \varrho(o(e)) \varrho(t(e))) \tag{10}
\end{equation*}
$$

resp. by mapping ϕ to $v \mapsto \phi(v) \varrho(v)$; both are obviously isomorphisms.
Since the lower row is exact, we have $\operatorname{Im} \delta=\operatorname{ker}\langle\cdot, 1\rangle=: C_{c}^{0}(\tilde{\mathcal{V}}, R)$ and thus $\operatorname{Im} \tilde{\delta}_{\alpha, \nu}=\varrho^{-1} \cdot C_{c}^{0}(\tilde{\mathcal{V}}, R)$.
Since $\lambda \neq 0$ and $\mathcal{B}_{a, \nu}(F, \mathbb{C})$ is generated by (the equivalence classes of) the $1_{\{v\}}$, $v \in \tilde{\mathcal{V}}$, there exists a $v \in \tilde{\mathcal{V}}$ such that $\lambda\left(1_{\{v\}}\right) \neq 0$. Let ϕ be this $1_{\{v\}}$, and let $u=\left(\begin{array}{ll}1 & x \\ 0 & 1\end{array}\right) \in B(F)$ such that $x \notin \operatorname{ker} \psi$. Then

$$
\varrho \cdot(u \phi-\phi)=\varrho \cdot\left(1_{\left\{u^{-1} v\right\}}-1_{\{v\}}\right)=\varrho(v)\left(1_{\left\{u^{-1} v\right\}}-1_{\{v\}}\right) \in C_{c}^{0}(\tilde{\mathcal{V}}, R)
$$

by lemma 2.11] so $0 \neq u \phi-\phi \in \operatorname{Im} \tilde{\delta}_{\alpha, \nu}$, but $\lambda(u \phi-\phi)=\psi(x) \lambda(\phi)-\lambda(\phi) \neq 0$. So $\lambda \circ \tilde{\delta}_{\alpha, \nu} \neq 0$ is indeed a Whittaker functional. By replacing λ by a scalar multiple, we can assume $\lambda \circ \tilde{\delta}_{\alpha, \nu}=(9)$.
Considering λ as an element of $\mathcal{B}^{a \nu, \nu^{-1}}(F, \mathbb{C}) \cong \operatorname{Hom}\left(\mathcal{B}_{a, \nu}(F, \mathbb{C}), \mathbb{C}\right)$, we have

$$
\begin{aligned}
\delta^{\alpha, \nu}(\lambda)(f) & =\left\langle\delta_{\alpha, \nu}(f), \lambda\right\rangle \\
& =\Lambda\left(\chi_{\alpha} \chi_{\nu}^{-1} f\right) \\
& =\int_{F^{*}} \chi_{\alpha}(x) \chi_{\nu}^{-1}(x) f(x) \psi(x) d x \\
& =\mu_{\alpha, \nu}(f) .
\end{aligned}
$$

(b), (c) follow from (a) as in Sp14.

2.6 SEmi-LOCAL THEORY

We can generalize many of the previous constructions to the semi-local case, considering all primes $\mathfrak{p} \mid p$ at once.
So let F_{1}, \ldots, F_{m} be finite extensions of \mathbb{Q}_{p}, and for each i, let q_{i} be the number of elements of the residue field of F_{i}. We put $\underline{F}:=F_{1} \times \cdots \times F_{m}$.
Let R again be a ring, and $a_{i} \in R, \nu_{i} \in R^{*}$ for each $i \in\{1, \ldots, m\}$. Put $\underline{a}:=\left(a_{1}, \ldots, a_{m}\right), \underline{\nu}:=\left(\nu_{1}, \ldots, \nu_{m}\right)$. We define $\mathcal{B}_{\underline{a}, \underline{\nu}}(\underline{F}, R)$ as the tensor product

$$
\mathcal{B}_{\underline{a}, \underline{\underline{L}}}(\underline{F}, R):=\bigotimes_{i=1}^{m} \mathcal{B}_{a_{i}, \nu_{i}}\left(F_{i}, R\right)
$$

For an R-module M, we define $\mathcal{B} \underline{a \nu, \underline{\nu}^{-1}}(\underline{F}, M):=\operatorname{Hom}_{R}\left(\mathcal{B}_{\underline{a}, \underline{\nu}}(\underline{F}, R), M\right)$; let

$$
\begin{equation*}
\langle\cdot, \cdot\rangle: \mathcal{B}_{\underline{a}, \underline{\nu}}(\underline{F}, R) \times \mathcal{B}^{\underline{a} \underline{\nu}, \underline{\nu}^{-1}}(\underline{F}, M) \rightarrow M \tag{11}
\end{equation*}
$$

denote the evaluation pairing.
We have an obvious isomorphism

$$
\begin{equation*}
\bigotimes_{i=1}^{m} C_{c}^{0}\left(F_{i}^{*}, R\right) \rightarrow C_{c}^{0}\left(\underline{F}^{*}, R\right), \quad \bigotimes_{i} f_{i} \mapsto\left(\left(x_{i}\right)_{i=1, \ldots, m} \mapsto \prod_{i=1}^{m} f_{i}\left(x_{i}\right)\right) \tag{12}
\end{equation*}
$$

Now when we have $\alpha_{i, 1}, \alpha_{i, 2} \in R^{*}$ such that $a_{i}=\alpha_{i, 1}+\alpha_{i, 2}$ and $\nu_{i}=$ $\alpha_{i, 1} \alpha_{i, 2} q_{i}^{-1}$, we can define the $T^{1}(\underline{F})$-equivariant map

$$
\delta_{\underline{\alpha}_{1,2}}:=\delta_{\underline{\alpha_{1}}, \underline{,}}: C_{c}^{0}(\underline{F}, R) \rightarrow \mathcal{B}_{\underline{a}, \underline{\underline{L}}}(\underline{F}, R)
$$

as the inverse of (12) composed with $\bigotimes_{i=1}^{m} \delta_{\alpha_{i, 1}, \nu_{i}}$.
Again, we will often write $\mathcal{B}_{\underline{\alpha_{1}}, \underline{\alpha_{2}}}(F, R):=\mathcal{B}_{\underline{\underline{\nu}, \underline{\nu}^{-1}}}(F, R)$ and $\mathcal{B} \underline{\alpha_{1}}, \underline{\alpha_{2}}(F, M):=$ $\mathcal{B} \underline{a}, \underline{\nu}^{-1}(F, M)$.
If $H \subseteq G(F)$ is a subgroup, and M an $R[H]$-module, we define an H-action on $\mathcal{B} \underline{a \nu, \underline{\nu}^{-1}}(F, M)$ by requiring $\langle\phi, h \lambda\rangle=h \cdot\left\langle h^{-1} \phi, \lambda\right\rangle$ for all $\phi \in \mathcal{B}_{\underline{a}, \underline{\underline{L}}}(F, M)$, $\lambda \in \mathcal{B}^{\underline{a}, \underline{\nu}^{-1}}(F, M), h \in H$, and get a $T^{1}(\underline{F}) \cap H$-equivariant mapping

$$
\delta \underline{\alpha_{1}}, \underline{\alpha_{2}}: \mathcal{B} \underline{a \nu, \underline{\nu}^{-1}}(F, M) \rightarrow \operatorname{Dist}\left(\underline{F^{*}}, M\right), \quad \delta \underline{\alpha_{1}}, \underline{\alpha_{2}}(\lambda):=\left\langle\delta_{\underline{\alpha_{1}}, \underline{\alpha_{2}}}(\cdot), \lambda\right\rangle
$$

Finally, we have a homomorphism

$$
\begin{align*}
\bigotimes_{i=1}^{m} \mathcal{B}^{a_{i} \nu_{i}, \nu_{i}^{-1}}\left(F_{i}, R\right) & \cong \bigotimes_{i=1}^{m} \operatorname{Hom}_{R}\left(\mathcal{B}_{a_{i} \nu_{i}, \nu_{i}^{-1}}\left(F_{i}, R\right), R\right) \\
& \rightarrow \operatorname{Hom}\left(\mathcal{B}_{a_{1}, \nu_{1}}\left(F_{1}, R\right), \operatorname{Hom}\left(\mathcal{B}_{a_{2}, \nu_{2}}\left(F_{2}, R\right), \operatorname{Hom}(\ldots, R)\right) \ldots\right) \\
& \cong \mathcal{B}^{\underline{a \nu}, \underline{\nu}^{-1}}(F, R) . \tag{13}
\end{align*}
$$

where the second map is given by $\otimes_{i} f_{i} \mapsto\left(x_{1} \mapsto\left(x_{2} \mapsto\left(\ldots \mapsto \prod_{i} f_{i}\left(x_{i}\right)\right) \ldots\right)\right.$, and the last map by iterating the adjunction formula of the tensor product.

3 Cohomology classes and global measures

3.1 Definitions

From now on, let F denote a number field, with ring of integers \mathcal{O}_{F}. For each finite prime v, let $U_{v}:=\mathcal{O}_{v}^{*}$. Let $\mathbb{A}=\mathbb{A}_{F}$ denote the ring of adeles of F, and $\mathbb{I}=\mathbb{I}_{F}$ the group of ideles of F. For a finite subset S of the set of places of F, we denote by $\mathbb{A}^{S}:=\left\{x \in \mathbb{A}_{F} \mid x_{v}=0 \forall v \in S\right\}$ the S-adeles and by \mathbb{I}^{S} the S-ideles, and put $F_{S}:=\prod_{v \in S} F_{v}, U_{S}:=\prod_{v \in S} U_{v}, U^{S}:=\prod_{v \notin S} U_{v}$ (if S contains all infinite places of F), and similarly for other global groups.
For ℓ a prime number or ∞, we write S_{ℓ} for the set of places of F above ℓ, and abbreviate the above notations to $\mathbb{A}^{\ell}:=\mathbb{A}^{S_{\ell}}, \mathbb{A}^{p, \infty}:=\mathbb{A}^{S_{p} \cup S_{\infty}}$, and similarly write $\mathbb{I}^{p}, \mathbb{I}^{\infty}, F_{p}, F_{\infty}, U^{\infty}, U_{p}, U^{p, \infty}, \mathbb{I}_{\infty}$ etc.
Let F have r real embeddings and s pairs of complex embeddings. Set $d:=$ $r+s-1$. Let $\left\{\sigma_{0}, \ldots, \sigma_{r-1}, \sigma_{r}, \ldots, \sigma_{d}\right\}$ be a set of representatives of these embeddings (i.e. for $i \geq r$, choose one from each pair of complex embeddings), and denote by $\infty_{0}, \ldots, \infty_{d}$ the corresponding archimedian primes of F. We let $S_{\infty}^{0}:=\left\{\infty_{1}, \ldots, \infty_{d}\right\} \subseteq S_{\infty}$.
For each place v, let $d x_{v}$ denote the associated self-dual Haar measure on F_{v}, and $d x:=\prod_{v} d x_{v}$ the associated Haar measure on \mathbb{A}_{F}. We define Haar measures $d^{\times} x_{v}$ on F_{v}^{*} by $d^{\times} x_{v}:=c_{v} \frac{d x_{v}}{\left|x_{v}\right|_{v}}$, where $c_{v}=\left(1-\frac{1}{q_{v}}\right)^{-1}$ for v finite, $c_{v}=1$ for $v \mid \infty$. For $v \mid \infty$ complex, we use the decomposition $\mathbb{C}^{*}=\mathbb{R}_{+}^{*} \times S^{1}$ (with $S^{1}=\left\{x \in \mathbb{C}^{*} ;|x|=1\right\}$) to write $d^{\times} x_{v}=d^{\times} r_{v} d \vartheta_{v}$ for variables r_{v}, ϑ_{v} with $r_{v} \in \mathbb{R}_{+}^{*}, \vartheta_{v} \in S^{1}$.
Let $S_{1} \subseteq S_{p}$ be a set of primes of F lying above $p, S_{2}:=S_{p}-S_{1}$. Let R be a topological Hausdorff ring.

Definition 3.1. We define the module of continuous functions

$$
\mathcal{C}\left(S_{1}, R\right):=C\left(F_{S_{1}} \times F_{S_{2}}^{*} \times \mathbb{I}^{p, \infty} / U^{p, \infty}, R\right) ;
$$

and let $\mathcal{C}_{c}\left(S_{1}, R\right)$ be the submodule of all compactly supported $f \in \mathcal{C}\left(S_{1}, R\right)$. We write $\mathcal{C}^{0}\left(S_{1}, R\right), \mathcal{C}_{c}^{0}\left(S_{1}, R\right)$ for the submodules of locally constant maps (or of continuous maps where R is assumed to have the discrete topology).We further define

$$
\mathcal{C}_{c}^{b}\left(S_{1}, R\right):=\mathcal{C}_{c}(\varnothing, R)+\mathcal{C}_{c}^{b}\left(S_{1}, R\right) \subseteq \mathcal{C}_{c}^{b}\left(S_{1}, R\right)
$$

to be the module of continuous compactly supported maps that are "constant near $\left(0_{\mathfrak{p}}, x^{\mathfrak{p}}\right)$ " for each $\mathfrak{p} \in S_{1}$.

Definition 3.2. For an R-module M, let $\mathcal{D}_{f}\left(S_{1}, M\right)$ denote the R-module of maps

$$
\phi: \mathfrak{C o}\left(F_{S_{1}} \times F_{S_{2}}^{*}\right) \times \mathbb{I}_{F}^{p, \infty} \rightarrow M
$$

that are $U^{p, \infty}$-invariant and such that $\phi\left(\cdot, x^{p, \infty}\right)$ is a distribution for each $x^{p, \infty} \in \mathbb{T}_{F}^{p, \infty}$.

Since $\mathbb{T}_{F}^{p, \infty} / U^{p, \infty}$ is a discrete topological group, $\mathcal{D}_{f}\left(S_{1}, M\right)$ naturally identifies with the space of M-valued distributions on $F_{S_{1}} \times F_{S_{2}}^{*} \times \mathbb{I}_{F}^{p, \infty} / U^{p, \infty}$. So there exists a canonical R-bilinear map

$$
\begin{equation*}
\mathcal{D}_{f}\left(S_{1}, M\right) \times \mathcal{C}_{c}^{0}\left(S_{1}, R\right) \rightarrow M, \quad(\phi, f) \mapsto \int f d \phi \tag{14}
\end{equation*}
$$

which is easily seen to induce an isomorphism $\mathcal{D}_{f}\left(S_{1}, M\right) \cong$ $\operatorname{Hom}_{R}\left(\mathcal{C}_{c}^{0}\left(S_{1}, R\right), M\right)$.
For a subgroup $E \subseteq F^{*}$ and an $R[E]$-module M, we let E operate on $\mathcal{D}_{f}\left(S_{1}, M\right)$ and $\mathcal{C}_{c}^{0}\left(S_{1}, R\right)$ by $(a \phi)\left(U, x^{p, \infty}\right):=a \phi\left(a^{-1} U, a^{-1} x^{p, \infty}\right)$ and $(a f)\left(x^{\infty}\right):=$ $f\left(a^{-1} x^{\infty}\right)$ for $a \in E, U \in \mathfrak{C o}\left(F_{S_{1}} \times F_{S_{2}}^{*}\right), x \in \mathbb{I}_{F}$; thus we have $\int(a f) d(a \phi)=$ $a \int f d \phi$ for all a, f, ϕ.
When $M=V$ is a finite-dimensional vector space over a p-adic field, we write $\mathcal{D}_{f}^{b}\left(S_{1}, V\right)$ for the subset of $\phi \in \mathcal{D}_{f}\left(S_{1}, V\right)$ such that ϕ is even a measure on $F_{S_{1}} \times F_{S_{2}} \times \mathbb{I}_{F}^{p, \infty} / U^{p, \infty}$.

Definition 3.3. For a \mathbb{C}-vector space V, define $\mathcal{D}\left(S_{1}, V\right)$ to be the set of all maps $\phi: \mathfrak{C o}\left(F_{S_{1}} \times F_{S_{2}}^{*}\right) \times \mathbb{I}^{p} \rightarrow V$ such that:
(i) ϕ is invariant under F^{\times}and $U^{p, \infty}$.
(ii) For $x^{p} \in \mathbb{I}^{p}, \phi\left(\cdot, x^{p}\right)$ is a distribution of $F_{S_{1}} \times F_{S_{2}}$.
(iii) For all $U \in \mathfrak{C o}\left(F_{S_{1}} \times F_{S_{2}}^{*}\right)$, the map $\phi_{U}: \mathbb{I}=F_{p}^{\times} \times \mathbb{I}^{p} \rightarrow V,\left(x_{p}, x^{p}\right) \mapsto$ $\phi\left(x_{p} U, x^{p}\right)$ is smooth, and rapidly decreasing as $|x| \rightarrow \infty$ and $|x| \rightarrow 0$.
We will need a variant of this last set: Let $\mathcal{D}^{\prime}\left(S_{1}, V\right)$ be the set of all maps $\phi \in \mathcal{D}\left(S_{1}, V\right)$ that are " $\left(S^{1}\right)^{s}$-invariant", i.e. such that for all complex primes ∞_{j} of F and all $\zeta \in S^{1}=\left\{x \in \mathbb{C}^{*} ;|x|=1\right\}$, we have

$$
\phi\left(U, x^{p, \infty_{j}}, \zeta x_{\infty_{j}}\right)=\phi\left(U, x^{p, \infty_{j}}, x_{\infty_{j}}\right) \text { for all } x^{p}=\left(x^{p, \infty_{j}}, x_{\infty_{j}}\right) \in \mathbb{I}^{p}
$$

There is an obvious surjective map

$$
\mathcal{D}\left(S_{1}, V\right) \rightarrow \mathcal{D}^{\prime}\left(S_{1}, V\right), \quad \phi \mapsto\left((U, x) \mapsto \int_{\left(S^{1}\right)^{s}} \phi(U, x) d \vartheta_{r} \cdots d \vartheta_{r+s-1}\right)
$$

given by integrating over $\left(S^{1}\right)^{s} \subseteq\left(\mathbb{C}^{*}\right)^{s} \hookrightarrow \mathbb{I}_{\infty}$.
Let F_{+}^{*} denote the set of all $x \in F *$ that are totally positive, i.e. positive with respect to every real embedding of F. (For F totally imaginary, we have $F^{*}=F_{+}^{*}$.) Let $F^{* \prime} \subseteq F_{+}^{*}$ be a maximal torsion-free subgroup of F_{+}^{*}. If F has at least one real embedding, we obviously have $F^{* \prime}=F_{+}^{*}$; for totally imaginary $F, F^{* \prime}$ is a subgroup of finite index of F^{*} with $F / F^{* \prime} \cong \mu_{F}$, the roots of unity of F.
We set

$$
E^{\prime}:=F^{* \prime} \cap O_{F}^{\times} \subseteq O_{F}^{\times},
$$

so E^{\prime} is a torsion-free \mathbb{Z}-module of rank $d . E^{\prime}$ operates freely and discretely on the space

$$
\mathbb{R}_{0}^{d+1}:=\left\{\left(x_{0}, \ldots, x_{d}\right) \in \mathbb{R}^{d+1} \mid \sum_{i=0}^{d} x_{i}=0\right\}
$$

via the embedding

$$
\begin{aligned}
E^{\prime} & \hookrightarrow \mathbb{R}_{0}^{d+1} \\
a & \mapsto\left(\log \left|\sigma_{i}(a)\right|\right)_{i \in S_{\infty}}
\end{aligned}
$$

(cf. proof of Dirichlet's unit theorem, e.g. in Neu92, Ch. 1), and the quotient $\mathbb{R}_{0}^{d+1} / E^{\prime}$ is compact. We choose the orientation on \mathbb{R}_{0}^{d+1} induced by the natural orientation on \mathbb{R}^{d} via the isomorphism $\mathbb{R}^{d} \cong \mathbb{R}_{0}^{d+1}$, $\left(x_{1}, \ldots, x_{d}\right) \mapsto\left(-\sum_{i=1}^{d} x_{i}, x_{1}, \ldots, x_{d}\right)$. So $\mathbb{R}_{0}^{d+1} / E^{\prime}$ becomes an oriented compact d-dimensional manifold.
Let \mathcal{G}_{p} be the Galois group of the maximal abelian extension of F which is unramified outside p and ∞; for a \mathbb{C}-vector space V, let $\operatorname{Dist}\left(\mathcal{G}_{p}, V\right)$ be the set of V-valued distributions of \mathcal{G}_{p}. Denote by $\varrho: \mathbb{I}_{F} / F^{*} \rightarrow \mathcal{G}_{p}$ the projection given by global reciprocity.

3.2 Global measures

Now let $V=\mathbb{C}$, equipped with the trivial $F^{* \prime}$-action. We want to construct a commutative diagram

First, let R be any topological Hausdorff ring. Let $\overline{E^{\prime}}$ denote the closure of E^{\prime} in U_{p}. The projection map pr : $\mathbb{I}^{\infty} / U^{p, \infty} \rightarrow \mathbb{I}^{\infty} /\left(\overline{E^{\prime}} \times U^{p, \infty}\right)$ induces an isomorphism

$$
\operatorname{pr}^{*}: C_{c}\left(\mathbb{I}^{\infty} /\left(\overline{E^{\prime}} \times U^{p, \infty}\right), R\right) \rightarrow H^{0}\left(E^{\prime}, C_{c}\left(\mathbb{I}^{\infty} / U^{p, \infty}, R\right)\right),
$$

and the reciprocity map induces a surjective map $\bar{\varrho}: \mathbb{I}^{\infty} /\left(\overline{E^{\prime}} \times U^{p, \infty}\right) \rightarrow \mathcal{G}_{p}$. Now we can define a map

$$
\begin{aligned}
& \varrho^{\sharp}: H_{0}\left(F^{* \prime} / E^{\prime}, C_{c}\left(\mathbb{I}^{\infty} /\left(\overline{E^{\prime}} \times U^{p, \infty}\right), R\right)\right) \rightarrow C\left(\mathcal{G}_{p}, R\right), \\
& \quad[f] \mapsto\left(\bar{\varrho}(x) \mapsto \sum_{\zeta \in F^{* \prime} / E^{\prime}} f(\zeta x) \text { for } x \in \mathbb{I}^{\infty} /\left(\overline{E^{\prime}} \times U^{p, \infty}\right)\right) .
\end{aligned}
$$

This is an isomorphism, with inverse map $f \mapsto\left[(f \circ \bar{\varrho}) \cdot 1_{\mathcal{F}}\right]$, where $1_{\mathcal{F}}$ is the characteristic function of a fundamental domain \mathcal{F} of the action of $F^{* \prime} / E^{\prime}$ on $\mathbb{I}^{\infty} / U^{\infty}$.

We get a composite map

$$
\begin{align*}
C\left(\mathcal{G}_{p}, R\right) & \xrightarrow{\left(e^{\sharp}\right)^{-1}} H_{0}\left(F^{* \prime} / E^{\prime}, C_{c}\left(\mathbb{T}^{\infty} /\left(\overline{E^{\prime}} \times U^{p, \infty}\right), R\right)\right) \\
& \xrightarrow{\operatorname{pr}^{*}} H_{0}\left(F^{* \prime} / E^{\prime}, H^{0}\left(E^{\prime}, C_{c}\left(\mathbb{I}^{\infty} / U^{p, \infty}, R\right)\right)\right) \tag{16}\\
& \longrightarrow H_{0}\left(F^{* \prime} / E^{\prime}, H^{0}\left(E^{\prime}, \mathcal{C}_{c}\left(S_{1}, R\right)\right)\right),
\end{align*}
$$

where the last arrow is induced by the "extension by zero" from $C_{c}\left(\mathbb{I}^{\infty} / U^{p, \infty}, R\right)$ to $\mathcal{C}_{c}\left(S_{1}, R\right)$.
Now let $\eta \in H_{d}\left(E^{\prime}, \mathbb{Z}\right) \cong \mathbb{Z}$ be the generator that corresponds to the given orientation of \mathbb{R}_{0}^{d+1}. This gives us, for every R-module A, a homomorphism

$$
H_{0}\left(F^{* \prime} / E^{\prime}, H^{0}\left(E^{\prime}, A\right)\right) \xrightarrow{\cap \eta} H_{0}\left(F^{* \prime} / E^{\prime}, H_{d}\left(E^{\prime}, A\right)\right)
$$

Composing this with the edge morphism

$$
\begin{equation*}
H_{0}\left(F^{* \prime} / E^{\prime}, H_{d}\left(E^{\prime}, A\right)\right) \rightarrow H_{d}\left(F^{* \prime}, A\right) \tag{17}
\end{equation*}
$$

(and setting $A=\mathcal{C}_{c}\left(S_{1}, R\right)$) gives a map

$$
\begin{equation*}
H_{0}\left(F^{* \prime} / E^{\prime}, H^{0}\left(E^{\prime}, \mathcal{C}_{c}\left(S_{1}, R\right)\right)\right) \rightarrow H_{d}\left(F^{* \prime}, \mathcal{C}_{c}\left(S_{1}, R\right)\right) \tag{18}
\end{equation*}
$$

We define

$$
\partial: C\left(\mathcal{G}_{p}, R\right) \rightarrow H_{d}\left(F^{* \prime}, \mathcal{C}_{c}\left(S_{1}, R\right)\right)
$$

as the composition of (16) with this map.
Now, letting M be an R-module equipped with the trivial $F^{* \prime}$-action, the bilinear form (14)

$$
\begin{aligned}
\mathcal{D}_{f}\left(S_{1}, M\right) \times \mathcal{C}_{c}\left(S_{1}, R\right) & \rightarrow M \\
(\phi, f) & \mapsto \int f d \phi
\end{aligned}
$$

induces a cap product

$$
\begin{equation*}
\cap: H^{d}\left(F^{* \prime}, \mathcal{D}_{f}\left(S_{1}, M\right)\right) \times H_{d}\left(F^{*^{\prime}}, \mathcal{C}_{c}\left(S_{1}, R\right)\right) \rightarrow H_{0}\left(F^{* \prime}, M\right)=M \tag{19}
\end{equation*}
$$

Thus for each $\kappa \in H^{d}\left(F^{* \prime}, \mathcal{D}_{f}\left(S_{1}, M\right)\right)$, we get a distribution μ_{κ} on \mathcal{G}_{p} by defining

$$
\begin{equation*}
\int_{\mathcal{G}_{p}} f(\gamma) \mu_{\kappa}(d \gamma):=\kappa \cap \partial(f) \tag{20}
\end{equation*}
$$

for all continuous maps $f: \mathcal{G}_{p} \rightarrow R$.
Now let $M=V$ be a finite-dimensional vector space over a p-adic field K, and let $\kappa \in H^{d}\left(F^{* \prime}, \mathcal{D}_{f}^{b}\left(S_{1}, V\right)\right)$. We identify κ with its image in $H^{d}\left(F^{* \prime}, \mathcal{D}_{f}\left(S_{1}, V\right)\right)$; then it is easily seen that μ_{κ} is also a measure, i.e. we have a map

$$
\begin{equation*}
H^{d}\left(F^{* \prime}, \mathcal{D}_{f}^{b}\left(S_{1}, V\right)\right) \rightarrow \operatorname{Dist}^{b}\left(\mathcal{G}_{p}, V\right), \quad \kappa \mapsto \mu_{\kappa} \tag{21}
\end{equation*}
$$

Let $L \mid F$ be a \mathbb{Z}_{p}-extension of F. Since it is unramified outside p, it gives rise to a continuous homomorphism $\mathcal{G}_{p} \rightarrow \operatorname{Gal}(L \mid F)$ via $\left.\sigma \mapsto \sigma\right|_{L}$. Fixing an isomorphism $\operatorname{Gal}(L \mid F) \cong p^{\varepsilon_{p}} \mathbb{Z}_{p}\left(\right.$ where $\varepsilon_{p}=2$ for $p=2, \varepsilon_{p}=1$ for p odd), we obtain a surjective homomorphism $\ell: \mathcal{G}_{p} \rightarrow p^{\varepsilon_{p}} \mathbb{Z}_{p}$. (Note that $p^{\varepsilon_{p}} \mathbb{Z}_{p}$ is the space of definition of the p-adic exponential function $\exp _{p}$.)
Example 3.4. Let L be the cyclotomic \mathbb{Z}_{p}-extension of F. Then we can take $\ell=\log _{p} \circ \mathcal{N}$, where $\mathcal{N}: \mathcal{G}_{p} \rightarrow \mathbb{Z}_{p}^{*}$ is the p-adic cyclotomic character, defined by requiring $\gamma \zeta=\zeta^{\mathcal{N}(\gamma)}$ for all $\gamma \in \mathcal{G}_{p}$ and all p-power roots of unity ζ. It is well-known (cf. Wa82, par. 5) that $\log _{p}\left(\mathbb{Z}_{p}^{*}\right)=p^{\varepsilon_{p}} \mathbb{Z}_{p}$.

It is well-known that F has t independent \mathbb{Z}_{p}-extensions, where $s+1 \leq t \leq$ $[F: \mathbb{Q}]$; the Leopoldt conjecture implies $t=s+1 . \mu_{\kappa}$ defines a t-variable p-adic L-function as follows:

Definition 3.5. Let K be a p-adic field, V a finite-dimensional K-vector space, $\kappa \in H^{d}\left(F^{* \prime}, \mathcal{D}_{f}^{b}\left(S_{1}, V\right)\right)$. Let $\ell_{1}, \ldots, \ell_{t}: \mathcal{G}_{p} \rightarrow p^{\varepsilon_{p}} \mathbb{Z}_{p}$ be continuous homomorphisms. The p-adic L-function of κ is given by

$$
L_{p}(\underline{s}, \kappa):=L_{p}\left(s_{1}, \ldots, s_{t}, \kappa\right):=\int_{\mathcal{G}_{p}}\left(\prod_{i=1}^{t} \exp _{p}\left(s_{i} \ell_{i}(\gamma)\right)\right) \mu_{\kappa}(d \gamma)
$$

for all $s_{1}, \ldots, s_{t} \in \mathbb{Z}_{p}$.
Remark 3.6. Let $\Sigma:=\{ \pm 1\}^{r}$, where r is the number of real embeddings of F. The group isomorphism $\mathbb{Z} / 2 \mathbb{Z} \cong\{ \pm 1\}, \varepsilon \mapsto(-1)^{\varepsilon}$, induces a pairing

$$
\langle\cdot, \cdot\rangle: \Sigma \rightarrow\{ \pm 1\}, \quad\left\langle\left((-1)^{\varepsilon_{i}}\right)_{i},\left((-1)^{\varepsilon_{i}^{\prime}}\right)_{i}\right\rangle:=(-1)^{\sum_{i} \varepsilon_{i} \varepsilon_{i}^{\prime}}
$$

For a field k of characteristic zero, a $k[\Sigma]$-module V and $\underline{\mu}=\left(\mu_{0}, \ldots, \mu_{r-1}\right) \in \Sigma$, we put $V_{\underline{\mu}}:=\{v \in V \mid\langle\underline{\mu}, \underline{\nu}\rangle v=\underline{\nu} v \forall \underline{\nu} \in \Sigma\}$, so that we have $V=\bigoplus_{\underline{\mu} \in \Sigma} V_{\underline{\mu}}$. We write $v_{\underline{\mu}}$ for the projection of $v \in V$ to $V_{\underline{\mu}}$, and $v_{+}:=v_{(1, \ldots, 1)}$.
For $r>0$, we identify Σ with $F^{*} / F^{* \prime}$ via the isomorphism $\Sigma \cong \prod_{i=0}^{r-1} \mathbb{R}^{*} / \mathbb{R}_{+}^{*} \cong$ $F^{*} / F^{* \prime}=F^{*} / F_{+}^{*}$. Then for each F^{*}-module M, Σ acts on $H^{d}\left(F^{* \prime}, \mathcal{D}_{f}\left(S_{1}, M\right)\right)$ and on $H^{d}\left(F^{* \prime}, \mathcal{D}_{f}^{b}\left(S_{1}, M\right)\right)$. For $r=0$, we let the trivial group Σ act on these groups as well for ease of notation. The exact sequence $\Sigma \cong \prod_{i=0}^{r-1} \mathbb{R}^{*} / \mathbb{R}_{+}^{*}=$ $\mathbb{I}_{\infty} / \mathbb{I}_{\infty}^{0} \rightarrow \mathcal{G}_{p} \rightarrow \mathcal{G}_{p}^{+} \rightarrow 0$ of class field theory (where \mathbb{I}_{∞}^{0} is the maximal connected subgroup of \mathbb{I}_{∞}) yields an action of Σ on \mathcal{G}_{p}. We easily check that (21) is Σ-equivariant, and that the maps $\gamma \mapsto \exp _{p}\left(s \ell_{i}(\gamma)\right)$ factor over $\mathcal{G}_{p} \rightarrow$ \mathcal{G}_{p}^{+}(since \mathbb{Z}_{p}-extensions are unramified at ∞). Therefore we have $L_{p}(\underline{s}, \kappa)=$ $L_{p}\left(\underline{s}, \kappa_{+}\right)$.
For $\phi \in \mathcal{D}\left(S_{1}, V\right)$ and $f \in C^{0}\left(\mathbb{I} / F^{*}, \mathbb{C}\right)$, let

$$
\int_{\mathbb{I} / F^{*}} f(x) \phi\left(d^{\times} x_{p}, x^{p}\right) d^{\times} x^{p}:=\left[U_{p}: U\right] \int_{\mathbb{I} / F^{*}} f(x) \phi_{U}(x) d^{\times} x
$$

where we choose an open set $U \subseteq U_{p}$ such that $f\left(x_{p} u, x^{p}\right)=f\left(x_{p}, x^{p}\right)$ for all $\left(x_{p}, x^{p}\right) \in \mathbb{I}$ and $u \in U$; such a U exists by lemma 3.7 below. Since this integral is additive in f, there exists a unique V-valued distribution μ_{ϕ} on \mathcal{G}_{p} such that

$$
\begin{equation*}
\int_{\mathcal{G}_{p}} f d \mu_{\phi}=\int_{\mathbb{I} / F^{*}} f(\varrho(x)) \phi\left(d^{\times} x_{p}, x^{p}\right) d^{\times} x^{p} \tag{22}
\end{equation*}
$$

for all functions $f \in C^{0}\left(\mathcal{G}_{p}, V\right)$.
Lemma 3.7. Let $F: \mathbb{I} / F^{*} \rightarrow X$ be a locally constant map to a set X. Then there exists an open subgroup $U \subseteq \mathbb{I}$ such that factors over $\mathbb{I} / F^{*} U$.
Proof. $\mathbb{I}_{\infty}=\prod_{v \mid \infty} F_{v}$ is connected, thus f factors over $\bar{f}: \mathbb{I} / F^{*} \mathbb{I}_{\infty} \rightarrow X$. Since $\mathbb{I} / F^{*} \mathbb{I}_{\infty}$ is profinite, \bar{f} further factors over a subgroup $U^{\prime} \subseteq \mathbb{I}^{\infty}$ of finite index, which is open.
Let $U_{\infty}^{0}:=\prod_{v \in S_{\infty}^{0}} \mathbb{R}_{+}^{*}$; the isomorphisms $U_{\infty}^{0} \cong \mathbb{R}^{d},\left(r_{v}\right)_{v} \mapsto\left(\log r_{v}\right)_{v}$, and $\mathbb{R}^{d} \cong \mathbb{R}_{0}^{d+1}$ give it the structure of a d-dimensional oriented manifold (with the natural orientation). It has the d-form $d^{\times} r_{1} \cdot \ldots \cdot d^{\times} r_{d}$, where (by slight abuse of notation) we choose $d^{\times} r_{i}$ on $F_{\infty_{i}}$ corresponding to the Haar measure $d^{\times} x_{i}$ resp. $d^{\times} r_{i}$ on $\mathbb{R}_{+}^{*} \subseteq F_{\infty_{i}}^{*}$. E^{\prime} operates on U_{∞}^{0} via $a \mapsto\left(\left|\sigma_{i}(a)\right|\right)_{i \in S_{\infty}^{0}}$, so the isomorphism $U_{\infty}^{0} \cong \mathbb{R}_{0}^{d+1}$ is E^{\prime}-equivariant.
For $\phi \in \mathcal{D}^{\prime}\left(S_{1}, V\right)$, set

$$
\begin{aligned}
\int_{0}^{\infty} \phi d^{\times} r_{0}: \mathfrak{C o}\left(F_{S_{1}} \times F_{S_{2}}^{*}\right) \times \mathbb{I}^{p, \infty_{0}} & \rightarrow \mathbb{C} \\
\left(U, x^{p, \infty_{0}}\right) & \mapsto \int_{0}^{\infty} \phi\left(U, r_{0}, x^{p, \infty_{0}}\right) d^{\times} r_{0}
\end{aligned}
$$

where we let $r_{0} \in F_{\infty_{0}}$ run through the positive real line \mathbb{R}_{+}^{*} in $F_{\infty_{0}}$. Composing this with the projection $\mathcal{D}\left(S_{1}, V\right) \rightarrow \mathcal{D}^{\prime}\left(S_{1}, V\right)$ gives us a map

$$
\begin{align*}
\mathcal{D}\left(S_{1}, V\right) & \rightarrow H^{0}\left(F^{* \prime}, \mathcal{D}_{f}\left(S_{1}, C^{\infty}\left(U_{\infty}^{0}, V\right)\right)\right) \\
\phi & \mapsto \int_{\left(S^{1}\right)^{s}}\left(\int_{0}^{\infty} \phi d^{\times} r_{0}\right) d \vartheta_{r} d \vartheta_{r+1} \ldots d \vartheta_{r+s-1} \tag{23}
\end{align*}
$$

(where $C^{\infty}\left(U_{\infty}^{0}, V\right)$ denotes the space of smooth V-valued functions on U_{∞}^{0}), since one easily checks that $\int_{0}^{\infty} \phi d^{\times} r_{0}$ is $F^{* \prime}$-invariant.
Define the complex $C^{\bullet}:=\mathcal{D}_{f}\left(S_{1}, \Omega^{\bullet}\left(U_{\infty}^{0}, V\right)\right)$. By the Poincare lemma, this is a resolution of $\mathcal{D}_{f}\left(S_{1}, V\right)$. We now define the map $\phi \mapsto \kappa_{\phi}$ as the composition of (23) with the composition

$$
\begin{equation*}
H^{0}\left(F^{* \prime}, \mathcal{D}_{f}\left(S_{1}, C^{\infty}\left(U_{\infty}^{0}, V\right)\right)\right) \rightarrow H^{0}\left(F^{* \prime}, C^{d}\right) \rightarrow H^{d}\left(F^{* \prime}, \mathcal{D}_{f}\left(S_{1}, V\right)\right) \tag{24}
\end{equation*}
$$

where the first map is induced by

$$
\begin{equation*}
C^{\infty}\left(U_{\infty}^{0}, V\right) \rightarrow \Omega^{d}\left(U_{\infty}^{0}, V\right), \quad f \mapsto f\left(r_{1}, \ldots, r_{d}\right) d^{\times} r_{1} \cdot \ldots \cdot d^{\times} r_{d} \tag{25}
\end{equation*}
$$

and the second is an edge morphism in the spectral sequence

$$
\begin{equation*}
H^{q}\left(F^{* \prime}, C^{p}\right) \Rightarrow H^{p+q}\left(F^{* \prime}, \mathcal{D}_{f}\left(S_{1}, V\right)\right) \tag{26}
\end{equation*}
$$

Specializing to $V=\mathbb{C}$, we now have:
Proposition 3.8. The diagram (15) commutes, i.e., for each $\phi \in \mathcal{D}\left(S_{1}, \mathbb{C}\right)$, we have

$$
\mu_{\phi}=\mu_{\kappa_{\phi}} .
$$

Proof. Analoguously to Sp14, proof of prop. 4.21, we define a pairing

$$
\langle,\rangle: \mathcal{D}\left(S_{1}, \mathbb{C}\right) \times C^{0}\left(\mathcal{G}_{p}, \mathbb{C}\right) \rightarrow \mathbb{C}
$$

as the composite of (23) $\times(16)$ with

$$
\begin{align*}
H^{0}\left(F^{* \prime},\right. & \left.\mathcal{D}_{f}\left(S_{1}, C^{\infty}\left(U_{\infty}^{0}, \mathbb{C}\right)\right)\right) \times H_{0}\left(F^{* \prime} / E^{\prime}, H^{0}\left(E^{\prime}, \mathcal{C}_{c}^{0}\left(S_{1}, \mathbb{C}\right)\right)\right) \\
& \xrightarrow{\cap} H_{0}\left(F^{* \prime} / E^{\prime}, H^{0}\left(E^{\prime}, C^{\infty}\left(U_{\infty}^{0}, \mathbb{C}\right)\right)\right) \rightarrow H_{0}\left(F^{* \prime} / E^{\prime}, \mathbb{C}\right) \cong \mathbb{C} \tag{27}
\end{align*}
$$

where \cap is the cap product induced by (14), and the second map is induced by

$$
\begin{equation*}
H^{0}\left(E^{\prime}, \mathcal{C}^{\infty}\left(U_{\infty}^{0}, \mathbb{C}\right)\right) \rightarrow \mathbb{C}, \quad f \mapsto \int_{U_{\infty}^{0} / E^{\prime}} f\left(r_{1}, \ldots, r_{d}\right) d^{\times} r_{1} \ldots d^{\times} r_{d} \tag{28}
\end{equation*}
$$

Then we can show that

$$
\kappa_{\phi} \cap \partial(f)=\langle\phi, f\rangle=\int_{\mathcal{G}_{p}} f(\gamma) \mu_{\phi}(d \gamma) \quad \text { for all } f \in C^{0}\left(\mathcal{G}_{p}, \mathbb{C}\right)
$$

by copying the proof for the totally real case (replacing F_{+}^{*} by $F^{* \prime}, E_{+}$by E^{\prime}), using the fact that for a d-form on the d-dimensional oriented manifold $M:=\mathbb{R}_{0}^{d+1} / E^{\prime} \cong U_{\infty}^{0} / E^{\prime}$, integration over M corresponds to taking the cap product with the fundamental class η of M under the canonical isomorphism $H_{d R}^{d}(M) \cong H_{\text {sing }}^{d}(M)=H^{d}\left(E^{\prime}, \mathbb{C}\right)$.

3.3 EXCEptional zeros

Now let $\ell_{1}, \ldots, \ell_{t}: \mathcal{G}_{p} \rightarrow \mathbb{Z}_{p}$ be continuous homomorphisms. Let again $S_{1}=$ $\left\{\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{n}\right\} \subseteq S_{p}$ be a set of primes above p, of cardinality $n:=\# S_{1}$.

Proposition 3.9. For each $\underline{x}=\left(x_{1}, \ldots, x_{t}\right) \in \mathbb{N}_{0}^{t}$ set $|\underline{x}|:=\sum_{i=1}^{t} x_{i}$. Then

$$
\partial\left(\prod_{i=1}^{t} \ell_{i}^{x_{i}}\right)=0 \quad \text { for all } \underline{x} \text { with }|\underline{x}| \leq n-1 .
$$

Proof. We can readily generalize the proof of Spieß' result for the p-adic cyclotomic character $\left(\ell=\log _{p} \circ \mathcal{N}\right)$ in the totally real case (Sp14, Prop. 4.6(a), Lemmas 4.1 and 4.7) to show that $\partial\left(\ell^{x}\right)=0$ for all $0 \leq x \leq n-1$, using the facts that we can write $F^{* \prime}=E^{\prime} \times \mathcal{T}$ for some subgroup $\mathcal{T} \subseteq F^{* \prime}$ (since $F^{* \prime} / E^{\prime}=F^{*} / \mathcal{O}_{F}^{\times}$is a free \mathbb{Z}-module), and that for each homomorphism $\ell: \mathcal{G}_{p} \rightarrow \mathbb{Z}_{p}$, the composition

$$
\tilde{\ell}: \mathbb{I}^{\infty} \xrightarrow{\varrho} \mathcal{G}_{p} \xrightarrow{\ell} \mathbb{Z}_{p} \hookrightarrow \mathbb{Q}_{p} .
$$

is zero on $\mathbb{I}^{\infty, p}$ (since the pro- q-part of \mathcal{G}_{p} is finite for every prime $q \neq p$ and \mathbb{Q}_{p} is torsion-free).
Now for a ring $R \supseteq \mathbb{Q}$, each monomial $\prod_{i=1}^{t} X_{i}^{n_{i}} \in R\left[X_{1}, \ldots, X_{t}\right]$ of degree $n=\sum_{i} n_{i}$ can be written as a linear combination of n-th powers $\left(X_{i}+r_{i, j} X_{j}\right)^{n}$. Therefore each product $\prod_{i=1}^{t} \ell_{i}^{x_{i}}$ of degree $x=|\underline{x}|$ is a linear combination of x-th powers of the homomorphisms $\ell_{i, j}:=\ell_{i}+r_{i, j} \ell_{j}: \mathcal{G}_{p} \rightarrow \mathbb{Z}_{p}$. This proves the proposition.

Definition 3.10. A t-variable p-adic analytic function $f(\underline{s})=f\left(s_{1}, \ldots, s_{t}\right)$ $\left(s_{i} \in \mathbb{Z}_{p}\right)$ has vanishing order $\geq n$ at the point $\underline{0}=(0, \ldots, 0)$ if all its partial derivatives of total order $\leq n-1$ vanish, i.e. if

$$
\frac{\partial^{k}}{(\partial \underline{s})^{\underline{k}}} f(\underline{0}):=\frac{\partial^{k}}{\partial s_{1}^{k_{1}} \cdots \partial s_{t}^{k_{t}}} f(\underline{0})=0
$$

for all $\underline{k}=\left(k_{1}, \ldots, k_{t}\right) \in \mathbb{N}_{0}^{t}$ with $k:=|\underline{k}| \leq n-1$. We write $\operatorname{ord}_{\underline{s}=\underline{0}} f(\underline{s}) \geq n$ in this case.

THEOREM 3.11. Let $n:=\#\left(S_{1}\right), \kappa \in H^{d}\left(F^{* \prime}, \mathcal{D}_{f}^{b}\left(S_{1}, V\right)\right)$, V a finitedimensional vector space over a p-adic field. Then $L_{p}(\underline{s}, \kappa)$ is a locally analytic function, and we have

$$
\operatorname{ord}_{\underline{s}=\underline{0}} L_{p}(\underline{s}, \kappa) \geq n .
$$

Proof. We have

$$
\frac{\partial^{k}}{(\partial \underline{s})^{\underline{k}}} L_{p}(\underline{0}, \kappa)=\int_{\mathcal{G}_{p}}\left(\prod_{i=1}^{t} \ell_{i}(\gamma)^{k_{i}}\right) \mu_{\kappa}(d \gamma)=\kappa \cap \partial\left(\prod_{i=1}^{t} \ell_{i}(\gamma)^{k_{i}}\right)
$$

for all $\underline{k}=\left(k_{1}, \ldots, k_{t}\right) \in \mathbb{N}_{0}^{t}$. Thus the theorem follows from proposition 3.9 .

3.4 Integral cohomology classes

Definition 3.12. A nonzero cohomology class $\kappa \in H^{d}\left(F^{* \prime}, \mathcal{D}_{f}\left(S_{1}, \mathbb{C}\right)\right)$ is called integral if κ lies in the image of

$$
H^{d}\left(F^{* \prime}, \mathcal{D}_{f}\left(S_{1}, R\right)\right) \otimes_{R} \mathbb{C} \rightarrow H^{d}\left(F^{* \prime}, \mathcal{D}_{f}\left(S_{1}, \mathbb{C}\right)\right)
$$

for some Dedekind ring $R \subseteq \overline{\mathcal{O}}$. If, in addition, there exists a torsion-free R submodule $M \subseteq H^{d}\left(F^{* \prime}, \mathcal{D}_{f}\left(S_{1}, R\right)\right)$ of rank ≤ 1 (i.e. M can be embedded into R) such that κ lies in the image of $M \otimes_{R} \mathbb{C} \rightarrow H^{d}\left(F^{* \prime}, \mathcal{D}_{f}\left(S_{1}, \mathbb{C}\right)\right)$, then κ is integral of rank ≤ 1.

For κ as in def. 3.12 and $R \subseteq \mathbb{C}$, we let $L_{\kappa, R}$ be the image of

$$
H_{d}\left(F^{* \prime}, \mathcal{C}_{c}^{0}\left(S_{1}, R\right)\right) \rightarrow H_{0}\left(F^{* \prime}, \mathbb{C}\right)=\mathbb{C}, \quad x \mapsto \kappa \cap x
$$

Proposition 3.13. Let $\kappa \in H^{d}\left(F^{* \prime}, \mathcal{D}_{f}\left(S_{1}, \mathbb{C}\right)\right)$ be integral. Then
(a) μ_{κ} is a p-adic measure.
(b) There exists a Dedekind ring $R \subseteq \overline{\mathcal{O}}$ such that $L_{\kappa, R}$ is a finitely generated R-module (resp. a torsion-free R-module of rank ≤ 1, if κ is integral of rank ≤ 1).
For each such R, the map $H^{d}\left(F^{* \prime}, \mathcal{D}_{f}\left(S_{1}, L_{\kappa, R}\right)\right) \otimes \overline{\mathbb{Q}} \rightarrow \mathcal{H}^{d}\left(F^{* \prime}, \mathcal{D}_{f}\left(S_{1}, \mathbb{C}\right)\right)$ is injective and κ lies in its image.

Proof. The proofs of the corresponding results for totally real F (Sp14, prop. 4.17 and cor. 4.18) also work in the general case.

Remark 3.14. Let κ be integral with Dedekind ring R as above. By (b) of the proposition, we can view κ as an element of $H^{d}\left(F^{* \prime}, \mathcal{D}_{f}\left(S_{1}, L_{\kappa, R}\right)\right) \otimes \overline{\mathbb{Q}}$. Put $V_{\kappa}:=L_{\kappa, R} \otimes_{R} \mathbb{C}_{p}$; let $\bar{\kappa}$ be the image of κ under the composition

$$
\begin{aligned}
H^{d}\left(F^{* \prime}, \mathcal{D}_{f}\left(S_{1}, L_{\kappa, R}\right)\right) \otimes_{R} \overline{\mathbb{Q}} & \rightarrow H^{d}\left(F^{* \prime}, \mathcal{D}_{f}\left(S_{1}, L_{\kappa, R}\right)\right) \otimes_{R} \mathbb{C}_{p} \\
& \rightarrow H^{d}\left(F^{* \prime}, \mathcal{D}_{f}^{b}\left(S_{1}, V_{\kappa}\right)\right),
\end{aligned}
$$

where the second map is induced by $\mathcal{D}_{f}\left(S_{1}, L_{\kappa, R}\right) \otimes_{R} \mathbb{C}_{p} \rightarrow \mathcal{D}_{f}^{b}\left(S_{1}, V_{\kappa}\right)$. By Sp14, lemma 4.15, $\bar{\kappa}$ does not depend on the choice of R.
Since μ_{κ} is a p-adic measure, $\mu_{\bar{\kappa}}$ allows integration of all continuous functions $f \in C\left(\mathcal{G}_{p}, \mathbb{C}_{p}\right)$, and by abuse of notation, we write $L_{p}(\underline{s}, \kappa):=L_{p}(\underline{s}, \bar{\kappa})$ (cf. remark (3.6). So $L_{p}(\underline{s}, \kappa)$ has values in the finite-dimensional \mathbb{C}_{p}-vector space V_{κ}.

$4 \quad p$-ADIC L-FUNCTIONS OF AUTOMORPHIC FORMS

We keep the notations from chapter 33 so F is again a number field with r real embeddings and s pairs of complex embeddings.
For an ideal $0 \neq \mathfrak{m} \subseteq \mathcal{O}_{F}$, we let $K_{0}(\mathfrak{m})_{v} \subseteq G\left(\mathcal{O}_{F_{v}}\right)$ be the subgroup of matrices congruent to an upper triangular matrix modulo \mathfrak{m}, and we set $K_{0}(\mathfrak{m}):=$ $\prod_{v \nmid \infty} K_{0}(\mathfrak{m})_{v}, K_{0}(\mathfrak{m})^{S}:=\prod_{v \nmid \infty, v \notin S} K_{0}(\mathfrak{m})_{v}$ for a finite set of primes S. For each $\mathfrak{p} \mid p$, let $q_{\mathfrak{p}}=N(\mathfrak{p})$ denote the number of elements of the residue class field of $F_{\mathfrak{p}}$.
We denote by $|\cdot|_{\mathbb{C}}$ the square of the usual absolute value on \mathbb{C}, i.e. $|z|_{\mathbb{C}}=z \bar{z}$ for all $z \in \mathbb{C}$, and write $|\cdot|_{\mathbb{R}}$ for the usual absolute value on \mathbb{R} in context. We write $|\alpha|:=|\alpha|_{\mathbb{C}}^{\frac{1}{2}}$ for the archimedian absolute value when α is given as a complex number in the context; whereas in the context of the p-adic characters, $|\cdot|$ denotes the p-adic absolute value, unless otherwise noted.

Definition 4.1. Let $\mathfrak{A}_{0}\left(G, \underline{2}, \chi_{Z}\right)$ denote the set of all cuspidal automorphic representations $\pi=\otimes_{v} \pi_{v}$ of $G\left(\mathbb{A}_{F}\right)$ with central character χ_{Z} such that $\pi_{v} \cong$ $\sigma\left(|\cdot|_{F_{v}}^{1 / 2},|\cdot|_{F_{v}}^{-1 / 2}\right)$ at all archimedian primes v. Here we follow the notation of [JL70]; so $\sigma\left(|\cdot|_{F_{v}}^{1 / 2},|\cdot|_{F_{v}}^{-1 / 2}\right)$ is the discrete series of weight $2, \mathcal{D}(2)$, if v is real, and is isomorphic to the principal series representation $\pi\left(\mu_{1}, \mu_{2}\right)$ with $\mu_{1}(z)=z^{1 / 2} \bar{z}^{-1 / 2}, \mu_{2}(z)=z^{-1 / 2} \bar{z}^{1 / 2}$ if v is complex (cf. section 4.5 below).

We will only consider automorphic representations that are p-ordinary, i.e $\pi_{\mathfrak{p}}$ is ordinary (in the sense of chapter (2) for every $\mathfrak{p} \mid p$.
Therefore, for each $\mathfrak{p} \mid p$ we fix two non-zero elements $\alpha_{\mathfrak{p}, 1}, \alpha_{\mathfrak{p}, 2} \in \overline{\mathcal{O}} \subseteq \mathbb{C}$ such that $\pi_{\alpha_{\mathfrak{p}, 1}, \alpha_{\mathfrak{p}, 2}}$ is an ordinary, unitary representation. By the classification of unitary representations (see e.g. Ge75, Thm. 4.27), a spherical representation $\pi_{\alpha_{\mathfrak{p}, 1}, \alpha_{\mathfrak{p}, 2}}=\pi\left(\chi_{1}, \chi_{2}\right)$ is unitary if and only if either χ_{1}, χ_{2} are both unitary characters (i.e. $\left|\alpha_{\mathfrak{p}, 1}\right|=\left|\alpha_{\mathfrak{p}, 2}\right|=\sqrt{q_{\mathfrak{p}}}$), or $\chi_{1,2}=\chi_{0}|\cdot|^{ \pm s}$ with χ_{0} unitary and $-\frac{1}{2}<s<\frac{1}{2}$. A special representation $\pi_{\alpha_{\mathfrak{p}, 1}, \alpha_{\mathfrak{p}, 2}}=\pi\left(\chi_{1}, \chi_{2}\right)$ is unitary if and only if the central character $\chi_{1} \chi_{2}$ is unitary. In all three cases, we have thus $\max \left\{\left|\alpha_{\mathfrak{p}, 1}\right|,\left|\alpha_{\mathfrak{p}, 2}\right|\right\} \geq \sqrt{q_{\mathfrak{p}}}$. Without loss of generality, we will assume the $\alpha_{\mathfrak{p}, i}$ to be ordered such that $\left|\alpha_{\mathfrak{p}, 1}\right| \leq\left|\alpha_{\mathfrak{p}, 2}\right|$ for all $\mathfrak{p} \mid p$.
As in chapter 2, we define $a_{\mathfrak{p}}:=\alpha_{\mathfrak{p}, 1}+\alpha_{\mathfrak{p}, 2}, \nu_{\mathfrak{p}}:=\alpha_{\mathfrak{p}, 1} \alpha_{\mathfrak{p}, 2} / q_{\mathfrak{p}}$.
Let $\alpha_{i}:=\left(\alpha_{\mathfrak{p}, i}, \mathfrak{p} \mid p\right)$, for $i=1,2$. We denote by $\mathfrak{A}_{0}\left(G, \underline{2}, \chi_{z}, \underline{\alpha_{1}}, \underline{\alpha_{2}}\right)$ the subset of all $\pi \in \mathfrak{A}_{0}\left(G, \underline{2}, \chi_{Z}\right)$ such that $\pi_{\mathfrak{p}}=\pi_{\alpha_{\mathfrak{p}, 1}, \alpha_{\mathfrak{p}, 2}}$ for all $\mathfrak{p} \mid p$.
For later use we note that $\pi^{\infty}=\otimes_{v \nmid \infty} \pi_{v}$ is known to be defined over a finite extension of \mathbb{Q}, the smallest such field being the field of definition of π (cf. Sp14).

4.1 Upper half-space

For $k \in\{\mathbb{R}, \mathbb{C}\}$, let $\mathcal{H}_{m}:=\mathcal{H}_{k}:=k \times \mathbb{R}_{+}^{*}$ be the upper half-space of dimension $m:=[k: \mathbb{R}]+1$. Each \mathcal{H}_{m} is a differentiable manifold of dimension m. If we write $x=(u, t) \in \mathcal{H}_{m}$ with $t \in \mathbb{R}_{+}^{*}, u$ in \mathbb{R} or \mathbb{C}, respectively, it has a Riemannian metric $d s^{2}=\frac{d t^{2}+d u d \bar{u}}{t}$, which induces a hyperbolic geometry on \mathcal{H}_{m}, i.e. the geodesic lines on \mathcal{H}_{m} are given by "vertical" lines $\{u\} \times \mathbb{R}_{+}^{*}$ and half-circles with center in the line or plane $t=0 . \mathcal{H}_{\mathbb{R}}$ is naturally isomorphic to the complex upper half-plane $\{z \in \mathbb{C} \mid \operatorname{Im}(z)>0\}$.
We have the decompositions $\mathrm{GL}_{2}(\mathbb{C})^{+}=B_{\mathbb{C}}^{\prime} \cdot Z(\mathbb{C}) \cdot K_{\mathbb{C}}$ and $\mathrm{GL}_{2}(\mathbb{R})^{+}=$ $B_{\mathbb{R}}^{\prime} \cdot Z(\mathbb{R}) \cdot K_{\mathbb{R}}$, where $B_{k}^{\prime} \subseteq G L_{2}(k)$ is the subgroup of matrices $\left(\begin{array}{cc}\mathbb{R}_{+}^{*} & k \\ 0 & 1\end{array}\right)$ for $k=\mathbb{R}, \mathbb{C}, Z$ is the center, and $K_{\mathbb{R}}=\mathrm{SO}(2), K_{\mathbb{C}}=\mathrm{SU}(2)$ (cf. By98, Cor. 43). Identifying B_{k}^{\prime} with \mathcal{H}_{k} via $\left(\begin{array}{cc}t & z \\ 0 & 1\end{array}\right) \mapsto(z, t)$ gives natural projections

$$
\begin{gathered}
\pi_{\mathbb{R}}: \mathrm{GL}_{2}(\mathbb{R})^{+} \rightarrow \mathrm{GL}_{2}(\mathbb{R})^{+} / Z(\mathbb{R}) \mathrm{SO}(2) \cong \mathcal{H}_{2} \\
\pi_{\mathbb{C}}: \mathrm{GL}_{2}(\mathbb{C}) \rightarrow \mathrm{GL}_{2}(\mathbb{C}) / Z(\mathbb{C}) K_{\mathbb{C}} \cong \mathcal{H}_{\mathbb{C}}
\end{gathered}
$$

and corresponding left $\mathrm{GL}_{2}(k)$-actions on cosets.
A differential form ω on \mathcal{H}_{m} is called left-invariant if it is invariant under the pullback L_{g}^{*} of left multiplication $L_{g}: x \mapsto g x$ on \mathcal{H}_{m}, for all $g \in G$.

Following By98, eqs. (4.20), (4.24), we choose the following basis of leftinvariant differential 1-forms on \mathcal{H}_{3} :

$$
\beta_{0}:=-\frac{d z}{t}, \quad \beta_{1}:=\frac{d t}{t}, \quad \beta_{2}:=\frac{d \bar{z}}{t}
$$

and on \mathcal{H}_{2} (writing $z=x+i y \in \mathcal{H}_{2} \subseteq \mathbb{C}$):

$$
\beta_{1}:=\frac{d z}{y}, \quad \beta_{2}:=-\frac{d \bar{z}}{y} .
$$

We note that a form $f_{1} \beta_{1}+f_{2} \beta_{2}$ is harmonic on \mathcal{H}_{2} if and only if f_{1} / y and f_{2} / y are holomorphic functions in z ($(\overline{\mathrm{By} 98}$, lemma 60).
The Jacobian $J(g,(0,1))$ of left multiplication by g in $(0,1) \in \mathcal{H}_{m}$ with respect to the basis $\left(\beta_{i}\right)_{i}$ gives rise to a representation

$$
\varrho=\varrho_{k}: Z(k) \cdot K_{k} \rightarrow \mathrm{SL}_{m}(\mathbb{C})
$$

with $\left.\varrho\right|_{Z(k)}$ trivial, which on K_{k} is explicitly given by

$$
\varrho_{\mathbb{C}}(h)=\left(\begin{array}{ccc}
u^{2} & 2 u v & v^{2} \\
-u \bar{v} & u \bar{u}-v \bar{v} & v \bar{u} \\
\bar{v}^{2} & -2 \overline{u v} & \bar{u}^{2}
\end{array}\right) \quad \text { for } h=\left(\begin{array}{cc}
u & v \\
-\bar{v} & \bar{u}
\end{array}\right) \in \mathrm{SU}(2),
$$

resp.

$$
\varrho_{\mathbb{R}}\left(\begin{array}{cc}
\cos (\vartheta) & \sin (\vartheta) \\
-\sin (\vartheta) & \cos (\vartheta)
\end{array}\right)=\left(\begin{array}{cc}
e^{2 i \vartheta} & 0 \\
0 & e^{-2 i \vartheta}
\end{array}\right)
$$

(By98, (4.27), (4.21)). In the real case, we will only consider harmonic forms on \mathcal{H}_{2} that are multiples of β_{1}, thus we sometimes identify $\varrho_{\mathbb{R}}$ with its restriction $\varrho_{\mathbb{R}}^{(1)}$ to the first basis vector β_{1},

$$
\varrho_{\mathbb{R}}^{(1)}: \mathrm{SO}(2) \rightarrow S^{1} \subseteq \mathbb{C}^{*}, \quad \kappa_{\vartheta}=\left(\begin{array}{cc}
\cos (\vartheta) & \sin (\vartheta) \\
-\sin (\vartheta) & \cos (\vartheta)
\end{array}\right) \mapsto e^{2 i \vartheta} .
$$

For each i, let ω_{i} be the left-invariant differential 1-form on $\mathrm{GL}_{2}(k)$ which coincides with the pullback $\left(\pi_{\mathbb{C}}\right)^{*} \beta_{i}$ at the identity. Write $\underline{\omega}$ (resp. $\underline{\beta}$) for the column vector of the ω_{i} (resp. β_{i}). Then we have the following lemma from By98:

Lemma 4.2. For each i, the differential ω_{i} on G induces β_{i} on \mathcal{H}_{m}, by restriction to the subgroup $B_{k}^{\prime} \cong \mathcal{H}_{m}$. For a function $\phi: G \rightarrow \mathbb{C}^{m}$, the form $\phi \cdot \underline{\omega}$ (with \mathbb{C}^{m} considered as a row vector, so \cdot is the scalar product of vectors) induces $f \cdot \underline{\beta}$, where $f: \mathcal{H}_{m} \rightarrow \mathbb{C}^{m}$ is given by

$$
f(z, t):=\phi\left(\left(\begin{array}{ll}
t & z \\
0 & 1
\end{array}\right)\right) .
$$

(See By98, Lemma 57.)
To consider the infinite primes of F all at once, we define

$$
\mathcal{H}_{\infty}:=\prod_{i=0}^{d} \mathcal{H}_{m_{i}}=\prod_{i=0}^{r-1} \mathcal{H}_{2} \times \prod_{i=r}^{d} \mathcal{H}_{3}
$$

(where $m_{i}=2$ if σ_{i} is a real embedding, and $m_{i}=3$ if σ_{i} is complex), and let $\mathcal{H}_{\infty}^{0}:=\prod_{i=1}^{d} \mathcal{H}_{m_{i}}$ be the product with the zeroth factor removed. (The choice of the 0 -th factor is for convenience; we could also choose any other infinite place, whether real or complex.)

For each embedding σ_{i}, the elements of $\mathbb{P}^{1}(F)$ are cusps of $\mathcal{H}_{m_{i}}$: for a given complex embedding $F \hookrightarrow \mathbb{C}$, we can identify F with $F \times\{0\} \hookrightarrow \mathbb{C} \times \mathbb{R}_{\geq 0}$ and define the "extended upper half-space" as $\overline{\mathcal{H}_{3}}:=\mathcal{H}_{3} \cup F \cup\{\infty\} \subseteq \mathbb{C} \times \mathbb{R}_{\geq 0} \cup\{\infty\}$; similarly for a given real embedding $F \hookrightarrow \mathbb{R}$, we get the extended upper halfplane $\overline{\mathcal{H}_{2}}:=\mathcal{H}_{2} \cup F \cup\{\infty\}$. A basis of neighbourhoods of the cusp ∞ is given by the sets $\left\{(u, t) \in \mathcal{H}_{m} \mid t>N\right\}, N \gg 0$, and of $x \in F$ by the open half-balls in \mathcal{H}_{m} with center $(x, 0)$.
Let $G(F)^{+} \subseteq G(F)$ denote the subgroup of matrices with totally positive determinant. It acts on \mathcal{H}_{∞}^{0} by composing the embedding

$$
G(F)^{+} \hookrightarrow \prod_{v \mid \infty, v \neq v_{0}} G\left(F_{v}\right)^{+}, \quad g \mapsto\left(\sigma_{1}(g), \ldots, \sigma_{d}(g)\right),
$$

with the actions of $G(\mathbb{C})^{+}=G(\mathbb{C})$ on \mathcal{H}_{3} and $G(\mathbb{R})^{+}$on \mathcal{H}_{2} as defined above, and on $\Omega_{\text {harm }}^{d}\left(\mathcal{H}_{\infty}^{0}\right)$ by the inverse of the corresponding pullback, $\gamma \cdot \underline{\omega}:=$ $\left(\gamma^{-1}\right)^{*} \underline{\omega}$. Both are left actions.
For each complex v, we write the codomain of $\varrho_{F_{v}}$ as

$$
\varrho_{F_{v}}: Z\left(F_{v}\right) \cdot K_{F_{v}} \rightarrow \mathrm{SL}_{3}(\mathbb{C})=: \mathrm{SL}\left(V_{v}\right)
$$

for a three-dimensional \mathbb{C}-vector space V_{v}. We denote the harmonic forms on $\mathrm{GL}_{2}\left(F_{v}\right), \mathcal{H}_{F_{v}}$ defined above by $\underline{\omega}_{v}, \beta_{v}$ etc.
Let $V=\bigotimes_{v \in S_{\mathrm{C}}} V_{v} \cong\left(\mathbb{C}^{3}\right)^{\otimes s}, Z_{\infty}=\bar{\prod}_{v \mid \infty} Z\left(F_{v}\right), K_{\infty}=\prod_{v \mid \infty} K_{F_{v}}$. Denoting by $S_{\mathbb{C}}$ (resp. $S_{\mathbb{R}}$) the set of complex (resp. real) archimedian primes of F, we can merge the representations $\varrho_{F_{v}}$ for each $v \mid \infty$ into a representation

$$
\varrho=\varrho_{\infty}:=\bigotimes_{v \in S_{\mathbb{C}}} \varrho_{\mathbb{C}} \otimes \bigotimes_{v \in S_{\mathbb{R}}} \varrho_{\mathbb{R}}^{(1)}: Z_{\infty} \cdot K_{\infty} \rightarrow \mathrm{SL}(V)
$$

and define V-valued vectors of differential forms

$$
\underline{\omega}:=\bigotimes_{v \in S_{\mathrm{C}}} \underline{\omega_{v}} \otimes \bigotimes_{v \in S_{\mathbb{R}}} \omega_{v}^{1}, \quad \underline{\beta}:=\bigotimes_{v \in S_{\mathrm{C}}} \underline{\beta_{v}} \otimes \bigotimes_{v \in S_{\mathbb{R}}}\left(\beta_{v}\right)_{1}
$$

on $\mathrm{GL}_{2}\left(F_{\infty}\right)$ and \mathcal{H}_{∞}, respectively.

4.2 Automorphic Forms

Let $\chi_{Z}: \mathbb{A}_{F}^{*} / F^{*} \rightarrow \mathbb{C}^{*}$ be a Hecke character that is trivial at the archimedian places. We also denote by χ_{Z} the corresponding character on $Z\left(\mathbb{A}_{F}\right)$ under the isomorphism $\mathbb{A}_{F}^{*} \rightarrow Z\left(\mathbb{A}_{F}\right), a \mapsto\left(\begin{array}{cc}a & 0 \\ 0 & a\end{array}\right)$.

Definition 4.3. An automorphic cusp form of parallel weight $\underline{2}$ with central character χ_{Z} is a map $\phi: G\left(\mathbb{A}_{F}\right) \rightarrow V$ such that
(i) $\phi(z \gamma g)=\chi_{Z}(z) \phi(g)$ for all $g \in G(\mathbb{A}), z \in Z(\mathbb{A}), \gamma \in G(F)$.
(ii) $\phi\left(g k_{\infty}\right)=\phi(g) \varrho\left(k_{\infty}\right)$ for all $k_{\infty} \in K_{\infty}, g \in G(\mathbb{A})$ (considering V as a row vector).
(iii) ϕ has "moderate growth" on $B_{\mathbb{A}}^{\prime}:=\left\{\left(\begin{array}{ll}y & x \\ 0 & 1\end{array}\right) \in G(\mathbb{A})\right\}$, i.e. $\exists C, \lambda \forall A \in$ $B_{\mathbb{A}}^{\prime}:\|\phi(A)\| \leq C \cdot \sup \left(|y|^{\lambda},|y|^{-\lambda}\right)($ for any fixed norm $\|\cdot\|$ on $V) ;$ and $\left.\phi\right|_{G\left(\mathbb{A}_{\infty}\right)} \cdot \underline{\omega}$ is the pullback of a harmon ic form $\omega_{\phi}=f_{\phi} \cdot \underline{\beta}$ on \mathcal{H}_{∞}.
(iv) There exists a compact open subgroup $K^{\prime} \subseteq G\left(\mathbb{A}^{\infty}\right)$ such that $\phi(g k)=$ $\phi(g)$ for all $g \in G(\mathbb{A})$ and $k \in K^{\prime}$.
(v) For all $g \in G\left(\mathbb{A}_{F}\right)$,

$$
\int_{\mathbb{A}_{F} / F} \phi\left(\left(\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right) g\right) d x=0 . \quad(" C u s p i d a l i t y ")
$$

We denote by $\mathcal{A}_{0}\left(G\right.$, harm, $\left.\underline{2}, \chi_{Z}\right)$ the space of all such maps ϕ.
For each $g^{\infty} \in \mathbb{A}_{F}^{\infty}$, let $\omega_{\phi}\left(g^{\infty}\right)$ be the restriction of $\phi\left(g^{\infty}, \cdot\right) \cdot \underline{\omega}$ from $G\left(\mathbb{A}_{F}^{\infty}\right)$ to \mathcal{H}_{∞}; it is a $(d+1)$-form on \mathcal{H}_{∞}.
We want to integrate $\omega_{\phi}\left(g^{\infty}\right)$ between two cusps of the space $\mathcal{H}_{m_{0}}$. (We will identify each $x \in \mathbb{P}^{1}(F)$ with its corresponding cusp in $\overline{\mathcal{H}_{m_{0}}}$ in the following.) The geodesic between the cusps $x \in F$ and ∞ in $\overline{\mathcal{H}_{m_{0}}}$ is the line $\{x\} \times \mathbb{R}_{+}^{*} \subseteq \mathcal{H}_{m_{0}}$ and the integral of ω_{ϕ} along it is finite since ϕ is uniformly rapidly decreasing:

Theorem 4.4. (Gelfand, Piatetski-Shapiro) An automorphic cusp form ϕ is rapidly decreasing modulo the center on a fundamental domain \mathcal{F} of $\mathrm{GL}_{2}(F) \backslash \mathrm{GL}_{2}\left(\mathbb{A}_{F}\right)$;
i.e. there exists an integer r such that for all $N \in \mathbb{N}$ there exists a $C>0$ such that

$$
\phi(z g) \leq C|z|^{r}\|g\|^{-N}
$$

for all $z \in Z\left(\mathbb{A}_{F}\right), g \in \mathcal{F} \cap \operatorname{SL}_{2}\left(\mathbb{A}_{F}\right)$. Here $\|g\|:=\max \left\{\left|g_{i, j}\right|,\left|\left(g^{-1}\right)_{i, j}\right|\right\}_{i, j \in\{1,2\}}$.
(See CKM04, Thm. 2.2; or Kur78, (6) for quadratic imaginary F.)
In fact, the integral of $\omega_{\phi}\left(g^{\infty}\right)$ along $\{x\} \times \mathbb{R}_{+}^{*} \subseteq \mathcal{H}_{m_{0}}$ equals the integral of $\phi\left(g^{\infty}, \cdot\right) \cdot \underline{\omega}$ along a path $g_{t} \in \mathrm{GL}_{2}\left(F_{\infty_{0}}\right), t \in \mathbb{R}_{+}^{*}$, where we can choose

$$
g_{t}=\frac{1}{\sqrt{t}}\left(\begin{array}{ll}
t & x \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
\frac{1}{\sqrt{t}} & \frac{x}{\sqrt{t}} \\
0 & \sqrt{t}
\end{array}\right)
$$

and thus have $\left\|g_{t}\right\|=\sqrt{t}$ for all $t \gg 0,\left\|g_{t}\right\|=C \frac{1}{\sqrt{t}}$ for $t \ll 1$, so the integral $\int_{x}^{\infty} \omega_{\phi}\left(g^{\infty}\right) \in \Omega_{\text {harm }}^{d}\left(\mathcal{H}_{\infty}^{0}\right)$ is well-defined by the theorem.
For any two cusps $a, b \in \mathbb{P}^{1}(F)$, we now define

$$
\int_{a}^{b} \omega_{\phi}\left(g^{\infty}\right):=\int_{a}^{\infty} \omega_{\phi}\left(g^{\infty}\right)-\int_{b}^{\infty} \omega_{\phi}\left(g^{\infty}\right) \in \Omega_{\mathrm{harm}}^{d}\left(\mathcal{H}_{\infty}^{0}\right)
$$

Since ϕ is uniformly rapidly decreasing ($\left\|g_{t}\right\|$ does not depend on x, for $t \gg 0$), this integral along the path $(a, 0) \rightarrow(a, \infty)=(b, \infty) \rightarrow(b, 0)$ in $\overline{\mathcal{H}}_{m_{0}}$ is the same as the limit (for $t \rightarrow \infty$) of the integral along $(a, 0) \rightarrow(a, t) \rightarrow(b, t) \rightarrow$ $(b, 0)$; and since ω_{ϕ} is harmonic (and thus integration is path-independent within $\mathcal{H}_{m_{0}}$) the latter is in fact independent of t, so equality holds for each $t>0$, or along any path from $(a, 0)$ to $(b, 0)$ in $\mathcal{H}_{m_{0}}$. Thus $\int_{a}^{b} \omega_{\phi}\left(g^{\infty}\right)$ equals the integral of $\omega_{\phi}\left(g^{\infty}\right)$ along the geodesic from a to b, and we have

$$
\int_{a}^{b} \omega_{\phi}\left(g^{\infty}\right)+\int_{b}^{c} \omega_{\phi}\left(g^{\infty}\right)=\int_{a}^{c} \omega_{\phi}\left(g^{\infty}\right)
$$

for any three cusps $a, b, c \in \mathbb{P}^{1}(F)$. Let $\operatorname{Div}\left(\mathbb{P}^{1}(F)\right)$ denote the free abelian group of divisors of $\mathbb{P}^{1}(F)$, and let $\mathcal{M}:=\operatorname{Div}_{0}\left(\mathbb{P}^{1}(F)\right)$ be the subgroup of divisors of degree 0 .
We can extend the definition of the integral linearly to get a homomorphism

$$
\mathcal{M} \rightarrow \Omega_{\mathrm{harm}}^{d}\left(\mathcal{H}_{\infty}^{0}\right), \quad m \mapsto \int_{m} \omega_{\phi}\left(g^{\infty}\right)
$$

and easily check that

$$
\begin{equation*}
\gamma^{*}\left(\int_{\gamma m} \omega_{\phi}(\gamma g)\right)=\int_{m} \omega_{\phi}(g) . \tag{29}
\end{equation*}
$$

for all $\gamma \in G(F)^{+}, g \in G\left(\mathbb{A}^{\infty}\right), m \in \mathcal{M}$.
Now let \mathfrak{m} be an ideal of F prime to p, let χ_{z} be a Hecke character of conductor dividing \mathfrak{m}, and $\underline{\alpha_{1}}, \underline{\alpha_{2}}$ as above.

Definition 4.5. We define $S_{2}\left(G, \mathfrak{m}, \underline{\alpha_{1}}, \underline{\alpha_{2}}\right)$ to be the \mathbb{C}-vector space of all maps

$$
\Phi: G\left(\mathbb{A}^{p}\right) \rightarrow \mathcal{B} \underline{\alpha_{1}} \underline{\alpha_{2}}\left(F_{p}, V\right)=\operatorname{Hom}\left(\mathcal{B}_{\underline{\alpha_{1}}, \underline{\alpha_{2}}}\left(F_{p}, \mathbb{C}\right), V\right)
$$

such that:
(a) ϕ is "almost" $K_{0}(\mathfrak{m})$-invariant (in the notation of Ge75), i.e. $\phi(g k)=$ $\phi(g)$ for all $g \in G\left(\mathbb{A}^{p}\right)$ and $k \in \prod_{v \nmid \mathfrak{m} p} G\left(\mathcal{O}_{v}\right)$, and $\phi(g k)=\chi_{Z}(a) \phi(g)$ for all $v \mid \mathfrak{m}, k=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in K_{0}(\mathfrak{m})_{v}$ and $g \in G\left(\mathbb{A}^{p}\right)$.
(b) For each $\psi \in \mathcal{B}_{\underline{\alpha_{1}}, \underline{\alpha_{2}}}\left(F_{p}, \mathbb{C}\right)$, the map

$$
\langle\Phi, \psi\rangle: G(\mathbb{A})=G\left(F_{p}\right) \times G\left(\mathbb{A}^{p}\right) \rightarrow V,\left(g_{p}, g^{p}\right) \mapsto \Phi\left(g^{p}\right)\left(g_{p} \psi\right)
$$

lies in $\mathcal{A}_{0}\left(G\right.$, harm, $\left.\underline{2}, \chi_{Z}\right)$.
Note that (a) implies that ϕ is K^{\prime}-invariant for some open subgroup $K^{\prime} \subseteq$ $K_{0}(\mathfrak{m})^{p}$ of finite index $(\boxed{\mathrm{By} 98} / \boxed{\mathrm{We} 71})$.

4.3 Cohomology of $\mathrm{GL}_{2}(F)$

Let M be a left $G(F)$-module and N an $R[H]$-module, for a ring R and a subgroup $H \subseteq G(F)$. Let $S \subseteq S_{p}$ be a set of primes of F dividing p; as above, let $\chi=\chi_{Z}$ be a Hecke character of conductor \mathfrak{m} prime to p.

Definition 4.6. For a compact open subgroup $K \subseteq K_{0}(\mathfrak{m})^{S} \subseteq G\left(\mathbb{A}^{S, \infty}\right)$, we denote by $\mathcal{A}_{f}(K, S, M ; N)$ the R-module of all maps $\Phi: G\left(\mathbb{A}^{S, \infty}\right) \times M \rightarrow N$ such that

1. $\Phi(g k, m)=\Phi(g, m)$ for all $g \in G\left(\mathbb{A}^{S, \infty}\right), m \in M, k \in \prod_{v \nmid \mathrm{~m} p} G\left(\mathcal{O}_{v}\right)$;
2. $\Phi(g k)=\chi_{Z}(a) \Phi(g)$ for all $v \mid \mathfrak{m}, k=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in K_{0}(\mathfrak{m})_{v}$ and $g \in G\left(\mathbb{A}^{S, \infty}\right)$, $m \in M$.

We denote by $\mathcal{A}_{f}(S, M ; N)$ the union of the $\mathcal{A}_{f}(K, S, M ; N)$ over all compact open subgroups K.
$\mathcal{A}_{f}(S, M ; N)$ is a left $G\left(\mathbb{A}^{S, \infty}\right)$-module via $(\gamma \cdot \Phi)(g, m):=\Phi\left(\gamma^{-1} g, m\right)$ and has a left H-operation given by $(\gamma \cdot \Phi)(g, m):=\gamma \Phi\left(\gamma^{-1} g, \gamma^{-1} m\right)$, commuting with the $G\left(\mathbb{A}^{S, \infty}\right)$-operation.
In contrast to our previous notation, we consider two subsets $S_{1} \subseteq S_{2} \subseteq S_{p}$ in this section. We put $\left(\underline{\alpha_{1}}, \underline{\alpha_{2}}\right)_{S_{1}}:=\left\{\left(\alpha_{\mathfrak{p}, 1}, \alpha_{\mathfrak{p}, 2}\right) \mid \mathfrak{p} \in S_{1}\right\}$, we set

$$
\mathcal{A}_{f}\left(\left(\underline{\alpha_{1}}, \underline{\alpha_{2}}\right)_{S_{1}}, S_{2}, M ; N\right)=\mathcal{A}_{f}\left(S_{2}, M ; \mathcal{B} \underline{\left(\alpha_{1}, \underline{\alpha_{2}}\right)} S_{1}\left(F_{S_{1}}, N\right)\right) ;
$$

we write $\mathcal{A}_{f}\left(\mathfrak{m},\left(\underline{\alpha_{1}}, \underline{\alpha_{2}}\right)_{S_{1}}, S_{2}, M ; N\right):=\mathcal{A}_{f}\left(K_{0}(\mathfrak{m}),\left(\underline{\alpha_{1}}, \underline{\alpha_{2}}\right)_{S_{1}}, S_{2}, M ; N\right)$. If $S_{1}=S_{2}$, we will usually drop S_{2} from all these notations.
We have a natural identification of $\mathcal{A}_{f}\left(\mathfrak{m},\left(\underline{\alpha_{1}}, \underline{\alpha_{2}}\right)_{S}, M ; N\right)$ with the space of $\operatorname{maps} G\left(\mathbb{A}^{S, \infty}\right) \times M \times \mathcal{B}_{\left(\underline{\alpha_{1}}, \underline{\alpha_{2}}\right)_{S}}\left(F_{S}, R\right) \rightarrow N$ that are "almost" K-invariant. Let $S_{0} \subseteq S_{1} \subseteq S_{2} \subseteq S_{p}$ be subsets. The pairing (11) induces a pairing

$$
\mathcal{A}_{f}\left(\left(\underline{\alpha_{1}}, \underline{\alpha_{2}}\right)_{S_{1}}, S_{2}, M ; N\right) \times \mathcal{B}_{\left(\underline{\alpha_{1}}, \underline{\alpha_{2}}\right) S_{0}}\left(F_{S_{0}}, R\right) \rightarrow \mathcal{A}_{f}\left(\left(\underline{\alpha_{1}}, \underline{\alpha_{2}}\right)_{S_{0}}, S_{2}, M ; N\right)
$$

which, when restricting to K-invariant elements, induces an isomorphism

$$
\mathcal{A}_{f}\left(K,\left(\underline{\alpha_{1}}, \underline{\alpha_{2}}\right)_{S_{1}}, S_{2}, M ; N\right) \cong \mathcal{B} \underline{\left(\alpha_{1}, \underline{\alpha_{2}}\right) S_{1}-S_{0}}\left(F_{S_{1}-S_{0}}, \mathcal{A}_{f}\left(\underline{\alpha_{1}}, \underline{\alpha_{2}}\right)_{S_{0}}, S_{2}, M ; N\right)
$$

Putting $S_{0}:=S_{1}-\{\mathfrak{p}\}$ for a prime $\mathfrak{p} \in S_{1}$, we specifically get an isomorphism

$$
\mathcal{A}_{f}\left(K,\left(\underline{\alpha_{1}}, \underline{\alpha_{2}}\right)_{S_{1}}, S_{2}, M ; N\right) \cong \mathcal{B}^{\alpha_{\mathfrak{p}, 1}, \alpha_{\mathfrak{p}, 2}}\left(F_{\mathfrak{p}}, \mathcal{A}_{f}\left(\underline{\alpha_{1}}, \underline{\alpha_{2}}\right)_{S_{0}}, S_{2}, M ; N\right)
$$

Lemmas 2.9 and 2.10 now immediately imply the following:
Lemma 4.7. Let $S \subseteq S_{p}, \mathfrak{p} \in S, S_{0}:=S-\{\mathfrak{p}\}$. Let $K \subseteq G\left(\mathbb{A}^{S, \infty}\right)$ be a compact open subgroup.
(a) If $\pi_{\alpha_{\mathfrak{p}, 1}, \alpha_{\mathfrak{p}, 2}}$ is spherical, we have exact sequences

$$
0 \rightarrow \mathcal{A}_{f}\left(K,\left(\underline{\alpha_{1}}, \underline{\alpha_{2}}\right)_{S}, M ; N\right) \rightarrow Z \xrightarrow{N-\nu_{\mathfrak{p}}} Z \rightarrow 0
$$

and

$$
0 \rightarrow Z \rightarrow \mathcal{A}_{f}\left(K_{0},\left(\underline{\alpha_{1}}, \underline{\alpha_{2}}\right)_{S_{0}}, M ; N\right) \xrightarrow{T-a_{\mathfrak{p}}} \mathcal{A}_{f}\left(K_{0},\left(\underline{\alpha_{1}}, \underline{\alpha_{2}}\right)_{S_{0}}, M ; N\right) \rightarrow 0
$$

for a $G\left(\mathbb{A}^{S_{0}, \infty}\right)$-module Z and a compact open subgroup $K_{0}=K \times K_{\mathfrak{p}}$ of $G\left(\mathbb{A}^{S_{0}, \infty}\right)$.
(b) If $\pi_{\alpha_{\mathfrak{p}, 1}, \alpha_{\mathfrak{p}, 2}}$ is special (with central character $\chi_{\mathfrak{p}}$), we have exact sequences

$$
0 \rightarrow \mathcal{A}_{f}\left(K,\left(\underline{\alpha_{1}}, \underline{\alpha_{2}}\right)_{S}, M ; N\right) \rightarrow Z^{\prime} \rightarrow Z \rightarrow 0
$$

and

$$
\begin{aligned}
& 0 \rightarrow Z \rightarrow \mathcal{A}_{f}\left(K_{0},\left(\underline{\alpha_{1}}, \underline{\alpha_{2}}\right)_{S_{0}}, M ; N\right)^{2} \rightarrow \mathcal{A}_{f}\left(K_{0},\left(\underline{\alpha_{1}}, \underline{\alpha_{2}}\right)_{S_{0}}, M ; N\right)^{2} \rightarrow 0 \\
& 0 \rightarrow Z^{\prime} \rightarrow \mathcal{A}_{f}\left(K_{0}^{\prime},\left(\underline{\alpha_{1}}, \underline{\alpha_{2}}\right)_{S_{0}}, M ; N\right)^{2} \rightarrow \mathcal{A}_{f}\left(K_{0}^{\prime},\left(\underline{\left(\underline{\alpha_{1}}\right.}, \underline{\alpha_{2}}\right)_{S_{0}}, M ; N\right)^{2} \rightarrow 0
\end{aligned}
$$

with $Z^{\left({ }^{\prime}\right)}:=\mathcal{A}_{f}\left(K_{0}^{\left({ }^{\prime}\right)},\left(\underline{\alpha_{1}}, \underline{\alpha_{2}}\right)_{S_{0}}, S, M ; N\left(\chi_{\mathfrak{p}}\right)\right)$, where $K_{0}^{\left({ }^{\prime}\right)}=K \times K_{\mathfrak{p}}^{\left({ }^{\prime}\right)}$ are compact open subgroups of $\overline{G\left(\mathbb{A}^{S_{0}, \infty}\right)}$.

Proposition 4.8. Let $S \subseteq S_{p}$ and let K be a compact open subgroup of $G\left(\mathbb{A}^{S, \infty}\right)$.
(a) For each flat R-module N (with trivial $G(F)$-action), the canonical map

$$
H^{q}\left(G(F)^{+}, \mathcal{A}_{f}\left(K,\left(\underline{\alpha_{1}}, \underline{\alpha_{2}}\right)_{S}, \mathcal{M} ; R\right)\right) \otimes_{R} N \rightarrow H^{q}\left(G(F)^{+}, \mathcal{A}_{f}\left(K,\left(\underline{\alpha_{1}}, \underline{\alpha_{2}}\right)_{S}, \mathcal{M} ; N\right)\right)
$$

is an isomorphism for each $q \geq 0$.
(b) If R is finitely generated as a \mathbb{Z}-module, $H^{q}\left(G(F)^{+}, \mathcal{A}_{f}\left(K,\left(\underline{\alpha_{1}}, \underline{\alpha_{2}}\right)_{S}, \mathcal{M} ; R\right)\right.$ is finitely generated over R.

Proof. We can copy the proof of Sp14, Prop. 5.6, using lemma 4.7 instead of Sp14, lemma 5.4 to reduce to the case $S=\varnothing$.

We define

$$
H_{*}^{q}\left(G(F)^{+}, \mathcal{A}_{f}\left(\left(\underline{\alpha_{1}}, \underline{\alpha_{2}}\right)_{S}, M ; R\right)\right):=\underset{\longrightarrow}{\lim } H^{q}\left(G(F)^{+}, \mathcal{A}_{f}\left(K,\left(\underline{\alpha_{1}}, \underline{\alpha_{2}}\right)_{S}, M ; R\right)\right)
$$

where the limit runs over all compact open subgroups $K \subseteq G\left(\mathbb{A}^{S, \infty}\right)$; and similarly define $H_{*}^{q}\left(B(F)^{+}, \mathcal{A}_{f}\left(\left(\underline{\alpha_{1}}, \underline{\alpha_{2}}\right)_{S}, \mathcal{M} ; R\right)\right.$. The proposition immediately implies

Corollary 4.9. Let $R \rightarrow R^{\prime}$ be a flat ring homomorphism. Then the canonical map

$$
H_{*}^{q}\left(G(F)^{+}, \mathcal{A}_{f}\left(\left(\underline{\alpha_{1}}, \underline{\alpha_{2}}\right)_{S}, \mathcal{M} ; R\right)\right) \otimes_{R} R^{\prime} \rightarrow H_{*}^{q}\left(G(F)^{+}, \mathcal{A}_{f}\left(\underline{\alpha_{1}}, \underline{\alpha_{2}}\right)_{S}, \mathcal{M} ; R^{\prime}\right)
$$

is an isomorphism, for all $q \geq 0$.
If $R=k$ is a field of characteristic zero, $H_{*}^{q}\left(G(F)^{+}, \mathcal{A}_{f}\left(\left(\underline{\alpha_{1}}, \underline{\alpha_{2}}\right)_{S}, M ; R\right)\right.$ is a smooth $G\left(\mathbb{A}^{S, \infty}\right)$-module, and we have

$$
H_{*}^{q}\left(G(F)^{+}, \mathcal{A}_{f}\left(\left(\underline{\alpha_{1}}, \underline{\alpha_{2}}\right)_{S}, M ; k\right)^{K}=H^{q}\left(G(F)^{+}, \mathcal{A}_{f}\left(K,\left(\underline{\alpha_{1}}, \underline{\alpha_{2}}\right)_{S}, M ; k\right)\right.\right.
$$

We identify $G(F) / G(F)^{+}$with the group $\Sigma=\{ \pm 1\}^{r}$ via the isomorphism

$$
G(F) / G\left(F^{+}\right) \xrightarrow{\text { det }} F^{*} / F_{+}^{*} \cong \Sigma
$$

(with all groups being trivial for $r=0$). Then Σ acts on $H_{*}^{q}\left(G(F)^{+}, \mathcal{A}_{f}\left(\left(\underline{\alpha_{1}}, \underline{\alpha_{2}}\right)_{S}, M ; k\right)\right.$ and $H^{q}\left(G(F)^{+}, \mathcal{A}_{f}\left(K, \underline{\alpha_{1}}, \underline{\alpha_{2}}\right)_{S}, M ; k\right)$ by conjugation. For $\bar{\pi} \overline{\mathfrak{A}_{0}}(G, \underline{2})$ and $\underline{\mu} \in \Sigma$, we write $\overline{H_{*}^{q}}\left(\overline{\left.G(F)^{+}, \cdot\right)_{\pi, \underline{\mu}}}:=\right.$ $\operatorname{Hom}_{G\left(\mathbb{A}^{S, \infty}\right)}\left(\pi^{S}, H_{*}^{q}\left(G(F)^{+}, \cdot\right)\right)_{\underline{\mu}}$.

Proposition 4.10. Let $\pi \in \mathfrak{A}_{0}\left(G, \underline{2}, \chi_{Z}, \underline{\alpha_{1}}, \underline{\alpha_{2}}\right), S \subseteq S_{p}$. Let k be a field which contains the field of definition of π. Then for every $\underline{\mu} \in \Sigma$, we have

$$
H_{*}^{q}\left(G(F)^{+}, \mathcal{A}_{f}\left(\left(\underline{\alpha_{1}}, \underline{\alpha_{2}}\right)_{S}, \mathcal{M} ; k\right)_{\pi, \underline{\mu}}= \begin{cases}k, & \text { if } q=d ; \tag{30}\\ 0, & \text { if } q \in\{0, \ldots, d-1\}\end{cases}\right.
$$

Proof. The case $S=\varnothing$ is proved analogously to Sp14, prop. 5.8, using the results of Harder Ha87. For $S=S_{0} \cup\{\mathfrak{p}\}$ and $\pi_{\mathfrak{p}}$ spherical, lemma 4.7(a) and the statement for S_{0} give an isomorphism

$$
H_{*}^{q}\left(G(F)^{+}, \mathcal{A}_{f}\left(\left(\underline{\alpha_{1}}, \underline{\alpha_{2}}\right)_{S_{0}}, \mathcal{M} ; k\right)\right)_{\pi, \underline{\mu}} \cong H_{*}^{q}\left(G(F)^{+}, \mathcal{A}_{f}\left(\left(\underline{\alpha_{1}}, \underline{\alpha_{2}}\right)_{S}, \mathcal{M} ; k\right)\right)_{\pi, \underline{\mu}}
$$

since the Hecke operators $T_{\mathfrak{p}}$ and $N_{\mathfrak{p}}$ act on the left-hand side by multiplication with $a_{\mathfrak{p}}$ and $\nu_{\mathfrak{p}}$, respectively. If $\pi_{\mathfrak{p}}$ is special, we can similarly deduce the statement for S from that for S_{0}, using the first exact sequence of lemma 4.7(b), since the results of Ha87] also hold when twisting k by a (central) character.

4.4 Eichler-Shimura map

From now on, let $S_{1} \subseteq S_{p}$ be the set of places such that $\pi_{\mathfrak{p}}$ is the Steinberg representation (i.e. $\alpha_{\mathfrak{p}, 1}=\nu_{\mathfrak{p}}=1, \alpha_{\mathfrak{p}, 2}=q$).
Given a subgroup $K_{0}(\mathfrak{m})^{p} \subseteq G\left(\mathbb{A}^{p, \infty}\right)$ as above, there is a map

$$
I_{0}: S_{2}\left(G, \mathfrak{m}, \underline{\alpha_{1}}, \underline{\alpha_{2}}\right) \rightarrow H^{0}\left(G(F)^{+}, \mathcal{A}_{f}\left(\mathfrak{m}, \underline{\alpha_{1}}, \underline{\alpha_{2}}, \mathcal{M} ; \Omega_{\mathrm{harm}}^{d}\left(\mathcal{H}_{\infty}^{0}\right)\right)\right)
$$

given by

$$
I_{0}(\Phi):(\psi,(g, m)) \mapsto \int_{m} \omega_{\langle\Phi, \psi\rangle}\left(1_{p}, g\right),
$$

for $\psi \in \mathcal{B}_{\underline{\alpha_{1}}, \underline{\alpha_{2}}}\left(F_{p}, \mathbb{C}\right), g \in G\left(\mathbb{A}^{p, \infty}\right), m \in \mathcal{M}$, where 1_{p} denotes the unity element in $\overline{G\left(F_{p}\right)}$.
This is well-defined since both sides are "almost" $K_{0}(\mathfrak{m})$-invariant, and the $G(F)^{+}$-invariance of $I_{0}(\Phi)$ follows from a straightforward calculation, using (29).

From the complex

$$
\mathcal{A}_{f}\left(m, \underline{\alpha_{1}}, \underline{\alpha_{2}}, \mathcal{M} ; \mathbb{C}\right) \rightarrow C^{\bullet}:=\mathcal{A}_{f}\left(\mathfrak{m}, \underline{\alpha_{1}}, \underline{\alpha_{2}}, \mathcal{M} ; \Omega_{\text {harm }}^{\bullet}\left(\mathcal{H}_{\infty}^{0}\right)\right)
$$

we get a map

$$
\begin{equation*}
S_{2}\left(G, \mathfrak{m}, \underline{\alpha_{1}}, \underline{\alpha_{2}}\right) \rightarrow H^{d}\left(G(F)^{+}, \mathcal{A}_{f}\left(\mathfrak{m}, \underline{\alpha_{1}}, \underline{\alpha_{2}}, \mathcal{M} ; \mathbb{C}\right)\right) \tag{31}
\end{equation*}
$$

by composing I_{0} with an edge morphism of the spectral sequence

$$
H^{q}\left(G(F)^{+}, C^{p}\right) \Longrightarrow H^{p+q}\left(G(F)^{+}, C^{\bullet}\right)
$$

Using the map $\delta \underline{\alpha_{1}} \underline{\alpha_{2}}: \mathcal{B} \underline{\alpha_{1}} \underline{\alpha_{2}}(F, V) \rightarrow \operatorname{Dist}\left(F_{p}^{*}, V\right)$ from section 2.6, we next define a map

$$
\begin{equation*}
\Delta \frac{\alpha_{1}, \underline{\alpha_{2}}}{V}: S_{2}\left(G, \mathfrak{m}, \underline{\alpha_{1}}, \underline{\alpha_{2}}\right) \rightarrow \mathcal{D}\left(S_{1}, V\right) \tag{32}
\end{equation*}
$$

by

$$
\Delta_{V}^{\underline{\alpha_{1}}, \underline{\alpha_{2}}}(\Phi)\left(U, x^{p}\right)=\delta \underline{\alpha_{1}} \underline{\alpha_{2}}\left(\Phi\left(\begin{array}{cc}
x^{p} & 0 \\
0 & 1
\end{array}\right)\right)(U)
$$

for $U \in \mathfrak{C o}\left(F_{S_{1}} \times F_{S_{2}}\right), x^{p} \in \mathbb{I}^{p}$, and we denote by $\Delta \underline{\alpha_{1}} \underline{\alpha_{2}}: S_{2}\left(G, \mathfrak{m}, \underline{\alpha_{1}}, \underline{\alpha_{2}}\right) \rightarrow$ $\mathcal{D}\left(S_{1}, \mathbb{C}\right)$ its $(1, \ldots, 1)$ th coordinate function (i.e. corresponding to the harmonic forms $\bigotimes_{v \mid \infty}\left(\omega_{v}\right)_{1}, \bigotimes_{v \mid \infty}\left(\beta_{v}\right)_{1}$ in section 4.1):

$$
\Delta \underline{\alpha_{1}}, \underline{\alpha_{2}}(\Phi)\left(U, x^{p}\right)=\delta \underline{\alpha_{1}, \underline{\alpha_{2}}}\left(\Phi\left(\begin{array}{cc}
x^{p} & 0 \\
0 & 1
\end{array}\right)\right)_{(1, \ldots, 1)}(U)
$$

Since for each complex prime $v, S^{1} \cong \mathrm{SU}(2) \cap T(\mathbb{C})$ operates on Φ via ϱ_{v}, $\Delta \underline{\alpha_{1}}, \underline{\alpha_{2}}$ is easily seen to be S^{1}-invariant, i.e. it lies in $\mathcal{D}^{\prime}\left(S_{1}, \mathbb{C}\right)$.
We also have a natural (i.e. commuting with the complex maps of each C^{\bullet}) family of maps

$$
\begin{equation*}
\mathcal{A}_{f}\left(\mathfrak{m}, \underline{\alpha_{1}}, \underline{\alpha_{2}}, \mathcal{M}, \Omega_{\mathrm{harm}}^{i}\left(\mathcal{H}_{\infty}^{0}\right)\right) \rightarrow \mathcal{D}_{f}\left(S_{1}, \Omega^{i}\left(U_{\infty}^{0}, \mathbb{C}\right)\right) \tag{33}
\end{equation*}
$$

for all $i \geq 0$, and

$$
\begin{equation*}
\mathcal{A}_{f}\left(\mathfrak{m}, \underline{\alpha_{1}}, \underline{\alpha_{2}}, \mathcal{M}, \mathbb{C}\right) \rightarrow \mathcal{D}_{f}\left(S_{1}, \mathbb{C}\right) \tag{34}
\end{equation*}
$$

(the $i=-1$-th term in the complexes), by mapping $\Phi \in \mathcal{A}_{f}\left(\mathfrak{m}, \underline{\alpha_{1}}, \underline{\alpha_{2}}, \mathcal{M}, \cdot\right.$) first to

$$
\left(U, x^{p, \infty}\right) \mapsto \Phi\left(\left(\begin{array}{cc}
x^{p, \infty} & 0 \\
0 & 1
\end{array}\right), \infty-0\right)\left(\delta_{\underline{\alpha_{1}}, \underline{\alpha_{2}}}\left(1_{U}\right)\right) \in \Omega_{\text {harm }}^{i}\left(\mathcal{H}_{\infty}^{0}\right) \text { resp. } \in \mathbb{C}
$$

and then for $i \geq 0$ restricting the differential forms to $\Omega^{i}\left(U_{\infty}^{0}\right)$ via

$$
U_{\infty}^{0}=\prod_{v \in S_{\infty}^{0}} \mathbb{R}_{+}^{*} \hookrightarrow \prod_{v \in S_{\infty}^{0}} \mathcal{H}_{v}=\mathcal{H}_{\infty}^{0}
$$

One easily checks that (33) and (34) are compatible with the homomorphism of "acting groups" $F^{* \prime} \hookrightarrow G(F)^{+}, x \mapsto\left(\begin{array}{cc}x & 0 \\ 0 & 1\end{array}\right)$, so we get induced maps in cohomology

$$
\begin{equation*}
H^{0}\left(G(F)^{+}, \mathcal{A}_{f}\left(\mathfrak{m}, \underline{\alpha_{1}}, \underline{\alpha_{2}}, \mathcal{M}, \Omega_{\text {harm }}^{d}\left(\mathcal{H}_{\infty}^{0}\right)\right)\right) \rightarrow H^{0}\left(F^{* \prime}, \mathcal{D}_{f}\left(S_{1}, \Omega^{d}\left(U_{\infty}^{0}, \mathbb{C}\right)\right)\right) \tag{35}
\end{equation*}
$$

and

$$
\begin{equation*}
H^{d}\left(G(F)^{+}, \mathcal{A}_{f}\left(\mathfrak{m}, \underline{\alpha_{1}}, \underline{\alpha_{2}}, \mathcal{M}, \mathbb{C}\right)\right) \rightarrow H^{d}\left(F^{* \prime}, \mathcal{D}_{f}\left(S_{1}, \mathbb{C}\right)\right) \tag{36}
\end{equation*}
$$

which are linked by edge morphisms of the respective spectral sequences to give a commutative diagram (given in the proof below).

Proposition 4.11. We have a commutative diagram:

Proof. The given diagram factorizes as

(where we write $\mathcal{A}_{f}(\cdot)$ instead of $\mathcal{A}_{f}\left(\mathfrak{m}, \underline{\alpha_{1}}, \underline{\alpha_{2}}, \mathcal{M}, \cdot\right)$ for brevity). The righthand square is the naturally commutative square mentioned above; the commutativity of the left-hand square can easily be checked by hand.

4.5 Whittaker model

We now consider an automorphic representation $\pi=\otimes_{\nu} \pi_{\nu} \in$ $\mathfrak{A}_{0}\left(G, \underline{2}, \chi_{Z}, \underline{\alpha_{1}}, \underline{\alpha_{2}}\right)$. Denote by $\mathfrak{c}(\pi):=\prod_{v \text { finite }} \mathfrak{c}\left(\pi_{v}\right)$ the conductor of π.
Let $\chi: \mathbb{I}^{\infty} \rightarrow \mathbb{C}^{*}$ be a unitary character of the finite ideles; for each finite place v, set $\chi_{v}=\left.\chi\right|_{F_{v}^{*}}$. For each prime v of F, let \mathcal{W}_{v} denote the Whittaker model of π_{v}. For each finite and each real prime, we choose $W_{v} \in \mathcal{W}_{v}$ such that the local L-factor equals the local zeta function at $g=1$, i.e. such that

$$
L\left(s, \pi_{v} \otimes \chi_{v}\right)=\int_{F_{v}^{*}} W_{v}\left(\begin{array}{ll}
x & 0 \tag{37}\\
0 & 1
\end{array}\right) \chi_{v}(x)|x|^{s-\frac{1}{2}} d^{\times} x
$$

for any unramified quasi-character $\chi_{v}: F_{v}^{*} \rightarrow \mathbb{C}^{*}$ and $\operatorname{Re}(s) \gg 0$.
This is possible by Ge75, Thm. 6.12 (ii); and by loc.cit., Prop. $6.17, W_{v}$ can be chosen such that $\mathrm{SO}(2)$ operates on W_{v} via ϱ_{v} for real archimedian v, and is "almost" $K_{0}\left(\mathfrak{c}\left(\pi_{v}\right)\right)$-invariant for finite v.
For complex primes v of F, we can also choose a W_{v} satisfying (37) and which behaves well with respect to the $\mathrm{SU}(2)$-action ϱ_{v}, as follows:
By Kur77, there exists a function

$$
\underline{W_{v}}=\left(W_{v}^{0}, W_{v}^{1}, W_{v}^{2}\right): G\left(F_{v}\right) \rightarrow \mathbb{C}^{3}
$$

such that $W_{v}^{i} \in \mathcal{W}_{v}$ for all i, and such that $\mathrm{SU}(2)$ operates by the right via ϱ_{v} on $\underline{W_{v}}$; i.e. for all $g \in G\left(F_{v}\right)$ and $h \in \mathrm{SU}(2)$, we have

$$
\underline{W_{v}}(g h)=\underline{W_{v}}(g) \varrho_{\mathbb{C}}(h)
$$

Note that W_{v}^{1} is thus invariant under right multiplication by a diagonal matrix $\left(\begin{array}{cc}u & 0 \\ 0 & \bar{u}\end{array}\right)$ with $u \in S^{1} \subseteq \mathbb{C}$. Since π_{v} has trivial central character for archimedian v by our assumption, a function in \mathcal{W}_{v} is also invariant under $Z\left(F_{v}\right)$. Thus we have

$$
W_{v}^{1}\left(g\left(\begin{array}{ll}
u & 0 \\
0 & 1
\end{array}\right)\right)=W_{v}^{1}(g) \quad \text { for all } g \in G\left(F_{v}\right), u \in S^{1}
$$

W_{v}^{1} can be described explicitly in terms of a certain Bessel function, as follows. The modified Bessel differential equation of order $\alpha \in \mathbb{C}$ is

$$
x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}-\left(x^{2}+\alpha^{2}\right) y=0
$$

Its solution space (on $\{\operatorname{Re} z>0\}$) is two-dimensional; we are only interested in the second standard solution K_{v}, which is characterised by the asymptotics

$$
K_{v}(z) \sim \sqrt{\frac{\pi}{2 z}} e^{-z}
$$

(cf. We71). By Kur77] 3 we have $W_{v}^{1}\left(\begin{array}{cc}x & 0 \\ 0 & 1\end{array}\right)=\frac{2}{\pi} x^{2} K_{0}(4 \pi x)$.
(W_{v}^{0} and W_{v}^{2} can also be described in terms of Bessel functions; they are linearly dependent and scalar multiples of $x^{2} K_{1}(4 \pi x)$.)
By JL70, Ch. 1 , Thm. $6.2(\mathrm{vi}), \sigma\left(|\cdot|_{\mathbb{C}}^{1 / 2},|\cdot|_{\mathbb{C}}^{-1 / 2}\right) \cong \pi\left(\mu_{1}, \mu_{2}\right)$ with

$$
\mu_{1}(z)=z^{1 / 2} \bar{z}^{-1 / 2}=|z|_{\mathbb{C}}^{-1 / 2} z, \quad \mu_{2}(z)=z^{-1 / 2} \bar{z}^{1 / 2}=|z|_{\mathbb{C}}^{-1 / 2} \bar{z}
$$

and the L-series of the representation is the product of the L-factors of these two characters:

$$
\begin{aligned}
L_{v}\left(s, \pi_{v}\right)=L\left(s, \mu_{1}\right) L\left(s, \mu_{2}\right) & =2(2 \pi)^{-\left(s+\frac{1}{2}\right)} \Gamma\left(s+\frac{1}{2}\right) \cdot 2(2 \pi)^{-\left(s+\frac{1}{2}\right)} \Gamma\left(s+\frac{1}{2}\right) \\
& =4(2 \pi)^{-(2 s+1)} \Gamma\left(s+\frac{1}{2}\right)^{2}
\end{aligned}
$$

On the other hand, letting $d^{\times} x=\frac{d x}{|x|_{\mathbb{C}}}=\frac{d r}{r} d \vartheta$ (for $x=r e^{i \vartheta}$), we have for $\operatorname{Re}(s)>-\frac{1}{2}$:

$$
\begin{aligned}
\int_{\mathbb{C}^{*}} W_{v}^{1}\left(\begin{array}{ll}
x & 0 \\
0 & 1
\end{array}\right)|x|_{\mathbb{C}}^{s-\frac{1}{2}} d^{\times} x & =\int_{S^{1}} \int_{\mathbb{R}_{+}} W_{v}^{1}\left(\begin{array}{cc}
r e^{i \vartheta} & 0 \\
0 & 1
\end{array}\right)|x|_{\mathbb{C}}^{s-\frac{1}{2}} \frac{d r}{r} d \vartheta \\
& =4 \int_{0}^{\infty} x^{2} K_{0}(4 \pi x) x^{2 s-1} \frac{d x}{x}
\end{aligned}
$$

(invariance under $\mathrm{SU}(2) \cdot Z\left(F_{v}\right)$ gives a constant integral w.r.t. ϑ)

$$
\begin{aligned}
& =4(4 \pi)^{-2 s+1} \int_{0}^{\infty} K_{0}(x) x^{2 s} d x \\
& =4(4 \pi)^{-2 s+1} 2^{2 s-1} \Gamma\left(s+\frac{1}{2}\right)^{2} \\
& =4(2 \pi)^{-2 s+1} \Gamma\left(s+\frac{1}{2}\right)^{2}
\end{aligned}
$$

by ([DLMF 10.43.19). Thus we have

$$
\int_{\mathbb{C}^{*}} W_{v}^{1}\left(\begin{array}{ll}
x & 0 \\
0 & 1
\end{array}\right)|x|_{\mathbb{C}}^{s-\frac{1}{2}} d^{\times} x=(2 \pi)^{2} L_{v}\left(s, \pi_{v}\right)
$$

for all $\operatorname{Re}(s)>-\frac{1}{2}$. We set $W_{v}:=(2 \pi)^{-2} W_{v}^{1}$; thus (37) holds also for complex primes.
Now that we have defined W_{v} for all primes v, we put $W^{p}(g):=\prod_{v \nmid p} W_{v}\left(g_{v}\right)$ for all $g=\left(g_{v}\right)_{v} \in G\left(\mathbb{A}^{p}\right)$. We will also need the vector-valued function \underline{W}^{p} : $G\left(\mathbb{A}_{F}\right) \rightarrow V$ given by

$$
\underline{W^{p}}(g):=\prod_{v \nmid p \text { finite or } v \text { real }} W_{v}\left(g_{v}\right) \cdot \bigotimes_{v \text { complex }}(2 \pi)^{-2} \underline{W_{v}}\left(g_{v}\right)
$$

[^2]
$4.6 \quad p$-ADIC MEASURES OF AUTOMORPHIC FORMS

Now return to our $\pi \in \mathfrak{A}_{0}\left(G, \underline{2}, \chi_{Z}, \underline{\alpha_{1}}, \underline{\alpha_{2}}\right)$. We fix an additive character ψ : $\mathbb{A} \rightarrow \mathbb{C}^{*}$ which is trivial on F, and let ψ_{v} denote the restriction of ψ to $F_{v} \hookrightarrow \mathbb{A}$, for all primes v. We further require that $\operatorname{ker}\left(\psi_{\mathfrak{p}}\right) \supseteq \mathcal{O}_{\mathfrak{p}}$ and $\mathfrak{p}^{-1} \nsubseteq \operatorname{ker} \psi_{\mathfrak{p}}$ for all $\mathfrak{p} \mid p$, so that we can apply the results of chapter 2 ,
As in chapter 2, let $\mu_{\pi_{\mathfrak{p}}}:=\mu_{\alpha_{\mathfrak{p}, 1} / \nu_{\mathfrak{p}}}=\mu_{q_{\mathfrak{p}} / \alpha_{\mathfrak{p}, 2}}$ denote the distribution $\chi_{q_{\mathfrak{p}} / \alpha_{\mathfrak{p}, 2}}(x) \psi_{\mathfrak{p}}(x) d x$ on $F_{\mathfrak{p}}$, and let $\mu_{\pi_{p}}:=\prod_{\mathfrak{p} \mid p} \mu_{\pi_{\mathfrak{p}}}$ be the product distribution on $F_{p}:=\prod_{\mathfrak{p} \mid p} F_{\mathfrak{p}}$.
Define $\phi=\phi_{\pi}: \mathfrak{C o}\left(F_{S_{1}} \times F_{S_{2}}^{*}\right) \times \mathbb{I}^{p} \rightarrow \mathbb{C}$ by

$$
\phi\left(U, x^{p}\right):=\sum_{\zeta \in F^{*}} \mu_{\pi_{p}}(\zeta U) W^{p}\left(\begin{array}{cc}
\zeta x^{p} & 0 \\
0 & 1
\end{array}\right)
$$

By proposition 2.13(a), we have for each $U \in \mathfrak{C o}\left(F_{S_{1}} \times F_{S_{2}}^{*}\right)$:

$$
\begin{aligned}
\phi_{U}(x):=\phi\left(x_{p} U, x^{p}\right) & =\sum_{\zeta \in F^{*}} \mu_{\pi_{p}}\left(\zeta x_{p} U\right) W^{p}\left(\begin{array}{cc}
\zeta x^{p} & 0 \\
0 & 1
\end{array}\right) \\
& =\sum_{\zeta \in F^{*}} W\left(\begin{array}{cc}
\zeta x & 0 \\
0 & 1
\end{array}\right)
\end{aligned}
$$

where $W(g):=W_{U}\left(g_{p}\right) W^{p}\left(g^{p}\right)$ lies in the global Whittaker model $\mathcal{W}=\mathcal{W}(\pi)$ for all $g=\left(g_{p}, g^{p}\right) \in G(\mathbb{A})$, putting $W_{U}:=W_{1_{U}}$; so ϕ is well-defined and lies in $\mathcal{D}\left(S_{1}, \mathbb{C}\right)$ (since W is smooth and rapidly decreasing; distribution property, F^{*} - and $U^{p, \infty}$-invariance being clear by the definitions of ϕ and W^{p}).
Let $\mu_{\pi}:=\mu_{\phi_{\pi}}$ be the distribution on \mathcal{G}_{p} corresponding to ϕ_{π}, as defined in (22), and let $\kappa_{\pi}:=\kappa_{\phi_{\pi}} \in H^{d}\left(F^{* \prime}, \mathcal{D}_{f}\left(S_{1}, \mathbb{C}\right)\right)$ be the cohomology class defined by (23) and (24).
Theorem 4.12. Let $\pi \in \mathfrak{A}_{0}\left(G, \underline{2}, \chi_{Z}, \underline{\alpha_{1}}, \underline{\alpha_{2}}\right)$; we assume the $\alpha_{\mathfrak{p}, i}$ to be ordered such that $\left|\alpha_{\mathfrak{p}, 1}\right| \leq\left|\alpha_{\mathfrak{p}, 2}\right|$ for all $\mathfrak{p} \mid p$. $\left(\overline{S o} \chi_{\mathfrak{p}, 1}=|\cdot| \chi_{\mathfrak{p}, 2}\right.$ for all special $\pi_{\mathfrak{p}}$.) (a) Let $\chi: \mathcal{G}_{p} \rightarrow \mathbb{C}^{*}$ be a character of finite order with conductor $\mathfrak{f}(\chi)$. Then we have the interpolation property

$$
\int_{\mathcal{G}_{p}} \chi(\gamma) \mu_{\pi}(d \gamma)=\tau(\chi) \prod_{\mathfrak{p} \in S_{p}} e\left(\pi_{\mathfrak{p}}, \chi_{\mathfrak{p}}\right) \cdot L\left(\frac{1}{2}, \pi \otimes \chi\right)
$$

where

$$
e\left(\pi_{\mathfrak{p}}, \chi_{\mathfrak{p}}\right)= \begin{cases}\frac{\left(1-\alpha_{\mathfrak{p}, 1} x_{\mathfrak{p}} q_{\mathfrak{p}}^{-1}\right)\left(1-\alpha_{\mathfrak{p}, 2} x_{\mathfrak{p}}^{-1} q_{\mathfrak{p}}^{-1}\right)\left(1-\alpha_{\mathfrak{p}, 2} x_{\mathfrak{p}} q_{\mathfrak{p}}^{-1}\right)}{\left(1-x_{\mathfrak{p}} \alpha_{\mathfrak{p}, 2}^{-1}\right)}, & \operatorname{ord}_{\mathfrak{p}}(\mathfrak{f}(\chi))=0 \\ \frac{\left(1-\alpha_{\mathfrak{p}, 1} x_{\mathfrak{p}} q_{\mathfrak{p}}^{-1}\right)\left(1-\alpha_{\mathfrak{p}, 2} x_{\mathfrak{p}}^{-1} q_{\mathfrak{p}}^{-1}\right)}{\left(1-x_{\mathfrak{p}} \alpha_{\mathfrak{p}, 2}^{-1}\right)}, & \text { and } \pi \text { spherical, } \\ & \operatorname{ord}_{\mathfrak{p}}(\mathfrak{f}(\chi))=0 \\ \left(\alpha_{\mathfrak{p}, 2} / q_{\mathfrak{p}}\right)^{\operatorname{ord}_{\mathfrak{p}}(f(\chi)),} & \text { and } \pi \text { special, } \\ \operatorname{ord}_{\mathfrak{p}}(f(\chi))>0\end{cases}
$$

and $x_{\mathfrak{p}}:=\chi_{\mathfrak{p}}\left(\varpi_{\mathfrak{p}}\right)$.
(b) κ_{π} is integral (cf. definition 3.12). For $\underline{\mu} \in \Sigma$, let $\kappa_{\pi, \underline{\mu}}$ be the projection of κ_{π} to $H^{d}\left(F^{* \prime}, \mathcal{D}_{f}\left(S_{1}, \mathbb{C}\right)\right)_{\pi, \underline{\mu}}$. Then $\kappa_{\pi, \underline{\mu}}$ is integral of rank ≤ 1.

Proof. (a) We consider χ as a character on \mathbb{I}_{F} / F^{*}, and choose a subgroup $V=\prod_{\mathfrak{p} \mid p} V_{\mathfrak{p}} \subseteq U_{p}$ such that $\left.\chi_{p}\right|_{V}=1$.
Since π is unitary, we have $\left|\alpha_{\mathfrak{p}, 2}\right| \geq \sqrt{q_{\mathfrak{p}}}>1=\left|\chi_{\mathfrak{p}}\left(\varpi_{\mathfrak{p}}\right)\right|$ for all \mathfrak{p}, thus $e\left(\pi_{\mathfrak{p}}, \chi_{\mathfrak{p}}|\cdot|_{\mathfrak{p}}^{s}\right)$ is non-singular for all $s \geq 0$, and we will be able to apply proposition 2.4 locally below.
We have

$$
\int_{\mathcal{G}_{p}} \chi(\gamma) \mu_{\pi}(d \gamma)=\left[U_{p}: V\right] \int_{\mathbb{I}_{F} / F^{*}} \chi(x) \phi_{V}(x) d^{\times} x
$$

and therefore we have to show that the equality
$\left[U_{p}: V\right] \int_{\mathbb{I}_{F} / F^{*}} \chi(x)|x|^{s} \phi_{V}(x) d^{\times} x=N(\mathfrak{f}(\chi))^{s} \tau(\chi) \prod_{\mathfrak{p} \mid p} e\left(\pi_{\mathfrak{p}}, \chi_{\mathfrak{p}}|\cdot|_{\mathfrak{p}}^{s}\right) \cdot L\left(s+\frac{1}{2}, \pi \otimes \chi\right)$
holds for $s=0$. Since both the left-hand side and $L\left(s+\frac{1}{2}, \pi \otimes \chi\right)$ are holomorphic in s (cf. Ge75, Thm. 6.18), it suffices to show this for $\operatorname{Re}(s) \gg 0$. But for such s, we have

$$
\begin{aligned}
{\left[U_{p}\right.} & : V] \int_{\mathbb{I}_{F} / F^{*}} \chi(x)|x|^{s} \phi_{V}(x) d^{\times} x=\int_{\mathbb{I}_{F}} \chi(x)|x|^{s} W\left(\begin{array}{cc}
x & 0 \\
0 & 1
\end{array}\right) d^{\times} x \\
& =\left[U_{p}: V\right] \int_{F_{p}^{*}} \chi_{p}(x)|x|^{s} W_{V}\left(\begin{array}{cc}
x & 0 \\
0 & 1
\end{array}\right) d^{\times} x \cdot \int_{\mathbb{I}_{F}^{p}} \chi^{p}(y)|y|^{s} W^{p}\left(\begin{array}{cc}
y & 0 \\
0 & 1
\end{array}\right) d^{\times} y \\
& =\prod_{\mathfrak{p} \mid p} \int_{F_{\mathfrak{p}}^{*}} \chi_{\mathfrak{p}}(x)|x|_{\mathfrak{p}}^{s} \mu_{\pi_{\mathfrak{p}}}(d x) \cdot L_{S_{p}}\left(s+\frac{1}{2}, \pi \otimes \chi\right) \\
& =\prod_{\mathfrak{p} \mid p}\left(e\left(\pi_{\mathfrak{p}}, \chi_{\mathfrak{p}}|\cdot|_{\mathfrak{p}}^{s}\right) \tau\left(\left.\chi_{\mathfrak{p}}|\cdot|\right|_{\mathfrak{p}} ^{s}\right)\right) \cdot L\left(s+\frac{1}{2}, \pi \otimes \chi\right) \\
& =N(\mathfrak{f}(\chi))^{s} \tau(\chi) \prod_{\mathfrak{p} \mid p} e\left(\pi_{\mathfrak{p}}, \chi_{\mathfrak{p}}|\cdot|_{\mathfrak{p}}^{s}\right) \cdot L\left(s+\frac{1}{2}, \pi \otimes \chi\right)
\end{aligned}
$$

by propositions 2.13, 2.4 and equation (37).
(b) Let $\lambda_{\alpha_{1}, \alpha_{2}} \in \mathcal{B} \underline{\alpha_{1}}, \underline{\alpha_{2}}\left(F_{p}, \mathbb{C}\right)$ be the image of $\otimes_{v \mid p} \lambda_{a_{v}, \nu_{v}}$ under the map (13). For each $\bar{\psi} \in \mathcal{B}_{\underline{\alpha_{1}}, \underline{\alpha_{2}}}\left(F_{p}, \mathbb{C}\right)$, define

$$
\begin{aligned}
\left\langle\Phi_{\pi}, \psi\right\rangle\left(g^{p}, g_{p}\right) & :=\sum_{\zeta \in F^{*}} \lambda_{\alpha_{1}}, \underline{\alpha_{2}}\left(\left(\begin{array}{ll}
\zeta & 0 \\
0 & 1
\end{array}\right) g_{p} \cdot \psi\right) \underline{W}^{p}\left(\left(\begin{array}{ll}
\zeta & 0 \\
0 & 1
\end{array}\right) g^{p}\right) \\
& =: \sum_{\zeta \in F^{*}} \frac{W_{\psi}}{}\left(\left(\begin{array}{ll}
\zeta & 0 \\
0 & 1
\end{array}\right) g\right)
\end{aligned}
$$

for a V-valued function W_{ψ} whose every coordinate function is in $\mathcal{W}(\pi)$.
This defines a map $\Phi_{\pi}: G\left(\mathbb{A}^{p}\right) \rightarrow \mathcal{B} \underline{\alpha_{1}} \underline{\alpha_{2}}\left(F_{p}, V\right)$. In fact, Φ_{π} lies in $S_{2}\left(G, \mathfrak{m}, \underline{\alpha_{1}}, \underline{\alpha_{2}}\right)$, where \mathfrak{m} is the prime-to- p part of $\mathfrak{f}(\pi)$:
Condition (a) of definition 4.5 follows from the fact that the W_{v} are almost
$K_{0}\left(\mathfrak{c}\left(\pi_{v}\right)\right)$-invariant, for $v \nmid p, \infty$. For condition (b), we check that $\left\langle\Phi_{\pi}, \psi\right\rangle$ satisfies the conditions (i)-(v) in the definition of $\mathcal{A}_{0}(G$, harm, $\underline{2}, \chi)$:
Each coordinate function of $\left\langle\Phi_{\pi}, \psi\right\rangle$ lies in (the underlying space of) π by Bu98, Thm. 3.5.5, thus $\langle\Phi, \psi\rangle$ fulfills (i) and (v), and has moderate growth. (ii) and (iv) follow from the choice of the W_{v} and $\underline{W_{v}}$. Now since $\pi_{v} \cong$ $\sigma\left(|\cdot|{ }_{v}^{1 / 2},|\cdot|_{v}^{-1 / 2}\right)$ for $v|\infty,\langle\Phi, \psi\rangle|_{B_{F_{v}}^{\prime}} \cdot \underline{\beta_{v}}=C \sum_{\zeta \in F^{*}} \underline{W_{v}}\left(\begin{array}{cc}\zeta t & 0 \\ 0 & 1\end{array}\right) \cdot \underline{\beta_{v}}$ is harmonic for each archimedian place v of F : for real v, it is well-known that $f(z) / y$ is holomorphic for $f \in \mathcal{D}(2)$, and thus $f \cdot\left(\beta_{v}\right)_{1}$ is harmonic; for complex v, harmonicity follows from the other conditions, see e.g. Kur78, p. 546 or We71.
An easy calculation shows that

$$
\lambda_{\underline{\alpha_{1}}, \underline{\alpha_{2}}}\left(\left(\begin{array}{ll}
\zeta & 0 \\
0 & 1
\end{array}\right) \delta_{\underline{\alpha_{1}}, \underline{\alpha_{2}}}\left(1_{U}\right)\right)=\int_{\zeta U} \prod_{\mathfrak{p} \mid p} \chi_{\alpha_{\mathfrak{p}, 2}}(-x) \psi_{\mathfrak{p}}(-x) d x=\mu_{\pi_{p}}(\zeta U)
$$

for all $\zeta \in F^{*}$, and therefore we have

$$
\begin{aligned}
& \Delta \underline{\alpha_{1}}, \underline{\alpha_{2}} \\
&\left(\Phi_{\pi}\right)\left(U, x^{p}\right)=\sum_{\zeta \in F^{*}} \lambda_{\underline{\alpha_{1}}, \underline{\alpha_{2}}}\left(\left(\begin{array}{ll}
\zeta & 0 \\
0 & 1
\end{array}\right) \delta_{\underline{\alpha_{1}}, \underline{\alpha_{2}}}\left(1_{U}\right)\right) W^{p}\left(\begin{array}{cc}
\zeta x^{p} & 0 \\
0 & 1
\end{array}\right) \\
&=\sum_{\zeta \in F^{*}} \mu_{\pi_{p}}(\zeta U) W^{p}\left(\begin{array}{cc}
\zeta x^{p} & 0 \\
0 & 1
\end{array}\right)=\phi_{\pi}\left(U, x^{p}\right)
\end{aligned}
$$

Let R be the integral closure of $\mathbb{Z}\left[a_{\mathfrak{p}}, \nu_{\mathfrak{p}} ; \mathfrak{p} \mid p\right]$ in its field of fractions; thus R is a Dedekind ring $\subseteq \overline{\mathcal{O}}$ for which $\mathcal{B}_{\underline{\alpha_{1}}, \underline{\alpha_{2}}}(F, R)$ is defined. Since \mathbb{C} is a flat R-module,

$$
H^{d}\left(G(F)^{+}, \mathcal{A}_{f}\left(\mathfrak{m}, \underline{\alpha_{1}}, \underline{\alpha_{2}}, \mathcal{M}, R\right)\right) \otimes \mathbb{C} \rightarrow H^{d}\left(G(F)^{+}, \mathcal{A}_{f}\left(\mathfrak{m}, \underline{\alpha_{1}}, \underline{\alpha_{2}}, \mathcal{M}, \mathbb{C}\right)\right)
$$

is an isomorphism by proposition 4.8. The map (36) can be described as the " R-valued" map

$$
H^{d}\left(G(F)^{+}, \mathcal{A}_{f}\left(\mathfrak{m}, \underline{\alpha_{1}}, \underline{\alpha_{2}}, \mathcal{M}, R\right)\right) \rightarrow H^{d}\left(F^{* \prime}, \mathcal{D}_{f}(R)\right)
$$

tensored with \mathbb{C}. By proposition 4.11, κ_{π} lies in its image, and thus in $H^{d}\left(F^{* \prime}, \mathcal{D}_{f}(R)\right) \otimes \mathbb{C}$; i.e. it is integral.
Similarly, it follows from propositions 4.8 and 4.10 that $\kappa_{\pi, \underline{\mu}}$ is integral of rank ≤ 1.

Corollary 4.13. μ_{π} is a p-adic measure.
Proof. By proposition 3.8, $\mu_{\pi}=\mu_{\phi_{\pi}}=\mu_{\kappa_{\pi}}$. Since κ_{π} is integral, $\mu_{\kappa_{\pi}}$ is a p-adic measure by corollary 3.13

4.7 VAnishing order of the p-ADIC L-FUnCtion

Let L_{1}, \ldots, L_{t} be independent \mathbb{Z}_{p}-extensions of F, and let $\ell_{1}, \ldots, \ell_{t}: \mathcal{G}_{p} \rightarrow$ $p^{\varepsilon_{p}} \mathbb{Z}_{p}$ be the homomorphisms corresponding to them (as in section 3.2). Then we have the p-adic L-function

$$
L_{p}(\underline{s}, \pi):=L_{p}\left(\underline{s}, \kappa_{\pi}\right):=L_{p}\left(s_{1}, \ldots, s_{t}, \kappa_{\pi,+}\right):=\int_{\mathcal{G}_{p}} \prod_{i=1}^{t} \exp _{p}\left(s_{i} \ell_{i}(\gamma)\right) \mu_{\pi}(d \gamma)
$$

of definition 3.5, with $s_{1}, \ldots, s_{t} \in \mathbb{Z}_{p} . L_{p}(\underline{s}, \pi)$ is a locally analytic function with values in the one-dimensional \mathbb{C}_{p}-vector space $V_{\kappa_{\pi,+}}=L_{\kappa, \overline{\mathcal{O}},+} \otimes_{\overline{\mathcal{O}}} \mathbb{C}_{p}$. By theorem 3.11 we have

Theorem 4.14. $L_{p}(\underline{s}, \pi)$ is a locally analytic (t-variabled) function, and all partial derivatives of order $\leq n:=\#\left(S_{1}\right)$ vanish; i.e. we have

$$
\operatorname{ord}_{\underline{s}=\underline{0}} L_{p}(\underline{s}, \pi) \geq n .
$$

Now let E be a modular elliptic curve over F, corresponding to an automorphic representation π; by this we mean that the local L-factors of the Hasse-Weil L-function $L(E, s)$ and of the automorphic L-function $L\left(s-\frac{1}{2}, \pi\right)$ coincide at all places v of F. From the definition of the respective L-factors (cf. [Si86] for the Hasse-Weil L-function, Ge75 for the automorphic L-function) we know that π has trivial central character. Moreover, for $\mathfrak{p} \mid p, \pi_{\mathfrak{p}}$ is a principal series representation iff E has good reduction at \mathfrak{p}, and in this case $\pi_{\mathfrak{p}}$ is ordinary iff E is ordinary (i.e. not supersingular) at $\mathfrak{p} ; \pi_{\mathfrak{p}}$ is a special (resp. Steinberg) representation iff E has multiplicative (resp. split multiplicative) reduction at \mathfrak{p}. For $v \mid \infty, \pi_{v}$ is "of weight 2 " as assumed before.
We say that E is p-ordinary if it has good ordinary or multiplicative reduction at all places $\mathfrak{p} \mid p$ of F. So E is p-ordinary iff π is ordinary at all $\mathfrak{p} \mid p$. In this case, we define the p-adic L-function of E by $L_{p}(E, \underline{s}):=L_{p}(\underline{s}, \pi)$.
For each $i \in\{1, \ldots, t\}$ and each prime $\mathfrak{p} \mid p$ of F, we write $\ell_{\mathfrak{p}, i}$ for the restriction of ℓ_{i} to $F_{\mathfrak{p}} \hookrightarrow \mathbb{I} \rightarrow \mathcal{G}_{p}$. Let $q_{\mathfrak{p}}$ be the Tate period of $E \mid F_{\mathfrak{p}}$ and $\operatorname{ord}_{\mathfrak{p}}$ the normalized valuation on $F_{\mathfrak{p}}^{*}$. Defining the L-invariants of $E \mid F_{\mathfrak{p}}$ with respect to L_{i} by

$$
\mathcal{L}_{\mathfrak{p}, i}(E):=\ell_{\mathfrak{p}, i}\left(q_{\mathfrak{p}}\right) / \operatorname{ord}_{\mathfrak{p}}\left(q_{\mathfrak{p}}\right)
$$

we can generalize Hida's exceptional zero conjecture to general number fields:
Conjecture 4.15. Let S_{1} be the set of $\mathfrak{p} \mid p$ at which E has split multiplicative reduction, $n:=\# S_{1}, S_{2}:=S_{p} \backslash S_{1}$. Then

$$
\begin{equation*}
\operatorname{ord}_{\underline{s}=\underline{0}} L_{p}(E, \underline{s}) \geq n, \tag{38}
\end{equation*}
$$

and we have

$$
\begin{equation*}
\left.\frac{\partial^{n}}{\partial s_{i}^{n}} L_{p}(E, \underline{s})\right|_{\underline{s}=\underline{0}}=n!\prod_{\mathfrak{p} \in S_{1}} \mathcal{L}_{\mathfrak{p}, i}(E) \prod_{\mathfrak{p} \in S_{2}} e\left(\pi_{\mathfrak{p}}, 1\right) \cdot L(E, 1) \tag{39}
\end{equation*}
$$

for all $i=1, \ldots, t$, where $e\left(\pi_{\mathfrak{p}}, 1\right)=\left(1-\alpha_{\mathfrak{p}, 1}{ }^{-1}\right)^{2}$ if E has good ordinary reduction at \mathfrak{p}, and $e\left(\pi_{\mathfrak{p}}, 1\right)=2$ if E has non-split multiplicative reduction at p.

Note that the conjecture (when considered for all sets of independent $\mathbb{Z}_{p^{-}}$ extensions of F) also determines the "mixed" partial derivatives $\frac{\partial^{k}}{\partial \underline{n_{s}^{s}}} L_{p}(E, \underline{0})$ of order n, since they can be written as \mathbb{Q}-linear combinations of n-th "pure" partial derivatives $\frac{\partial^{n}}{\partial s^{\prime n}} L_{p}(E, \underline{0})$ with respect to other choices of independent \mathbb{Z}_{p}-extensions of F (cf. the proof of proposition 3.9).
Theorem 4.14 immediately implies the first part (38) of the conjecture:
Corollary 4.16. Let E be a p-ordinary modular elliptic curve over F. Let n be the number of places $\mathfrak{p} \mid p$ at which E has split multiplicative reduction. Then we have

$$
\operatorname{ord}_{\underline{s}=\underline{0}} L_{p}(E, \underline{s}) \geq n .
$$

In future work, we hope to also establish formula (39) for a class of non-totallyreal number fields.

References

[BL95] L. Barthel, R. Livne: Modular Representations of GL_{2} of a Local Field: The Ordinary, Unramified Case. Journal of Number Theory 55, 1-27 (1995).
[By98] J. Bygott: Modular Forms and Modular Sumbols over Imaginary Quadratic Fields. PhD thesis, 1998.
[Br82] K. Brown: Cohomology of Groups. Graduate Texts in Mathematics, Springer-Verlag, 1982.
[Bu98] D. Bump: Automorphic Forms and Representations. Cambridge University Press, 1998.
[CKM04] J. Cogdell, H. Kim, M. Murty: Lectures on automorphic L-functions. Fields Institute Monographs, 20. American Mathematical Society, Providence, RI, 2004.
[De13] H. Deppe: p-adic L-functions of automorphic forms, Dissertation (Ph.D. thesis) at Bielefeld University, 2013, http://pub.uni-bielefeld.de/publication/2629389
[DLMF] NIST Digital Library of Mathematical Functions, http://dlmf.nist.gov/.
[Ge75] S. Gelbart: Automorphic forms on adele groups. Princeton University Press and University of Tokyo Press, 1975.
[GS93] R. Greenberg, G. Stevens: p-adic L-functions and p-adic periods of modular forms. Invent. Math. 111 (1993), 407-447.
[Har87] Sh. Haran: p-adic L-functions for modular forms. Compositio Math. 62 (1987), no. 1, 3146.
[Ha87] G. Harder: Eisenstein cohomology of arithmetic groups. The case GL2. Invent. Math. 89 (1987), 37-118.
[Hi09] H. Hida: L-invariants of Tate curves. Pure Appl. Math. Q. 5, 1343-1384 (2009)
[JL70] H. Jacquet; R. P. Langlands: Automorphic forms on GL(2). Lecture Notes in Mathematics, Vol. 114. Springer-Verlag, Berlin-New York, 1970.
[Kud04] St. Kudla: From Modular Forms to Automorphic Representations. In: Bump, Cogdell et al.: An Introduction to the Langlands Program, Birkhäuser Boston, 2004.
[Kur77] P. F. Kurcanov: The zeta-function of elliptic curves over certain abelian extensions of imaginary quadratic fields. English translation in: Math. USSR-Sb. 31 (1977), no. 1, 49-62 (1978).
[Kur78] P. F. Kurcanov: Cohomology of discrete groups and Dirichlet series connected with Jacquet-Langlands cusp forms. English translation in: Math. USSR Izvestija, Vol 12 (1978), No. 3, 543-555.
[MTT86] B. Mazur, J. Tate and J. Teitelbaum: On p-adic analogues of the conjectures of Birch and Swinnerton-Dyer. Invent. Math. 84 (1986), 1-48.
[Neu92] J. Neukirch: Algebraische Zahlentheorie. Springer-Lehrbuch, 1992.
[Se71] J.-P. Serre: Cohomologie des groupes discrets. Ann. of Math. Studies 70 (1971), 77-169.
[Se80] J.-P. Serre: Trees. Springer Monographs in Mathematics, 1980.
[Si86] J. Silverman: Arithmetic of Elliptic Curves. Graduate Texts in Mathematics, Springer-Verlag, 1986.
[Sp14] M. Spieß: On special zeros of p-adic L-functions of Hilbert modular forms. Invent. Math. (2014), 196: 69-138.
[Wa82] L.C. Washington: Introduction to Cyclotomic Fields. Graduate Texts in Mathematics, Springer-Verlag, 1982.
[We71] A. Weil: Dirichlet Series and Automorphic Forms. Lecture Note in Mathematics, Springer-Verlag, 1971.

Holger Deppe
Mathematical Institute
University of Cologne
Weyertal 86-90
50931 Cologne
Germany

[^0]: ${ }^{1}$ Note that there is in general no ψ such that $\operatorname{ker}(\psi)=\mathcal{O}_{F}$, since $\mathfrak{p}^{-1} / \mathcal{O}_{F}$ has more than p points of order p if $F \mid \mathbb{Q}_{p}$ has inertia index >1.

[^1]: ${ }^{2}$ Note that Bu98 denotes this special representation by $\sigma\left(\chi_{1}, \chi_{2}\right)$, not by $\pi\left(\chi_{1}, \chi_{2}\right)$.

[^2]: ${ }^{3}$ Note that Kur77] uses a slightly different definition of the K_{v}, which is $\frac{2}{\pi}$ times our K_{v}.

