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Abstract. We study quadratic forms on free modules with unique
base, the situation that arises in tropical algebra, and prove the ana-
log of Witt’s Cancelation Theorem. Also, the tensor product of an
indecomposable bilinear module (U, γ) with an indecomposable qua-
dratic module (V, q) is indecomposable, with the exception of one case,
where two indecomposable components arise.
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1. Overview

This paper is part of a program to understand the theory of quadratic forms
over the max-plus algebra and related semirings that arise in several mathemat-
ical contexts. Our motivation comes from two sources, tropical mathematics
and real algebra, which interact with each other. Since the first area is still in
its nascent stage, for the reader’s convenience, we provide a short overview of
this mathematics and related subjects.
Consider the field K of Puiseux series over an algebraically closed field F of
characteristic 0. The elements of K are of the form

f =
∑

τ∈Q

cτ t
τ ,

where cτ ∈ F and the powers of t are taken over well-ordered subsets of Q. (In
the literature one often takes R instead of Q.)
Define the order valuation v : K → Q by

v(f) := min{τ ∈ Q≥0 : cτ 6= 0}
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for which the dominant term in f becomes cv(f)t
v(f) as t → 0. Then v is a

valuation, with residue field F , with respect to which K is complete and thus
Henselian. By Hensel’s lemma, K also is algebraically closed, and thus elemen-
tarily equivalent to F . Applying v takes us from K to the ordered group Q,
which can be viewed as a “max-plus” semiring (taking −v instead of v), whose
operations are “+” for multiplication and “sup” for addition. This process,
called tropicalization, is explained in [15, 29]. The point of tropicalization is to
simplify the combinatorics in algebraic geometry and linear algebra, and there
has been considerable success in this direction in enumerative geometry.
One can tropicalize structures arising in linear algebra, such as quadratic forms,
simply by replacing the classical addition and multiplication by the max-plus
operations respectively, but then the classical theory does not go through be-
cause our new addition (max) does not have negatives.
Other important (non-tropical) semirings, where our below theory is relevant,
occur in real algebra, such as the positive cone of an ordered field [4, p. 18] or
a partially ordered commutative ring [5, p. 32]. A further application can be
found in the algebra of groups over a splitting field, as described briefly at the
end of this overview.
Recall that a (commutative) semiring is a set R equipped with addition and
multiplication, such that both (R,+, 0) and (R, ·, 1) are abelian monoids with
elements 0 = 0R and 1 = 1R respectively, and multiplication distributes over
addition in the usual way. In other words, R satisfies all the properties of a
commutative ring except the existence of negation under addition. We call a
semiring R a semifield, if every nonzero element of R is invertible; hence R\{0}
is an abelian group.
As in the classical theory, one considers bilinear and quadratic forms defined on
(semi)modules over a semiring R, often a “supersemifield,” in order to obtain
more sophisticated “trigonometric” information, cf. [24, §2, §3].
On one hand, these semirings lack negation, thereby playing havoc even with
the notion of the underlying bilinear form of a quadratic form. On the other
hand, they have the pleasant property that free modules have “unique base,”
cf. Definition 1.2. Thus, our overall object is to classify quadratic forms over
free modules having unique base, with applications to the supertropical setting.
For the reader’s convenience, we recall some terminology and results from
[22, §1-§4]. A module V over R (sometimes called a semimodule) is an
abelian monoid (V,+, 0V ) equipped with a scalar multiplication R × V → V,

(a, v) 7→ av, such that exactly the same axioms hold as customary for modules
over a ring: a1(bv) = (a1b)v, a1(v + w) = a1v + a1w, (a1 + a2)v = a1v + a2v,

1R · v = v, and 0R · v = 0V = a1 · 0V for all a1, a2, b ∈ R, v, w ∈ V. We write 0
for both 0V and 0R, and 1 for 1R.
When considering modules over semifields, one encounters several versions of
“base,” as studied in depth in [21, §4 and §5.3]. Here we take the standard cate-
gorical version, and call an R-module V free, if there exists a family (εi | i ∈ I)
in V such that every x ∈ V has a unique presentation x =

∑
i∈I

xiεi with scalars
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xi ∈ R and only finitely many xi nonzero, and we call (εi | i ∈ I) a base of the
R-module V. Any free module with a base of n elements is clearly isomorphic

to Rn, under the map
n∑

i=1

xiεi 7→ (x1, . . . , xn).

Bilinear forms on V are defined in the obvious way, [21].

Definition 1.1. For any module V over a semiring R, a quadratic form on V

is a function q : V → R with

(1.1) q(ax) = a2q(x)

for any a ∈ R, x ∈ V, together with a symmetric bilinear form b : V × V → R

(not necessarily uniquely determined by q) such that for any x, y ∈ V

(1.2) q(x+ y) = q(x) + q(y) + b(x, y).

Every such bilinear form b will be called a companion of q, and the pair (q, b)
will be called a quadratic pair on V. We also call V a quadratic module.

In this generality, it is difficult to describe quadratic forms adequately on free
modules over an arbitrary semiring. However, our task becomes more manage-
able when we introduce the following condition.

Definition 1.2. An R-module with unique base is a free R-module V in which
any two bases B, B′ are projectively the same, i.e., we obtain the elements of B′

from those of B by multiplying by units of R.

Although this never happens for free modules of rank ≥ 2 over a ring, it turns
out to be quite common in the context of tropical algebra (and also often in
real algebra, as noted in Example 2.4.d).
Our main result, in §5, is an analog of Witt’s cancelation theorem:

Theorem 5.9.If W1,W
′
1,W2,W

′
2 are finitely generated quadratic or bilinear

modules with unique base such that W1
∼= W ′

1 and W1 ⊥ W2
∼= W2 ⊥ W ′

2, then
W2

∼= W ′
2 (where ∼= means “isometric”).

It actually is given in more general terms, where W2 needs not be finitely
generated.
When R is a ring, then a quadratic form q has just one companion, namely,

b(x, y) := q(x+ y)− q(x) − q(y),

but if R is a semiring that cannot be embedded into a ring, this usually is not
the case, and it is a major concern of quadratic form theory over semirings to
determine all companions of a given quadratic form q : V → R.
The first step in classifying quadratic forms is [22, Propositions 4.1 and 4.2],
which lets us write a quadratic form q as the sum q = κ + ρ, where κ is
quasilinear (and unique) in the sense that κ(x + y) = κ(x) + κ(y), and ρ is
rigid in the sense that it has a unique companion. Quasilinearity of a quadratic
form q implies that, for any vector x =

∑
i∈I

xiεi in V ,

(1.3) q(x) =
∑

i∈I

x2
i q(εi),
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i.e., q has diagonal form with respect to the base (εi : i ∈ I).
Quasilinear forms follow aspects of the classical theory of quadratic forms, and
satisfy a Cauchy-Schwartz inequality given in [24]. On the other hand, by [22,
Theorem 3.5], the rigid forms are precisely those with q(εi) = 0 for all i ∈ I.
Our ultimate object being to classify quadratic forms over free modules with
unique base, in this paper we study quadratic forms in terms of orthogonal de-
compositions of such forms into indecomposable forms, and then build them up
again via tensor products of two symmetric bilinear forms and of a symmetric
bilinear form with a quadratic form.
Let us turn now to the tools needed in proving Theorem 5.9.

1.1. Partial quasilinearity. We seldom require quasilinearity in its en-
tirety, but the following partial version plays a major role in our consideration
of orthogonal decompositions of quadratic modules.

Definition 1.3. Given subsets S and T of V , we say that q is quasilinear on
S × T if

q(x+ y) = q(x) + q(y).

for all x ∈ S, y ∈ T.

The following helpful fact is a special case of [22, Lemma 1.18]. (We write
S + S′ for {s+ s′ : s ∈ S, s′ ∈ S′}.)

Lemma 1.4. Let S, S′, T be subsets of V . If q is quasilinear on S × T , S′ × T

and S × S′, then q is quasilinear on (S + S′)× T .

1.2. Disjoint orthogonality. In §3 we develop the notion of (disjoint) or-
thogonality of two given submodules W1 and W2 of a quadratic R-module (V, q)
(endowed with a fixed quadratic form q), which means that W1 ∩ W2 = {0}
and q is partially quasilinear onW1×W2. (Note that there is no direct reference
to an underlying symmetric bilinear form.) When V has unique base, we look
for orthogonal decompositions V = W1 ⊥ W2, and more generally V = ⊥

i∈I
Wi,

where the Wi are basic submodules of V , i.e., are generated by subsets of a
base B of V .
We can choose a companion b of q (called “quasiminimal” companion) adapted
to the notion of disjoint orthogonality, and then have an equivalence relation
on the set B at hands, which is generated by the pairs (ε, ε′) in B with ε 6= ε′,

b(ε, ε′) 6= 0. By the use of this equivalence relation the indecomposable basic
submodules of V (in the sense of disjoint orthogonality) can be described as
follows.

Theorem 3.8.Let {Bk | k ∈ K} denote the set of equivalence classes in B

and, for every k ∈ K, let Wk denote the submodule of V having base Bk.

(a) Then every Wk is an indecomposable basic submodule of V and

V = ⊥
k∈K

Wk.
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(b) Every indecomposable basic submodule U of V is contained in Wk, for
some k ∈ K uniquely determined by U.

(c) The modules Wk, k ∈ K, are precisely all the indecomposable basic
orthogonal summands of V.

In §4 we develop the analogous notion of disjoint orthogonality in a bilinear
R-module (V, b) with respect to a fixed symmetric bilinear form b on V , and
we show:

Theorem 4.9. If b is a quasiminimal companion of a a quadratic module (V, q),
then the indecomposable components of (V, q) coincide with the indecomposable
components of (V, b).

In §5, these decomposition theories yield the desired analog (Theorem 5.9) of
Witt’s cancelation theorem.

1.3. Tensor products. The last two sections of the paper are devoted to
tensor products. Whereas tensor products of modules over general semirings
can be carried out in analogy with the usual classical construction over rings,
it requires the use of congruences, resulting in some technical issues dealt with
in [7, Chap. 16], for example. But for free modules with unique base the
construction can be carried out easily, since then one does not need to worry
about well-definedness.
In §6 we construct the tensor product of two free bilinear R-modules over any
semiring R, in analogy to the case where R is a ring, cf. [8, §2], [26, I, §5].
We then take the tensor product of a free bilinear R-module U = (U, γ) with
a free quadratic R-module V = (V, q). A new phenomenon occurs here, in
contrast to the theory over rings. It is necessary first to choose a so-called
balanced companion b of q, which always exists, cf. [22, §1], but which usually
is not unique. We then define the tensor product U ⊗b V , depending on b,
by choosing a so-called expansion B : V × V → R of the quadratic pair (q, b)
which is a (not necessarily symmetric) bilinear form B with

B(x, x) = q(x), B(x, y) +B(y, x) = b(x, y)

for all x, y ∈ V , cf. [22, §1] and then proceed essentially as in the case of rings,
e.g. [26, Definition 1.51], [8, p. 51]1. The resulting quadratic form γ ⊗b q does
not depend on the choice of B but often depends on the choice of b. This is
apparent already in the case γ = ( 0 1

1 0 ), where the matrix b is stored in the
quadratic polynomial γ ⊗b q, cf. Example 6.8 below.
In §7 we turn to the indecomposability of tensor products. For convenience,
we assume that R \ {0} is closed under multiplication and addition, implying
by Theorem 2.3 that all free R-modules have unique base.
After obtaining partial results along the way, we arrive at the main result of
this section, Theorem 7.16, which states that, discarding trivial situations and

1When R is a ring the “b” in the tensor product is not specified since q has only one

companion.
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excluding some pathological semirings, the tensor product of an indecompos-
able bilinear module (U, γ) with an indecomposable quadratic module (V, q) is
again indecomposable, with the exception of one case, where two indecompos-
able components arise.

1.4. Applications. The remainder of this introduction discusses how qua-
dratic forms over modules with unique base over semirings arise naturally in
various contexts in mathematics. (The reader could skip directly on to the
main theoretical results of this paper.)

1.4.1. Quadratic forms over rings. Supertropical semirings, to be defined below
(cf. [25, 22]), establish a class of semirings over which every free module has a
unique base. There is a way to pass from a quadratic form on a free module over
a (commutative) ring R to quadratic forms on free modules over a supertropical
semiring U . To explain this, we sketch the notion of supertropicalization of a
quadratic form q : V → R, obtained by a so-called supervaluation ϕ : R → U .
An m-valuation (= monoid valuation) on a ring R is a map v : R → M from R

to a totally ordered abelian monoid M = (M, · ,≤), containing an absorbing
element 0 = 0M (0 · x = x · 0 = 0) with 0 ≤ x for all x ∈ M , which satisfies the
following rules:

v(0) = 0, v(1) = 1, v(xy) = v(x)v(y),

and

(1.4) v(x + y) ≤ max{v(x), v(y)}

for all x, y ∈ M . When Γ := M \ {0} is a group, we call the m-valuation
v : R → M a valuation. These are exactly the valuations as defined by
Bourbaki [3] and studied, e.g., in [14] and [27, Ch. I], except that for Γ we
have chosen the multiplicative notation instead of the additive notation. In
this case v−1(0) is a prime ideal of R [loc. cit.]. When R is a field this forces
v−1(0) = {0}, and we return to Krull valuations.
Given an m-valuation v : R → M , we equip M with the additive operation
defined as

a+ b := max{a, b},

which makes M a bipotent semiring, i.e., a semiring M ′ in which a+ b ∈ {a, b}
for all a, b ∈ M ′. Conversely any bipotent semiring M ′ has a natural total
order given by

a < b ⇔ a+ b = b,

and can be viewed as a totally ordered abelian monoid with an absorbing
element 0M ′ . Therefore, totally ordered monoids M with zero can be referred
to as bipotent semirings (or bipotent semifields when M \ {0} is a group).
Viewed in this way, rule (1.4) reads

(1.5) v(x + y) ≤ v(x) + v(y).

This brings us into the realm of semirings. A semiring U is called supertropical
if the following conditions hold:
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• e := 1U + 1U is idempotent (i.e., 2× 1 = 4× 1),
• the ghost ideal M = eU is a bipotent semiring,
• addition is defined in terms of the ghost map a 7→ ea and the ordering
of M , as follows:

(1.6) a+ b =





a if ea < eb;
b if eb < ea;
ea if ea = eb.

In particular ea = 0 implies a = 0 (take b = 0 in (1.6)). The elements of eU
are called ghost elements and those of U \ eU are called tangible elements. The
zero element is regarded both as tangible and ghost. See [17, 18, 25] for the
ideas behind this terminology.
A supervaluation on a ring R is a multiplicative map ϕ : R → U sending R

into a supertropical semiring, such that ϕ(0) = 0, ϕ(1) = 1, and

eϕ(x+ y) ≤ eϕ(x) + eϕ(y)

for all x, y ∈ R. The map v := eϕ : R → M , x 7→ eϕ(x), is then an m-valuation,
which as we say is covered by ϕ. For any given m-valuation v : R → M , there
usually is an extended hierarchy of supervaluations ϕ : R → U covering v (with
U ⊃ M , eU = M , U varying) studied in [17, 18].
The supertropicalizations of a quadratic form q : V → R on a free R-module V
are constructed by using a supervaluation ϕ : R → U as follows. We choose an
ordered base L of V , say L = {vi : i ∈ I} with I = {1, . . . , n}, and write q as
a homogenous polynomial of degree 2

(1.7) q

( n∑

i=1

xivi

)
=

n∑

i=1

αix
2
i +

∑

i<j

βijxixj ,

with αi = q(vi), βij = b(vi, vj), where b is the (unique) companion of q. We
denote by Un the free U -module consisting of all n-tuples in U . Let {ε1, . . . , εn}
be the standard base of U , where each εi has i-th coordinate 1 and all other
coordinates 0. Using a new set of variables λ1, . . . , λn, we define

(1.8) qϕ
( n∑

i=1

λiεi

)
:=

n∑

i=1

ϕ(αi)λ
2
i +

∑

i<j

ϕ(βij)λiλj

by applying ϕ to the coefficients of the polynomial (1.7).

We write (U (I), qϕ), or (Ṽ , q̃) for short, for the supertropicalization of the qua-
dratic module (V, q) with respect to the base L. Since every U -module has

a unique base, cf. §2, the base {εi : i ∈ I} of Ṽ is unique up to permuting
the εi and multiplying them by units of U (which are the invertible tangible
elements of U). That is, the base L of V becomes “frozen” in the free quadratic

module (Ṽ , q̃) obtained from (V, q) by a kind of “degenerate scalar extension”
ϕ : R → U . {ϕ is multiplicative, but respects addition only weakly.} This
central fact motivates our interest in supertropicalization.
One reason that we work with m-valuations in general, instead of just valua-
tions covered by supervaluations, is that m-valuations which are not valuations
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often arise naturally in the context of commutative algebra as described in the
paper [11] of Harrison and Vitulli. They construct so-called “V -valuations”
(there named “formally finite” V -valuations). This construction has been com-
plemented later by D. Zhang with somewhat dual “V 0-valuations” [33]. These
constructions have been revised in [19, §1-§3], showing that any m-valuation
on a ring can be coarsened both to a V -valuation and to a V 0-valuation, and
also to a valuation in a minimal way.
In [12] Harrison and Vitulli, pursuing their idea of “infinite primes” (in the
sense of classical number theory) from [11], construct C-valued places on a
field by a somewhat similar method. This construction has been extended by
Valente and Vitulli in [31] to “preplaces” on a ring R, which are interpreted
in [19] as multiplicative maps χ : R → R′ to a bipotent semiring R′ such that
χ(0) = 0, χ(1) = 1, and

χ(x+ y) ≤ c(χ(x) + χ(y))

for all x, y ∈ R, where c is a unit of R′. Such a map χ provides various
supervaluations ϕ : R → U that cover V -valuations v : R → eU [19, §4].
Since the multiplicative monoids eU \ {0} are cancellative, these V -valuations
are true valuations. By a related method, supervaluations arise that cover
V 0-valuations, which again are true valuations.
Although not all supervaluations can be constructed in this way, at least we gain
a rich stock of m-valuations and supervaluations on a ring. Facing a problem on
quadratic forms over a ring R, it may be a piece of art to address an appropriate
supervaluation which fits best the supertropical framework. Much space is left
for further study in this research direction.

1.4.2. A surprise. In an earlier version of this paper we considered quadratic
forms over supertropical semirings, knowing already from [22, Theorem 0.9]
that a free module over these semirings has unique base, and we obtained the
results in §3-§7 for such quadratic forms. Only later did we realize that these
results go through for any semiring R over which all free modules have unique
base. As a consequence, supertropical semirings hardly appear explicitly in
§3-§7. This paves the way for an extra application, which we now describe.
Namely, take an algebra A with a bilinear form, whose orthogonal base gener-
ates a natural proper semiring of A.

1.4.3. Table algebras. A classical example is the set of characters of a finite
group G over a field whose characteristic does not divide |G|; since the sum
(resp. product) of characters is the character of the direct sum (resp. tensor
product) of their underlying representations, we can restrict to the semiring of
characters, which is a free module over N0. A similar situation arises for the
center of the group algebra, which is a free module whose base is comprised
of the sums of elements from conjugacy classes. These algebras have been
generalized by Hoheisel [13] and Arad-Blau [1] as explained in the fine survey
by Blau [2], where he defines Hoheisel algebras and table algebras. These have
a distinguished base L that spans the sub-semialgebra A+ that they generate
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over R+, so again A+ is a free module over R+ (with unique base L), and a
natural framework in which to build quadratic forms.

2. R-modules with unique base and their basic submodules

We assume throughout this paper that V is a free R-module with unique
base B. Accordingly, we begin by examining this property.

Remark 2.1. Any change of base of the free module Rn is attained by multi-
plication by an invertible n × n matrix, so having unique base is equivalent to
every invertible matrix in Mn(R) being a generalized permutation matrix.

Our interest in these modules stems from the following key fact.

Theorem 2.2 ([21, Corollary 5.25] and [22, Theorem 0.9] ). If R is a supertrop-
ical semiring, then every free R-module has unique base.

More generally, one may ask, “What conditions on the semiring R guarantee
that Rn has unique base, or equivalently, that every invertible matrix is a
generalized permutation matrix?” The matrix question was answered in [30]
and [6]. In their terminology, an “antiring” is a semiring R such that R \ {0} is
closed under addition. We prefer the terminology “lacks zero sums,” since this
property holds also for sums of squares in a real closed field, and “antiring”
does not seem appropriate in that context.
Tan and Dolz̆na-Oblak classify the invertible matrices over these rings lacking
zero sums. These are just the generalized permutation matrices when R \ {0}
also is closed under multiplication, which they call “entire” (the case in tropical
mathematics), and more generally by [6, Theorem 1] (as interpreted in The-
orem 2.5) when R is indecomposable, i.e., not isomorphic to a direct product
R1 ×R2 of semirings.

Theorem 2.3 (cf. [6, §2, Corollary 3], an alternative proof given below). If
the set R \ {0} is closed under addition and multiplication (i.e., a + b = 0 ⇒
a = b = 0, a · b = 0 ⇒ a = 0 or b = 0), then every free R-module has unique
base.

In view of Remark 2.1, Theorem 2.3 follows from Dolz̆an and Oblak [6, §2,
Corollary 3] using matrix arguments within a wider context extending work of
Tan [30, Proposition 3.2], which in turn relies on Golan’s book on semirings [9,
Lemma 19.4].

Example 2.4. Here are some instances where R\{0} is closed under addition
and multiplication.

a) The “Boolean semifield” B = {−∞, 0} (and thus subalgebras of algebras
that are free modules over B). This shows that our results pertain to
“F1-geometry.”

b) Rewriting the Boolean semifield instead as B = {0, 1} where 1 + 1 =
1, one can generalize it to {0, 1, . . . , q} L = [1, q] := {1, 2, . . . , q} the
“truncated semiring without 0” of [23, Example 2.14], where “a+ b′′ is
defined to be the minimum of their sum and q.
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c) Function semirings, polynomial semirings, and Laurent polynomial
semirings over these semirings.

d) If F is a formally real field, i.e. −1 is not a sum of squares in F , then
the subsemiring R = ΣF 2, consisting of all sums of squares in F , lacks
zero sums. In fact R is a semifield; the inverse of a sum of squares

a = x2
1 + · · ·+ x2

r is a−1 =
(x1

a

)
+ · · ·+

(xr

a

)2

.

Other than the trivial fact that every free R-module of rank 1 has unique base,
all examples known to us of modules with unique base stem from Theorem 2.5,
which is essentially [6, Theorem 1]:

Theorem 2.5 ([6, Theorem 1]). Assume that R is an indecomposable semiring
lacking zero sums. Then every free R-module has unique base.

We now reprove Theorem 2.3 by a simple matrix-free argument in preparation
for a reproof of the more general Theorem 2.5.

Proof of Theorem 2.3. Let V be a free R-module and B a base of V. If x ∈
V \ {0} is given, we have a presentation

x =

r∑

i=1

λixi

with xi ∈ B and λi ∈ R\{0}. We call the set {x1, . . . , xr} ⊂ B the support of x
with respect to B and denote this set by suppB(x). Note that if x, y ∈ V \{0},
then x+ y 6= 0 and

(2.1) suppB(x+ y) = suppB(x) ∪ suppB(y)

due to the assumption that λ+ µ 6= 0 for any λ, µ ∈ R \ {0}. Also

(2.2) suppB(λx) = suppB(x)

for x ∈ V \ {0}, λ ∈ R \ {0}, due to the assumption that for λ, µ ∈ R \ {0} we
have λµ 6= 0.
Now assume that B′ is a second base of V. Given x ∈ B, we have a presentation

x = λ1y1 + · · ·+ λryr

with λi ∈ R \ {0} and distinct yi ∈ B
′. It follows from (2.1) and (2.2) that

{x} = suppB(x) = suppB(y1) ∪ · · · ∪ suppB(yr).

This forces

(2.3) {x} = suppB(y1) = · · · = suppB(yr).

¿From this, we infer that r = 1. Indeed, suppose that r ≥ 2. Then y1 = µ1x,

y2 = µ2x with µ1, µ2 ∈ R \ {0}. But this implies µ2y1 = µ1y2, a contradiction
since y1, y2 are different elements of a base of V.
Thus {x} = suppB(y) for a unique y ∈ B

′, which means y = λx with λ ∈
R \ {0}. By symmetry we have a unique z ∈ B and µ ∈ R \ {0} with x = µz.

Then x = λµz, whence x = z and λµ = 1. Thus λ, µ ∈ R∗ and x ∈ R∗y,
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y ∈ R∗x. Of course, y runs through all of B′ if x runs through B, since both
B and B

′ span the module V. �

Proof of Theorem 2.5. Assume that B and B
′ are bases of V. Given x ∈ B,

we write again

(2.4) x = λ1y1 + · · ·+ λryr

with different yi ∈ B
′, λi ∈ R \ {0}. But now, instead of (2.3) we can only

conclude that

(2.5) {x} = supp
B
(λ1y1) = · · · = supp

B
(λiyi).

Thus we have scalars µi ∈ R \ {0} such that

(2.6) λiyi = µix for 1 ≤ i ≤ r.

Suppose that r ≥ 2. Then we have for all i, j ∈ {1, . . . , r} with i 6= j.

µjλiyi = µjµix = µiµjx = µiλjyj.

Since the yi are elements of a base, this implies µiλj = µjλi = 0 for i 6= j and
then

(2.7) µiµj = 0 for i 6= j.

On the other hand, we obtain from (2.4) and (2.6) that

x = µ1x+ µ2x+ · · ·+ µrx,

and then

(2.8) 1 = µ1 + µ2 + · · ·+ µr.

Multiplying (2.8) by µi and using (2.7), we obtain

(2.9) µ2
i = µi.

Thus

R ∼= Rµ1 × · · · ×Rµr.

This contradicts our assumption that R is indecomposable.
We have proved that r = 1. Thus for every x ∈ B there exist unique y ∈ B

′

and λ ∈ R with x = λy. By the same argument as in the end of proof of
Theorem 2.3, we conclude that B is projectively unique. �

Of course, if R \ {0} is closed under multiplication, i.e., R has no zero divisors,
then R is indecomposable. This also holds when R is supertropical (cf. [25, §3],
[22, Definition 0.3]), since then for any two elements µ1, µ2 ofR with µ1+µ2 = 1
either µ1 = 1 or µ2 = 1. Thus, Theorem 2.5 generalizes both Theorems 2.2
and 2.3.
The following example reveals that Theorem 2.5 is the best we can hope for,
in order to guarantee that every free R-module has unique base, as long as we
stick to the natural assumption that R is a semiring lacking zero sums.
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Example 2.6. If R0 is a semiring lacking zero sums, then R := R0 × R0 also
lacks zero sums. Put µ1 = (1, 0), µ2 = (0, 1). These are idempotents in R

with µ1µ2 = 0 and µ1 + µ2 = 1. Now let V be a free R-module with base
B = {ε1, ε2, . . . , εn}, n ≥ 2, choose a permutation π ∈ Sn, π 6= 1, and define

ε′i := µ1εi + µ2επ(i) (1 ≤ i ≤ n).

We claim that B′ := {ε′1, . . . , ε
′
n} is another base of V.

Indeed, V is a free R0-module with base (µiεj | 1 ≤ i ≤ 2, 1 ≤ j ≤ n). We have

µ1ε
′
i = µ1εi, µ2ε

′
i = µ2επ(i),

and thus (µiε
′
j | 1 ≤ i ≤ 2, 1 ≤ j ≤ n) is a permutation of this base over R0,

i.e., regarded as a set, the same base. Thus certainly B
′ spans V as R-module.

Given x ∈ V, let x =
n∑
1
aiε

′
i with ai ∈ R. We have

ai = ai1µ1 + ai2µ2 with ai1 ∈ R0, ai2 ∈ R0,

whence

x =

n∑

i=1

ai1(µ1εi) +

n∑

i=1

ai2(µ2επ(i)).

This shows that the coefficients ai1, ai2 ∈ R0 are uniquely determined by x,

whence the coefficients ai ∈ R are also uniquely determined by x. Our claim is
proved.
Since supp

B
(ε′i) has two elements if π(i) 6= i, B′ differs projectively from B.

The base B of the R-module V is not unique.

3. Orthogonal decompositions of quadratic modules with unique
base

Assume that V is an R-module equipped with a fixed quadratic form q : V → R.
We then call V = (V, q) a quadratic R-module.

Definition 3.1.

(a) Given two submodules W1,W2 of the R-module V, we say that W1 is
disjointly orthogonal to W2, if W1∩W2 = {0} and q(x+y) = q(x)+q(y)
for all x ∈ W1, y ∈ W2, i.e., q is quasilinear on W1 × W2. (We say
“orthogonal” for short, when it is clear a priori that W1 ∩W2 = {0}.)

(b) We write V = W1 ⊥W2 if V = W1 ⊕ W2 (as R-module) with W1

disjointly orthogonal to W2. We then call W1 an orthogonal summand
of W , and W2 an orthogonal complement of W1 in V.

Caution. If V = W1 ⊥ W2, we may choose a companion b of q such that
b(W1,W2) = 0, but note that it could well happen that the set of all x ∈ V

with b(x,W1) = 0 is bigger than W2, even if R is a semifield and q|W1 is
anisotropic (e.g., if q itself is quasilinear). Our notion of orthogonality does
not refer to any bilinear form.
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We now also define infinite orthogonal sums. This seems to be natural, even if
we are originally interested only in finite orthogonal sums. Indeed, even if R is
a semifield, a free R-module with finite base often has many submodules which
are not finitely generated.

Definition 3.2. Let (Vi | i ∈ I) be a family of submodules of the quadratic
module V. We say that V is the orthogonal sum of the family (Vi), and then
write

V = ⊥
i∈I

Vi,

if for any two different indices i, j the submodule Vi is disjointly orthogonal
to Vj , and moreover V =

⊕
i∈I

Vi.

N.B. Of course, then for any subset J ⊂ I, the module VJ =
∑
i∈J

Vi is the

orthogonal sum of the subfamily (Vi | i ∈ J); in short,

VJ = ⊥
i∈J

Vi.

We state a fact which, perhaps contrary to first glance, is not completely trivial.

Proposition 3.3. Assume that we are given an orthogonal decomposition
V = ⊥

i∈I
Vi. Let J and K be two disjoint subsets of I. Then the submodule

VJ = ⊥
i∈J

Vi of V is disjointly orthogonal to VK = ⊥
i∈K

Vi, and thus

VJ∪K = VJ ⊥ VK .

Proof. It follows from Lemma 1.4 above that for any three different indices
i, j, k the form q is quasilinear on Vi × (Vj + Vk), and thus Vi is orthogonal to
Vj ⊥ Vk. By iteration, we see that the claim holds if J and K are finite. In
the general case, let x ∈ VJ and y ∈ VK . There exist finite subsets J ′,K ′ of
J and K with x ∈ VJ′ , y ∈ VK′ , and thus q(x + y) = q(x) + q(y). This proves
that VJ is orthogonal to VK . �

In the rest of this section, we assume that V has unique base.

Definition 3.4. We call a submodule W of V basic, if W is spanned by BW :=
B∩W, and thus W is free with base BW . Note that then we have a unique direct
decomposition V = W ⊕U, where the submodule U is basic with base B \BW .

W and U again are R-modules with unique base. We call U the complement
of W in V, and write U = W c.

The theory of basic submodules of V is of utmost simplicity. All of the following
is obvious.

Scholium 3.5.

(a) We have a bijection W 7→ BW := B∩W from the set of basic submod-
ules of V onto the set of subsets of B.
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(b) If W1 and W2 are basic submodules of V, then also W1∩W2 and W1+W2

are basic submodules of V, and

BW1∩W2
= BW1

∩BW2
, BW1+W2

= BW1
∪BW2

.

(c) If W is a basic submodule of V, then as stated above,

BW c = B \BW .

(d) Finally, if W1 ⊂ W2 are basic submodules of V, then W1 is basic in W2

and W c
1 ∩W2 is the complement of W1 in W2.

Thus a basic orthogonal summand W of V has only one basic orthogonal com-
plement, namely, W c, equipped with the form q|W c.

Definition 3.6. If the quadratic module V has a basic orthogonal summand
W 6= V , we call V decomposable. Otherwise we call V indecomposable. More
generally, we call a basic submodule X of V decomposable if X is decomposable
with respect to q|X, and otherwise we call X indecomposable.

Our next goal is to decompose the given quadratic module V orthogonally into
indecomposable basic submodules. Therefore, we choose a base B of V (unique
up to multiplication by scalar units). We then choose a companion b of q such
that b(ε, η) = 0 for any two different ε, η ∈ B such that q is quasilinear on
Rε × Rη, cf. [22, Theorem 6.3]. We call such a companion b a quasiminimal
companion of q.

Comment. In important cases, e.g., if R is supertropical or more generally
“upper bound” (cf. [22, Definition 5.1]), the set of companions of q can be
partially ordered in a natural way. The prefix “quasi” here is a reminder that
we do not mean minimality with respect to such an ordering.

Lemma 3.7. Let W and W ′ be basic submodules of V with W ∩W ′ = {0}. If b
is any quasiminimal companion of q, then W is (disjointly) orthogonal to W ′

iff b(W,W ′) = 0.

Proof. If b(W,W ′) = 0, then q(x+y) = q(x)+ q(y) for any x ∈ W and y ∈ W ′,
which means by definition that W is orthogonal to W ′. (This holds for any
companion b of q.)
Conversely, if W is orthogonal to W ′, then for base vectors ε ∈ BW , η ∈ BW ′

the form q is quasilinear on Rε × Rη and thus b(ε, η) = 0. This implies that
b(W,W ′) = 0. �

We now introduce the following equivalence relation on the set B. We choose a
quasiminimal companion b of q. Given ε, η ∈ B, we put ε ∼ η, iff either ε = η,

or there exists a sequence ε0, ε1, . . . , εr in B, r ≥ 1, such that ε = ε0, η = εr,

and εi 6= εi+1, b(εi, εi+1) 6= 0 for i = 0, . . . , r − 1.

Theorem 3.8. Let {Bk | k ∈ K} denote the set of equivalence classes in B

and, for every k ∈ K, let Wk denote the submodule of V having base Bk.
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(a) Then every Wk is an indecomposable basic submodule of V and

V = ⊥
k∈K

Wk.

(b) Every indecomposable basic submodule U of V is contained in Wk, for
some k ∈ K uniquely determined by U.

(c) The modules Wk, k ∈ K, are precisely all the indecomposable basic
orthogonal summands of V.

Proof. (a): Suppose that Wk has an orthogonal decomposition Wk = X ⊥ Y

with basic submodules X 6= 0, Y 6= 0. Then Bk is the disjoint union of the
non-empty sets BX and BY . Choosing ε ∈ BX and η ∈ BY , there exists a
sequence ε0, ε1, . . . , εr in Bk with ε = ε0, η = εr and b(εi−1, εi) 6= 0, εi−1 6= εi,
for 1 ≤ i ≤ r. Let s denote the last index in {1, . . . , r} with εs ∈ BX . Then
s < r and εs+1 ∈ BY . But b(X,Y ) = 0 by Lemma 3.7 and thus b(εs, εs+1) = 0,
a contradiction. This proves that Wk is indecomposable. Since B is the disjoint
union of the sets Bk, we have

V =
⊕

k∈K

Wk.

Finally, if k 6= ℓ, then b(Wk,Wℓ) = 0 by the nature of our equivalence relation.
Thus

V = ⊥
k∈K

Wk.

(b): Given an indecomposable basic submodule U of V , we choose k ∈ K with
BU ∩ Bk 6= ∅. Then U ∩ Wk 6= 0. ¿From V = Wk ⊕ W c

k , we conclude that
U = (U ∩Wk)⊕ (U ∩W c

k ), and then have U = (U ∩Wk) ⊥ (U ∩W c
k ) because

Wk is orthogonal to W c
k . Since U is indecomposable and U ∩Wk 6= 0, it follows

that U = U ∩Wk, i.e., U ⊂ Wk. Since Wk ∩Wℓ = 0 for k 6= ℓ, it is clear that k
is uniquely determined by U.

(c): If U is an indecomposable basic orthogonal summand of V, then V =
U ⊥ U c. We have U ⊂ Wk for some k ∈ K, and obtain Wk = U ⊥ (U c ∩Wk),
whence Wk = U. �

Definition 3.9. We call the submodules Wk of V occurring in Theorem 3.8
the indecomposable components of the quadratic module V.

The following facts are easy consequences of the theorem.

Remark 3.10.

(i) If U is a basic orthogonal summand of V, then the indecomposable com-
ponents of the quadratic module U = (U, q|U) are the indecomposable
components of V contained in U.

(ii) If U is any basic submodule of V, then

U = ⊥
k∈K

(U ∩Wk) ,
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and every submodule U ∩Wk 6= {0} is an orthogonal sum of indecom-
posable components of U.

4. Orthogonal decomposition of bilinear modules with unique
base

We now outline a theory of symmetric bilinear forms analogous to the theory
for quadratic forms given in §3. The bilinear theory is easier than the quadratic
theory due the fact that, in contrast to quadratic forms, on a free module we
do not need to distinguish between “functional” and “formal” bilinear forms
cf. [22, §1]. As before, R is a semiring.
Assume in the following that V is an R-module equipped with a fixed symmetric
bilinear form b : V ×V → R. We then call V = (V, b) a bilinear R-module. If X
is a submodule of V , we denote the restriction of b to X ×X by b|X.

Definition 4.1.

(a) Given two submodules W1,W2 of the R-module V , we say that W1 is
disjointly orthogonal to W2, if W1∩W2 = {0} and b(W1,W2) = 0, i.e.,
b(x, y) = 0 for all x ∈ W1, y ∈ W2.

(b) We write V = W1 ⊥ W2 if W1 is disjointly orthogonal to W2 and
moreover V = W1⊕W2 (as R-module). We then call W1 an orthogonal
summand of V and W2 an orthogonal complement of W1 in V.

Definition 4.2. Let (Vi | i ∈ I) be a family of submodules of the bilinear
module V. We say that V is the orthogonal sum of the family (Vi), and then
write

V = ⊥
i∈I

Vi,

if for any two different indices i, j the submodule Vi is disjointly orthogonal
to Vj , and moreover V =

⊕
i∈I

Vi.

In contrast to the quadratic case, the exact analog of Proposition 3.3 is now a
triviality.

Proposition 4.3. Assume that V = ⊥
i∈I

Vi. Let J and K be disjoint subsets

of I. Then VJ = ⊥
i∈J

Vi is disjointly orthogonal to VK = ⊥
i∈K

Vi, and

VJ∪K = VJ ⊥ VK .

In the following, we assume again that V has unique base. Then again a basic
orthogonal summand W of V has only one basic orthogonal complement in V,

namely, W c equipped with the bilinear form b|W c.

For X a basic submodule of V , we define the properties “decomposable” and
“indecomposable” in exactly the same way as indicated by Definition 3.6 in the
quadratic case.
We start with a definition and description of the “indecomposable components”
of V = (V, b) in a similar fashion as was done in §3 for quadratic modules. We
choose a base B of V and again introduce the appropriate equivalence relation
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on the set B, but now we adopt a more elaborate terminology than in §3. This
will turn out to be useful later on.

Definition 4.4. We call the symmetric bilinear form b alternate if b(ε, ε) = 0
for every ε ∈ B.

Comment. Beware that this does not imply that b(x, x) = 0 for every x ∈ V.

The classical notion of an alternating bilinear form is of no use here since in
the semirings under consideration here (cf. §2) α + β = 0 implies α = β = 0,
whence b(x+ y, x+ y) = 0 implies b(x, y) = 0. An alternating bilinear form in
the classical sense would be identically zero.

Definition 4.5. We associate to the given symmetric bilinear form b an al-
ternate bilinear form balt by the rule

balt(ε, η) =

{
b(ε, η) if ε 6= η

0 if ε = η

for any ε, η ∈ B.

Lemma 4.6. Let W and W ′ be basic submodules of V with W ∩ W ′ = {0}.
Then W is (disjointly) orthogonal to W ′ iff balt(W,W ′) = 0.

Proof. This can be seen exactly as with the parallel Lemma 3.7. Just replace
in its proof the quasiminimal companion of q by balt. �

Definition 4.7.

(a) A path Γ in V = (V, b) of length r ≥ 1 in B is a sequence ε0, ε1, . . . , εr
of elements of B with

balt(εi, εi+1) 6= 0 (0 ≤ i ≤ r − 1).

In essence this condition does not depend on the choice of the base B,
since B is unique up to multiplication by units, and so we also say
that Γ is a path in V . We say that the path runs from ε := ε0 to
η := εr, or that the path connects ε to η. A path of length 1 is called
an edge. This is just a pair (ε, η) in B with ε 6= η and b(ε, η) 6= 0.

(b) We define an equivalence relation on B as follows. Given ε, η ∈ B, we
declare that ε ∼ η if either ε = η or there runs a path from ε to η.

It is now obvious how to mimic the theory of indecomposable components from
the end of §3 in the bilinear setting.

Scholium 4.8. Theorem 3.8 and its proof remain valid for the present equiv-
alence relation on B. We only have to replace the quasiminimal companion b

of q there by balt and to use Lemma 4.6 instead of Lemma 3.7. Again we denote
the set of equivalence classes of B by {Bk | k ∈ K} and the submodule of V
with base Bk by Vk, and again we call the Vk the indecomposable components
of V. Also the analog to Remark 3.10 remains valid.

We state a consequence of the parallel between the two decomposition theories.
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Theorem 4.9. Assume that (V, q) is a quadratic module with unique base and b

is a quasiminimal companion of q. The indecomposable components of (V, q)
coincide with the indecomposable components of (V, b).

Proof. The equivalence relation used in Theorem 3.8 is the same as the equiv-
alence relation in Definition 4.7. �

We add an easy observation on bilinear modules.

Proposition 4.10. Assume that (V, b) is a bilinear R-module with unique base.
A basic submodule W of V is indecomposable with respect to b, iff W is inde-
composable with respect to balt.

Proof. The equivalence relation on B just defined (Definition 4.7) does not
change if we replace b by balt. �

5. Isometries, isotypical components, and a cancelation theorem

Let R be any semiring.

Definition 5.1.

(a) For quadratic R-modules V = (V, q) and V ′ = (V ′, q′), an isometry
σ : V → V ′ is a bijective R-linear map with q′(σx) = q(x) for all x ∈ V.

Likewise, if V = (V, b) and (V ′, b′) are bilinear R-modules, an isometry
is a bijective R-linear map σ : V → V ′ with b′(σx, σy) = b(x, y) for all
x, y ∈ V.

(b) If there exists an isometry σ : V → V ′, we call V and V ′ isometric
and write V ∼= V ′. We then also say that V and V ′ are in the same
isometry class.

In the following we study quadratic and bilinear R-modules with unique base
on an equal footing.
It would not hurt if we supposed that the semiring R satisfies the conditions in
Theorem 2.5, so that every free R-module has unique base, but the simplicity
of all of the arguments in the present section becomes more apparent if we do
not rely on Theorem 2.5.

Notation/Definition 5.2.

(a) Let (V 0
λ | λ ∈ Λ) be a set of representatives of all isometry classes of

indecomposable quadratic (resp. bilinear) R-modules with unique base
of rank bounded by the cardinality of V , in order to avoid set-theoretical
complications.

(b) If W is such an R-module, where W ∼= V 0
λ for a unique λ ∈ Λ, we say

that W has type λ (or: W is indecomposable of type λ).

(c) We say that a quadratic (resp. bilinear) module W 6= 0 with unique
base is isotypical of type λ, if every indecomposable component of V
has type λ.
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(d) Finally, given a quadratic (resp. bilinear) R-module with unique base,
we denote the sum of all indecomposable components of V of type λ by
Vλ and call the Vλ 6= 0 the isotypical components of V .

The following is now obvious from §3 and §4 (cf. Theorem 3.8 and Scholium 4.8).

Proposition 5.3. If V is a quadratic or bilinear R-module with unique base,
then

V = ⊥
λ∈Λ′

Vλ

with Λ′ = {λ ∈ Λ | Vλ 6= 0}.

Since our notion of orthogonality for basic submodules of V is encoded in the
linear and quadratic, resp. bilinear, structure of V, the following fact also is
obvious, but in view of its importance will be dubbed a “theorem”.

Theorem 5.4. Assume that V and V ′ are quadratic (resp. bilinear) R-modules
with unique bases and σ : V → V ′ is an isometry. Let {Vk | k ∈ K} denote the
set of indecomposable components of V.

(a) {σ(Vk) | k ∈ K} is the set of indecomposable components of V ′.

(b) If Vk has type λ, then σ(Vk) has type λ, and so σ(Vλ) = V ′
λ for every

λ ∈ Λ.

Also in the remainder of the section, we assume that the quadratic or bilinear
modules have unique base.

Definition 5.5. Let O(V ) denote the group of all isometries σ : V → V (i.e.,
automorphisms) of (V, q), resp. (V, b). As usual, we call O(V ) the orthogonal
group of V.

Theorem 5.4 has the following immediate consequence.

Corollary 5.6. Every σ ∈ O(V ) permutes the indecomposable components
of V of fixed type λ, and so σ(Vλ) = Vλ for every λ ∈ Λ.
We have a natural isomorphism

O(V )
1:1

//

∏
λ∈Λ′

O(Vλ),

sending σ ∈ O(V ) to the family of its restrictions σ|Vλ ∈ O(Vλ).

Definition 5.7.

(a) Let λ ∈ Λ. We denote the cardinality of the set of indecomposable
components of Vλ by mλ(V ), and we call mλ(V ) the multiplicity of Vλ.

{N.B. mλ(V ) can be infinite or zero.}

(b) If mλ ∈ N0 for every λ ∈ Λ, we say that V is isotypically finite.

Theorem 5.8. If V and V ′ are quadratic or bilinear R-modules with unique
bases, then V ∼= V ′ iff mλ(V ) = mλ(V

′) for every λ ∈ Λ.

Proof. This follows from Proposition 5.3 and Theorem 5.4. �
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We are ready for a main result of the paper.

Theorem 5.9. Assume that W1,W2,W
′
1,W

′
2 are quadratic or bilinear modules

with unique base and that W1 is isotypically finite. Assume furthermore that
W1

∼= W ′
1 and that W1 ⊥ W2

∼= W ′
1 ⊥ W ′

2. Then W2
∼= W ′

2.

Proof. For every λ ∈ Λ, clearly mλ(V ) = mλ(W1) + mλ(W2) and mλ(V
′) =

mλ(W
′
1) + mλ(W

′
2). Since V ∼= V ′, the multiplicities mλ(V ) and mλ(V

′) are
equal, and since W1

∼= W ′
1, the same holds for the multiplicities mλ(W

′
1).

Since mλ(W1) = mλ(W
′
1) is finite, it follows that mλ(W2) = mλ(W

′
2). By

Theorem 5.8 this implies that W2
∼= W ′

2. �

Remark 5.10. If the free R-module W1 has finite rank, then certainly W1 is
isotypically finite. Thus Theorem 5.9 may be viewed as the analog of Witt’s
cancellation theorem from 1937 [32] proved for quadratic forms over fields.

The assumption of isotypical finiteness in Theorem 5.9 cannot be relaxed. In-
deed if mλ(W1) is infinite for at least one λ ∈ Λ, then the cancelation law
becomes false. This is evident by Theorem 5.8 and the following example.

Example 5.11. Assume that V is the orthogonal sum of infinitely many copies
V1, V2, . . . of an indecomposable quadratic or bilinear module V0 with unique
base. Consider the following submodules of V :

W1 := V2 ⊥ V3 ⊥ · · · , W2 := V1,

W ′
1 := V3 ⊥ V4 ⊥ · · · , W ′

2 := V1 ⊥V2.

Then W1 ⊥W2 = V = W ′
1 ⊥W ′

2, and W1
∼= W ′

1. But W2 is not isometric to W ′
2.

6. Expansions and tensor products

Let q : V → R be a quadratic form on an R-module V . We recall from
[22, §1] that, when V is free with base (εi : i ∈ I), then q admits a (not
necessarily unique) balanced companion, i.e., a companion b : V × V → R

such that b(x, x) = 2q(x) for all x ∈ V , and that it suffices to know for this
that b(εi, εi) = 2q(εi) for all i ∈ I [22, Proposition 1.7]. Balanced companions
are a crucial ingredient in our definition below of a tensor product of a free
bilinear module and a free quadratic module. They arise from “expansions”
of q, defined as follows, cf. [22, Definition 1.9].

Definition 6.1. A bilinear form B : V × V → R (not necessarily symmetric)
is an expansion of a balanced pair (q, b) if B +Bt = b, i.e.,

(6.1) B(x, y) +B(y, x) = b(x, y)

for all x, y ∈ V, and

(6.2) q(x) = B(x, x)

for all x ∈ V. If only the form q is given and (6.2) holds, we say that B is an
expansion of q.
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As stated in the [22, §1], every bilinear form B : V ×V → R gives us a balanced
pair (q, b) via (6.1) and (6.2), and, if the R-module V is free, we obtain all such
pairs (q, b) in this way. But we will need a description of all expansions of (q, b)
in the free case.

Construction 6.2. Assume that V is a free R-module and (εi | i ∈ I) is
a base of V. When (q, b) is a balanced pair on V, we obtain all expansions
B : V × V → R of (q, b) as follows.
Let αi := q(εi), βij := b(εi, εj) for i, j ∈ I. We have βij = βji. We choose a
total ordering on I and for every i < j two elements χij , χji ∈ R with

βij = χij + χji, (i < j).

We furthermore put

χii := αi,

and define B by the rule

B(εi, εj) = χij

for all (i, j) ∈ I × I.

In practice one usually chooses χij = βij , χji = 0 for i < j, i.e., takes the
unique “triangular” expansion B of (q, b), cf. [22, §1], but now we do not want
to depend on the choice of a total ordering of the base (εi | i ∈ I). We used
such an ordering above only to ease notation.

Tensor products over semirings in general require the use of congruences [10],
but for free modules the basics can be done precisely as over rings, and we
leave the formal details to the interested reader. We only state here that, given
two free R-modules V1 and V2, with bases B1 and B2, the R-module V1 ⊗R V2

“is” the free R-module with base B1 ⊗B2, which is a renaming of B1 ×B2,
writing ε⊗ η for (ε, η) with ε ∈ B1, η ∈ B2. If

B1 = {εi | i ∈ I}, B2 = {ηj | j ∈ J}

and x =
∑
i∈I

xiεi ∈ V1 and y =
∑
j∈J

yjηj ∈ V2, we define, as common over rings,

(6.3) x⊗ y :=
∑

(i,j)∈I×J

xiyj(εi ⊗ yj),

and this vector is independent of the choice of the bases B1 and B2. If B1

and B2 are bilinear forms on V1 and V2 respectively, we have a well defined
bilinear form on V1 ⊗R V2, denoted by B1 ⊗ B2, such that for any xi ∈ V1,
yj ∈ V2 (i, j ∈ {1, 2})

(6.4) (B1 ⊗B2)(x1 ⊗ x2, y1 ⊗ y2) = B1(x1, y1)B2(x2, y2).

If b1 and b2 are symmetric bilinear forms on V1 and V2 respectively, then b1⊗b2
is symmetric. Then we call the bilinear module (V1 ⊗R V2, b1 ⊗ b2) the tensor
product of the bilinear modules (V1, b1) and (V2, b2).
We next define the tensor product of a free bilinear and a free quadratic module.
The key fact which allows us to do this in a reasonable way is as follows.
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Proposition 6.3. Let γ : U × U → R be a symmetric bilinear form and (q, b)
a balanced quadratic pair on V. Assume that B and B′ are two expansions of
(q, b). Then the bilinear forms γ ⊗ B and γ ⊗ B′ on U ⊗ V yield the same

balanced pair (q̃, b̃) on U ⊗ V. We have b̃ = γ ⊗ b, whence for u1, u2 ∈ U,

v1, v2 ∈ V,

(6.5) b̃(u1 ⊗ v1, u2 ⊗ v2) = γ(u1, u2)b(v1, v2).

Furthermore, for u ∈ U and v ∈ V,

(6.6) q̃(u ⊗ v) = γ(u, u)q(v).

Proof. γ⊗B+(γ⊗B)t = γ⊗B+γt⊗Bt = γ⊗B+γ⊗Bt = γ⊗(B+Bt) = γ⊗b.

Also γ ⊗ B′ + (γ ⊗B′)t = γ ⊗ b. Furthermore,

(γ ⊗B)(u ⊗ v, u⊗ v) = γ(u, u)B(v, v)
= γ(u, u)q(v) = (γ ⊗B′)(u⊗ v, u ⊗ v)

for any u ∈ U, v ∈ V. Together these equations imply

(γ ⊗B)(z, z) = (γ ⊗B′)(z, z)

for any z ∈ U ⊗ V. �

Definition 6.4. We call q̃ the tensor product of the bilinear form γ and the
quadratic form q with respect to the balanced companion b of q, and write

q̃ = γ ⊗b q,

and we also write Ṽ = U ⊗b V for the quadratic R-module Ṽ = (U ⊗ V, q̃).

Remark 6.5. If q has only one balanced companion, we may suppress the “b”
here, writing q̃ = γ⊗ q. Cases in which this happens are: q is rigid, V has rank
one, R is embeddable in a ring.

Proposition 6.6. If U = (U, γ) has an orthogonal decomposition U = ⊥
i∈I

Ui,

then

U ⊗b V = ⊥
i∈I

Ui ⊗b V.

Proof. It is immediate that (γ ⊗ b)(Ui ⊗ V, Uj ⊗ V ) = 0 for i 6= j. �

We proceed to explicit examples. For this we need notation from [22, §1] which
we recall for the convenience of the reader.
Assume that V is free of finite rank n and B is a base of V for which we
now choose a total ordering, B = (ε1, ε2, . . . , εn). Then we identify a bilinear
form B on V with the (n× n)-matrix

(6.7) B =




β11 β12 · · · β1n

β21 β22 β2n

...
...

. . .
...

βn1 · · · βnn


 ,
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where βij = B(ε1, εj). In particular, a bilinear R-module (V, β) is denoted by
a symmetric (n × n)-matrix, namely its Gram matrix b = (βij)1≤i,j≤n, where
βij = βji = b(εi, εj).
Given a quadratic module (V, q), we choose a triangular expansion

(6.8) B =




α1 α12 · · · α1n

0 α2 · · · α2n

...
. . .

...
0 · · · 0 αn




of q and denote q by the triangular scheme

(6.9) q =




α1 α12 · · · α1n

α2 · · · α2n

. . .
...
αn


 ,

so that q is given by the polynomial

q(x) =

n∑

i=1

αix
2
i +

n∑

i<j

αijxixj .

(Such triangular schemes have already been used in the literature when R is a
ring, e.g. [28, I §2].) In the case that q is diagonal, i.e., all αij with i < j are
zero, we usually write instead of (6.8) the single row

(6.10) q = [α1, α2, . . . , αn].

Analogously we use for a diagonal symmetric bilinear form b (i.e., b(εi, εj) = 0
for i 6= j) the notation

(6.11) b = 〈β11, β22, . . . , βnn〉.

We note that the quadratic form (6.9) has the balanced companion

(6.12) b =




α1 α12 · · · α1n

α12 α2 α2n

...
...

. . .
...

α1n · · · αn




and (6.10), being diagonal, has the balanced companion

(6.13) b = 〈2α1, 2α2, . . . , 2αn〉.

Example 6.7. If a1, . . . , an, c ∈ R, then

(6.14) 〈a1, . . . an〉 ⊗ [c] = [a1c, . . . , anc].

This is evident from Proposition 6.6 and the rule 〈a〉 ⊗ [c] = [ac] for one-
dimensional forms which holds by (6.6). In particular

(6.15) [a1, . . . , an] = 〈a1, . . . an〉 ⊗ [1].
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Example 6.8. (As before, R is any semiring.) Assume that V = (V, q) has
dimension n, and take a base η1, . . . , ηn of V. Let

(U, γ) =

(
0 1
1 0

)

with base ε1, ε2. We choose a balanced companion b of V, written as a symmetric
(n× n)-matrix (b(ηi, ηj)). We see by the use of the rules (6.5) and (6.6) that

(6.16)

(
0 1
1 0

)
⊗b q =

[
0 b

0

]

written with respect to the base

ε1 ⊗ η1, . . . , ε1 ⊗ ηn, ε2 ⊗ η1, . . . , ε2 ⊗ ηn.

This example illustrates dramatically that in general the tensor product of γ
and q depends on the chosen balanced companion b of q: tensoring q by ( 0 1

1 0 )
produces the symmetric matrix of b.

Remark 6.9. If γ1 and γ2 are bilinear forms on the same free R-module U ,
then the rules (6.5) and (6.6) imply for any λ1, λ2 ∈ R that

(6.17) (λ1γ1 + λ2γ2)⊗b q = λ1(γ1 ⊗b q) + λ2(γ2 ⊗b q).

Example 6.10. Using (6.17) with

γ1 = 〈a1, a2〉, γ2 =

(
0 1
1 0

)
, λ1 = 1, λ2 = λ,

we obtain from Proposition 6.6 and Example 6.7 that

(6.18)

(
a1 λ

λ a2

)
⊗b q =

[
a1q λb

a2q

]
.

Example 6.11. Let

q =




0 a12 · · · a1n
. . .

. . .
...

an−1,n

0




with aij ∈ R (i < j). Then q is rigid (cf. [22, Proposition 3.4]; no assumption
on R is needed here). Furthermore, let

γ =




γ11 · · · γ1m
...

...
γm1 · · · γmm




with γij = γji ∈ R. Then we obtain by the rules (6.5) and (6.6) that

(6.19) γ ⊗ q =

0 a12γ · · · a1nγ

0 a2nγ

. . . an−1,nγ

0
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More precisely, if the presentations of q and γ above refer to ordered bases
(η1, . . . , ηn) and (ε1, . . . , εm), respectively, then (6.19) refers to the ordered base

(ε1 ⊗ η1, . . . , εm ⊗ η1, ε1 ⊗ η2, . . . , εm ⊗ ηn).

We now consider the tensor product γ ⊗ [a] = γ ⊗b [a], cf. Equation (6.10),
where b is the unique balanced companion of [a], (6.13). Our starting point is
a definition which makes sense for any semiring R and any R-module U.

Definition 6.12. Let γ : U ×U → R be a symmetric bilinear form. The norm
form of γ is the quadratic form n(γ) : U → R with

n(γ)(x) := γ(x, x)

for any x ∈ U.

Remark 6.13. The norm form n(γ) has the expansion γ : U ×U → R and the
associated balanced companion γ + γt = 2γ. The norm forms are precisely all
the quadratic forms which admit a symmetric expansion. If U has a finite base
ε1, . . . , εn, then with respect to this base

(6.20) n(γ) =




γ11 2γ12 · · · 2γ1m
γ22

. . .
...

γmm


 ,

where γij := γ(εi, εj).

Proposition 6.14. Assume that U = (U, γ) is a free bilinear R-module and
a ∈ R. Then

(6.21) U ⊗ [a] ∼= (U, a n(γ)).

Proof. We realize the form [a] as a quadratic module (V, q) with V = Rη free
of rank 1 and q(η) = a. {q has the unique balanced companion b : V ×V → R,
with b(η, η) = 2a.} The form q̃ := γ ⊗ q = γ ⊗b q is given by

q̃(x⊗ η) = γ(x, x)a = (an(γ))(x).

The claim is obvious. �

Example 6.15. Assume that U has base ε1, . . . , εm. Let γij := γ(εi, εj). Then

γ ⊗ [a] ∼= (aγ)⊗ [1],

and

(6.22) γ ⊗ [1] =




γ11 2γ12 · · · 2γ1n
γ22

. . .
...

γmm


 ,

where the right hand side refers to the base ε1 ⊗ η, ε2 ⊗ η, . . . , εm ⊗ η.

At a crucial point in §7, we will need an explicit description of the tensor
products γ⊗b q with q indecomposable of rank 2. We start with a general fact.
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Proposition 6.16. Assume that γ is a symmetric bilinear form on a free R-
module U and q1, q2 are quadratic forms on a free R-module V. Let b1, b2 be
balanced companions of q1 and q2, respectively. Let q := λ1q1 + λ2q2 with
λ1, λ2 ∈ R. Then b := λ1b1 + λ2b2 is a balanced companion of q, and

(6.23) γ ⊗b q = λ1(γ ⊗b1 q1) + λ2(γ ⊗b2 q2).

This form has the balanced companion γ ⊗ b (as we know) and

(6.24) γ ⊗ b = λ1(γ ⊗ b1) + λ2(γ ⊗ b2).

Proof. An easy check by use of (6.5) and (6.6). �

Example 6.17. We take a free module V with base η1, η2, and choose with
respect to this base

q1 =

[
a1 0

a2

]
= [a1, a2], q2 =

[
0 c

0

]

with a1, a2, c ∈ R, c 6= 0, and the balanced companions

b1 =

(
2a1 0
0 2a2

)
, b2 =

(
0 c

c 0

)
.

Then

q := q1 + q2 =

[
a1 c

a2

]

has the balanced companion

b := b1 + b2 =

(
2a1 c

c 2a2

)
.

For

γ =




γ11 · · · γ1m
...

...
γm1 · · · γmm




on a free module U with to the base ε1, . . . , εm, we get

γ ⊗b1 q1 =

[
a1n(γ) 0

a2n(γ)

]
, γ ⊗b2

[
0 c

0

]
=

[
0 cγ

0

]
,

cf. (6.19), and finally

(6.25) γ ⊗b

[
a1 c

a2

]
=

[
a1n(γ) cγ

a2n(γ)

]

with respect to the base

ε1 ⊗ η1, . . . , εm ⊗ η1, ε1 ⊗ η2, . . . , εm ⊗ η2.

Remark 6.18. ¿From (6.25) and (6.18), we obtain the useful formula

(6.26) γ ⊗b

[
a1 c

a2

]
=

(
a1 c

c a2

)
⊗2γ n(γ) ,

by use of Example 6.10 for the quadratic pair (n(γ), 2γ).
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From now on, we assume that V has unique base. {We do not need that U has
unique base.}

Definition 6.19. We call a companion b of q faithful if b is balanced and
quasiminimal.

Proposition 6.20. Assume that b is a faithful companion of q, and that V =
W1 ⊥ W2 is an orthogonal decomposition of V. Then, writing U ⊗b Wi instead
of U ⊗(b|Wi) Wi, we have

U ⊗b V = U ⊗b W1 ⊥ U ⊗b W2

for any bilinear R-module U.

Proof. b(W1,W2) = 0, since b is quasiminimal. It follows that

(γ ⊗ b)(U ⊗W1, U ⊗W2) = 0.

Thus, q̃ = γ ⊗b q is quasilinear on (U ⊗W1)× (U ⊗W2). �

Example 6.21. Our assumption, that b is faithful, is necessary here. If V =
W1 ⊥ W2, and b is balanced, but b(W1,W2) 6= 0, then

(
0 1
1 0

)
⊗b V =

[
0 b

0

]

is not the orthogonal sum of
(
0 1
1 0

)
⊗b W1 and

(
0 1
1 0

)
⊗b W2.

Example 6.22. Let q = [a1, a2, . . . , an] be a diagonal quadratic form. The
diagonal symmetric bilinear form

b := 〈2q1, . . . , 2an〉

is the unique faithful companion of q. For any bilinear R-module (U, γ), we
have

(6.27) γ ⊗b q = γ ⊗ [a1] ⊥ · · · ⊥ γ ⊗ [an].

Concerning the forms γ ⊗ [ai], recall Proposition 6.14 and Example 6.15.

7. Indecomposability in tensor products

In this section, we assume for simplicity that R \ {0} is an entire semiring
lacking zero sums. So every free R-module has unique base (cf. Theorem 2.3),
and R has no zero divisors. We discuss decomposability first in tensor products
of (free) bilinear modules, later in tensor products of bilinear modules with
quadratic modules.
Let V1 = (V1, b1) and V2 = (V2, b2) be indecomposable free (symmetric) bilinear
modules over R, and let V := V1 ⊗ V2 = (V1 ⊗V2, b) with b := b1 ⊗ b2. We take
bases B1 and B2 of the R-modules V1, V2 respectively and then have the base

B = B1 ⊗B2 := {ε⊗ η | ε ∈ B1, η ∈ B2}
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of V. Our task is to determine the indecomposable components of V. First we
discuss the “trivial” cases.

Remark 7.1. Assume that V1 has dimension (= rank) one, so V1
∼= 〈a〉 with

a ∈ R. If a 6= 0, then V is clearly indecomposable. If a = 0, then b1 ⊗ b2 = 0,
whence V is indecomposable only if also dimV2 = 1. Then V = 〈0〉.

In all the following, we assume that V1 6= 〈0〉, V2 6= 〈0〉.
We resort to §4 to describe bases of the indecomposable components of V =
(V, b) as the classes in

B = {ε⊗ η | ε ∈ B1, η ∈ B2}

of an equivalence relation given by “paths”, cf. Definition 4.7. So a path of
length r ≥ 1 in V, i.e., in B, is a sequence

(7.1) Γ = (ε0 ⊗ η0, ε1 ⊗ η1, . . . , εr ⊗ ηr)

with

(7.2) b1(εi, εi+1)b2(ηi, ηi+1) 6= 0

and

(7.3) εi 6= εi+1 or ηi 6= ηi+1

for 0 ≤ i ≤ r − 1.
Let us first assume that both b1 and b2 are alternate, whence also b = b1 ⊗ b2
is alternate. Now condition (7.3) is a consequence of (7.2) and thus can be
ignored. We read off from (7.2) that

(7.4) Γ1 = (ε0, ε1, . . . , εr), Γ2 = (η0, η1, . . . , ηr)

are paths in V1 and V2 respectively of same length r. Conversely, given such
paths Γ1 and Γ2, they combine to a path Γ of length r in V, as written in (7.1).
{Here we use the assumption that R has no zero divisors.} We write

(7.5) Γ = Γ1 ⊗ Γ2.

We will speak of “cycles” in B1, B2, B, in the following obvious way:

Definition 7.2. Let C be a base of a free bilinear R-module W.

(a) We denote the length of a path Γ in C by ℓ(Γ).

(b) A cycle ∆ in W with base point ζ ∈ C is a path (ζ0, ζ1, . . . , ζr) in C

with ζ0 = ζr = ζ. We say that the cycle ∆ is even (resp. odd) if ℓ(∆)
is even (resp. odd). We say that ∆ is a 2-cycle if ℓ(∆) = 2, whence
∆ = (ζ, ζ′, ζ) with (ζ, ζ′) an edge.

Lemma 7.3. Let ε, ε′ ∈ B1 and η, η′ ∈ B2. Let Γ1 be a path from ε to ε′ of
length r and Γ2 a path from η to η′ of length s, and assume that r ≡ s (mod 2).
Then ε⊗ η ∼ ε′ ⊗ η′.
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Proof. Assume, without loss of generality, that s ≥ r, whence s = r + 2t with
t ≥ 0. If t = 0, then Γ1 ⊗ Γ2 is a path from ε⊗ η to ε′ ⊗ η′ in V. If t > 0, we
replace Γ1 = (ε0, ε1, . . . , εr) by

Γ̃1 = (ε0, ε1, . . . , εr, εr−1, εr, . . . )

adjoining t copies of the 2-cycle (εr, εr−1, εr) to Γ1. Now Γ̃1 ⊗ Γ2 runs from
ε⊗ η to ε′ ⊗ η′. �

Theorem 7.4. Assume that both b1 and b2 are alternate (and V1 6= 〈0〉,
V2 6= 〈0〉, as always).

a) If V1 or V2 contains an odd cycle, then V1 ⊗ V2 is indecomposable.

b) Otherwise V1 ⊗ V2 is the orthogonal sum of two indecomposable com-
ponents.

Proof. a): We assume that V1 contains an odd cycle ∆ with base point δ. Let
ε⊗η and ε′⊗η′ be different elements ofB. We want to verify that ε⊗η ∼ ε′⊗η′.

We choose a path Γ1 from ε to ε′ in V1 and a path Γ2 from η to η′ in V2. If
ℓ(Γ1) ≡ ℓ(Γ2) (mod 2), then we know by Lemma 7.3 that ε⊗ η ∼ ε′ ⊗ η′. Now

assume that ℓ(Γ1) and ℓ(Γ2) have different parity. We choose a new path Γ̃1

from ε to ε′ as follows: We first take a path H from ε to the base point δ of ∆,

then we run through ∆, then we take the path inverse to H (in the obvious

sense) from δ to ε, and finally we run through Γ1. The length ℓ(Γ̃1) has different
parity than ℓ(Γ1) and thus the same parity as ℓ(Γ2). We conclude again that
ε⊗ η ∼ ε′ ⊗ η′.

b): Now assume that both V1 and V2 contain only even cycles. This means
that both in V1 and V2 all paths from a fixed start to a fixed end have length
of the same parity. Given ε ⊗ η and ε′ ⊗ η′ in B, every path Γ from ε ⊗ η to
ε′ ⊗ η′ has the shape Γ1 ⊗ Γ2 with Γ1 running from ε to ε′, Γ2 running from η

to η′, and ℓ(Γ1) = ℓ(Γ2). Thus, if the paths from ε to ε′ have length of different
parity than those from η to η′, then ε ⊗ η cannot be connected to ε′ ⊗ η′ by
a path. But ε ⊗ η can be connected to ε′ ⊗ η′′, where η′′ arises from η′ by
adjoining an edge at the endpoint of η′. We fix some ε0 ∈ B1, and η0, η1 ∈ B2

with b2(η0, η1) = 1. Then every element of B can be connected by a path to
ε0 ⊗ η0 or to ε0 ⊗ η1, but not to both. V has exactly two indecomposable
components. �

Remark 7.5. Assume again that b1 and b2 are alternate and B1 and B2 both
contain only even cycles. Let ε, ε′ ∈ B1 and η, η′ ∈ B2, and choose paths Γ1

from ε to ε′ and Γ2 from η to η′. As the proof of Theorem 7.4.b has shown,
ε⊗ η and ε′ ⊗ η′ lie in the same indecomposable component of V1 ⊗V2 iff ℓ(Γ1)
and ℓ(Γ2) have the same parity.

There remains the case that b1 or b2 is not alternate.

Theorem 7.6. Assume that b1 is not alternate and – as before – that V1 =
(V1, b1) and V2 = (V2, b2) are indecomposable. Then (V1 ⊗ V2, b1 ⊗ b2) is inde-
composable.
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Proof. Every path in V := V1 ⊗ V2 with respect to (b1)alt ⊗ (b2)alt is also a
path with respect to b1 ⊗ b2, as is easily checked, and the paths in Vi with
respect to bi are the same as those with respect to (bi)alt (i = 1, 2). Thus we
are done by Theorem 7.4, except in the case that all cycles in V1 and in V2 are
even. Then V has two indecomposable components W ′, W ′′ with respect to
(b1)alt ⊗ (b2)alt. The base

B = B1 ⊗B2 := (ε⊗ η | ε ∈ B1, η ∈ B2)

of V1 ⊗ V2 is the disjoint union of sets B′, B′′ which are bases of W ′ and W ′′.

Any two elements of B′ are connected by a path with respect to (b1)alt⊗(b2)alt,
hence by a path with respect to b1 ⊗ b2, and the same holds for the set B′′.

We choose some ρ ∈ B1 with b1(ρ, ρ) 6= 0 and an edge (η0, η1) in B
′′. Since R

has no zero divisors, it follows that (ρ⊗ η0, ρ⊗ η1) is an edge in B with respect
to b1 ⊗ b2. Perhaps interchanging W ′ and W ′′, we assume that ρ ⊗ η0 ∈ B

′.

Suppose that also ρ⊗η1 ∈ B
′. Then there exists a path Γ in B

′ with respect to
(b1)alt ⊗ (b2)alt running from ρ⊗ η0 to ρ⊗ η1. Γ has the form Γ1 ⊗Γ2, with Γ1

a cycle in V1 with base point ρ, and Γ2 a path in V2 running from η0 to η1. We
have ℓ(Γ1) = ℓ(Γ2) and ℓ(Γ2) is even. But there exists the path (η0, η1) from
η0 to η1 of length 1. Since all paths in V2 from η0 to η1 have the same parity,
we infer that ℓ(Γ2) is odd, a contradiction.
We conclude that ρ ⊗ η1 ∈ B

′′. The elements ρ ⊗ η0 ∈ B
′ and ρ ⊗ η1 ∈ B

′′

are connected by a path with respect to b1⊗ b2, and thus all elements of B are
connected by paths with respect to b1 ⊗ b2. �

Turning to a study of indecomposable components of tensor products of bilinear
and quadratic modules, we need some more terminology. Let V = (V, q) be a
free quadratic R-module and B a base of V. We focus on balanced companions
of q.

Definition 7.7.

(a) We call a companion b of q faithful if b is balanced and quasiminimal
(cf. §3 above), whence b(ε, ε) = 2q(ε) for all ε ∈ B and b(ε, η) = 0 for
ε 6= η in B such that q is quasilinear on Rε×Rη.

(b) Given a balanced companion b of q, we define a new bilinear form bf
on V by the rule that, for ε, η ∈ B,

bf (ε, η) =

{
0 if ε 6= η and q is quasilinear on Rε×Rη,

b(ε, η) else.

It is clear from [22, Theorem 6.3] that again bf is a companion of q. By def-
inition, this companion is quasiminimal. bf is also balanced, since bf(ε, ε) =
b(ε, ε) = 2q(ε) for all ε ∈ B, cf. [22, Proposition 1.7], and so bf is faithful. We
call bf the faithful companion of q associated to b.

Theorem 7.8. Assume that b is a balanced companion of q, and that W is
a basic submodule of V. Then W is indecomposable with respect to q iff W is
indecomposable with respect to bf .
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Proof. This is a special case of Theorem 4.9, since bf |W = (b|W )f is a quasi-
minimal companion of q|W. �

Definition 7.9.

(a) We say that q is diagonally zero if q(ε) = 0 for every ε ∈ B.

(b) We say that q is anisotropic if q(ε) 6= 0 for every ε ∈ B.

Remarks 7.10.

(i) If q is diagonally zero, then q is rigid, cf. [22, Proposition 3.4]. Con-
versely, if q is rigid and the quadratic form [1] is quasilinear, i.e.,
(α + β)2 = α2 + β2 for any α, β ∈ R, then q is diagonally zero, as
proved in [22, Theorem 3.5].

(ii) If q is anisotropic, then q(x) 6= 0 for every x ∈ V \{0}. So our definition
of anisotropy here coincides with the usual meaning of anisotropy for
quadratic forms (which makes sense, say, for R a semiring without zero
divisors and V any R-module).

Definition 7.11. In a similar vein, we call a symmetric bilinear form b on V

anisotropic if b(ε, ε) 6= 0 for every ε ∈ B, and then have b(x, x) 6= 0 for every
x ∈ V \ {0}.

Note that, if b is a balanced companion of q, then b is anisotropic iff q is
anisotropic.
Assume now that U := (U, γ) is a free bilinear module, V := (V, q) is a free
quadratic module, and b is a balanced companion of q. Let

Ṽ := (Ṽ , q̃) := (U ⊗ V, γ ⊗b q).

We want to determine the indecomposable components of Ṽ . Discarding trivial
cases, we assume that U 6= 〈0〉, V 6= [0].
We choose bases B1 and B2 of the R-modules U and V, respectively, and
introduce the subsets

B
+
1 := {ε ∈ B1 | γ(ε, ε) 6= 0},

B
0
1 := {ε ∈ B1 | γ(ε, ε) = 0},

B
+
2 := {η ∈ B1 | q(η) 6= 0},

B
0
2 := {η ∈ B1 | q(η) = 0},

of B1 and B2, respectively, and furthermore the basic submodules
U+, U0, V +, V 0 respectively spanned by these sets.

Lemma 7.12.

a) If ε ∈ B
+
1 , then the indecomposable components of the basic submodule

ε ⊗ V := (Rε) ⊗ V of U ⊗ V with respect to q̃ are the submodules
ε ⊗ W with W running through the indecomposable components of V
with respect to q.

Documenta Mathematica 21 (2016) 773–808



804 Z. Izhakian, M. Knebusch, L. Rowen

b) If η ∈ B
+
1 , then the indecomposable components of U ⊗ η := U ⊗ (Rη)

with respect to q̃ are the modules U ⊗ η with U ′ running through the
indecomposable components of U with respect to the norm form n(γ)
of γ (cf. Definition 6.12).

Proof. This follows from the formulas q̃(ε ⊗ y) = γ(ε, ε)q(y) for y ∈ V and
q̃(x⊗ η) = γ(x, x)q(η) for x ∈ U (cf. (6.6)), since γ(ε, ε) 6= 0, q(η) 6= 0. �

In order to avoid certain pathologies concerning indecomposability in tensor
products U ⊗bV, we henceforth will assume that our semiring has the following
property:

(NQL) For any a and c in R \ {0} there exists some µ ∈ R with a+ µc 6= a.

Clearly, this property means that every free quadratic module [ a c
0 ] with c 6= 0

is not quasilinear on (Rη1)×(Rη2), where (η1, η2) is the associated base, whence
the label “NQL”.

Examples 7.13.

(a) In the important case that R is supertropical the condition (NQL) holds
iff all principal ideals in eR are unbounded with respect to the total or-
dering of eR. In particular, the “multiplicatively unbounded supertrop-
ical semirings” appearing in [20, §7] have NQL.

(b) If R is any entire semiring lacking zero sums, then the polynomial
ring R[t] in one variable (and so in any set of variables) has NQL.

(c) The polynomial function semirings over supersemirings appearing in
[25, §4] have NQL.

Lemma 7.14. Assume that (V, q) is indecomposable. Let a, c ∈ R \ {0}. Then
(
a c

c 0

)
⊗b V =

[
aq cb

0

]

(cf. (6.19)) is indecomposable.

Proof. Let

(U, γ) =

(
a c

c 0

)

with respect to a base ε1, ε2 and assume for notational convenience that V has
a finite base η1, . . . , ηn. By Lemma 7.12.a, we have

ε1 ⊗ η1 ∼ ε1 ⊗ η2 ∼ · · · ∼ ε1 ⊗ ηn.

For given ε1 ⊗ ηi, ε2 ⊗ ηj with i 6= j, γ ⊗b q has the value table
[
aq(ηi) cb(ηi, ηj)

0

]
.

Starting with ε2 ⊗ ηj , we find some ηi, i 6= j, with b(ηi, ηj) 6= 0, because (V, q)
is indecomposable. Since R has NQL, it follows that R(εi ⊗ ηi) +R(εj ⊗ ηj) is
indecomposable with respect to q̃, whence ε1 ⊗ ηi ∼ ε2 ⊗ ηj . Thus all εk ⊗ ηℓ
are equivalent. �
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Lemma 7.15. Assume that (U, n(γ)) is indecomposable. Let a, c ∈ R \ {0}.

Then the tensor product U ⊗b

[
a c

0

]
, taken with respect to b =

(
2a c

c 0

)
, is

indecomposable.

Proof. By formula (6.26)

γ ⊗b

[
a c

0

]
=

(
a c

c 0

)
⊗2γ n(γ).

Now Lemma 7.14 with (V, q) := (U, n(γ)) gives the claim. �

We are ready for the main result of this section. Recall that U := (U, γ).

Theorem 7.16. Assume that R has NQL. Assume furthermore that both
(U, n(γ)) and the quadratic free module V = (V, q) are indecomposable, and
U 6= 〈0〉, V 6= [0]. Let b be a balanced companion of q. Then the quadratic
module U⊗bV := (U ⊗V, γ⊗b q) is indecomposable, except in the case that γ is
alternate, q is diagonally zero, U and V contain only even cycles with respect
to γ and b. Then U⊗bV has exactly two indecomposable components, and these
coincide with the indecomposable components of U ⊗ V with respect to γ ⊗ b,

and also with respect to γ ⊗ bf .

Proof. Of course, indecomposability of (U, n(γ)) implies indecomposability of
(U, γ). As before, let q̃ := γ ⊗b q. We distinguish three cases.

1) Assume that V + 6= {0}, i.e., there exist anisotropic base vectors in V. Our
claim is that all elements of B1 ⊗ B2 are equivalent, whence U ⊗b V is inde-
composable.
We choose η0 ∈ B

+
2 . By Lemma 7.12.b, the module

(U ⊗ η0, q̃) := (U ⊗ η0, q̃ | U ⊗ η0)

is indecomposable, and thus all elements of B1 ⊗ η0 are equivalent.
Let ε ⊗ η ∈ B1 ⊗ B2. We verify the equivalence of ε ⊗ η with some element
of B1 ⊗ η0, and then will be done. If γ(ε, ε) 6= 0, then by Lemma 7.12.a, all
elements of ε ⊗ B2 are equivalent, whence ε ⊗ η ∼ ε ⊗ η0. Assume now that
γ(ε, ε) = 0. Since (U, γ) is indecomposable, there exists some ε′ ∈ B1 with
c := γ(ε′, ε) 6= 0. Let a := γ(ε′, ε′). We choose a base η1, . . . , ηn of V, assuming
for notational convenience that V has finite rank. By Example 6.10,

(Rε′ +Rε)⊗b V =

[
aq cq

0

]

with respect to the base ε′⊗η1, . . . , ε
′⊗ηn, ε⊗η1, . . . , ε⊗η2. Now Lemma 7.14

tells us that (Rε′ + Rε) ⊗b V is indecomposable, whence all elements ε ⊗ η,

ε′ ⊗ η′ with η, η′ ∈ B2 are equivalent. In particular, ε⊗ η ∼ ε′ ⊗ η0.

2) Assume that U+ 6= {0}, i.e., there exist an anisotropic base vector in U with
respect to n(γ). Our claim again is that all elements of B1⊗B2 are equivalent,
whence U ⊗b V is indecomposable. We choose ε0 ∈ B

+
1 , and then know by

Lemma 7.12.a that all elements of ε0 ⊗B2 are equivalent.
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Let ε ⊗ η ∈ B1 ⊗ B2 be given. We verify equivalence of ε ⊗ η with some
element of ε0 ⊗B2, and then will be done. If q(η) 6= 0, then by Lemma 7.12.a
all elements of B1 ⊗ η are equivalent, and thus ε⊗ η ∼ ε0 ⊗ η.

Hence, we may assume that q(η) = 0. Since (V, q) is indecomposable, there
exists some η′ ∈ B2 with c := b(η, η′) 6= 0. Let a := q(η′). Then

(Rη′ +Rη, q) =

[
a c

0

]
.

Let b′ := b|(Rη′ +Rη) =

(
a c

c 0

)
. Then we see from (6.25) that

γ ⊗b′

[
a c

0

]
=

[
an(γ) cγ

0

]
.

By Lemma 7.15, this quadratic module is indecomposable, whence all elements
ε⊗ η, ε′ ⊗ η′ with ε, ε′ ∈ B1 are equivalent. In particular, ε⊗ η ∼ ε0 ⊗ η′.

3) The remaining case: U = U0, and V = V 0, i.e., γ is alternate and q is
diagonally zero. Now (U ⊗ V, q̃) is rigid. By Theorem 7.8, the indecomposable
components of (U⊗V, q̃) coincide with those of (U⊗V, (γ⊗b)f). But q̃ has only
one companion, whence (γ ⊗ b)f = γ ⊗ b = γ ⊗ bf . Invoking Theorem 7.4, we
see that the assertion of the theorem also holds in the case under consideration,
where γ is alternate and b is diagonally zero. �

In general, let {Ui | i ∈ I} denote the set of indecomposable components of
(U, n(γ)). Then

U ⊗b V = ⊥
i∈I

Ui ⊗b V

by Proposition 6.6, whence, applying Theorem 7.16 to each summand Ui ⊗b V,

we obtain a complete list of all indecomposable components of U ⊗b V. In
particular, if q is not diagonally zero, or if (V, b) contains an odd cycle, then
the Ui ⊗b V themselves are the indecomposable components of U ⊗b V.
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