Minimax Principles, Hardy-Dirac Inequalities, and Operator Cores for Two and Three Dimensional Coulomb-Dirac Operators

David MÜLler

Received: March 28, 2016
Revised: August 9, 2016

Communicated by Heinz Siedentop

Abstract

For $n \in\{2,3\}$ we prove minimax characterisations of eigenvalues in the gap of the n dimensional Dirac operator with an potential, which may have a Coulomb singularity with a coupling constant up to the critical value $1 /(4-n)$. This result implies a socalled Hardy-Dirac inequality, which can be used to define a distinguished self-adjoint extension of the Coulomb-Dirac operator defined on $\mathrm{C}_{0}^{\infty}\left(\mathbb{R}^{n} \backslash\{0\} ; \mathbb{C}^{2(n-1)}\right)$, as long as the coupling constant does not exceed $1 /(4-n)$. We also find an explicit description of an operator core of this operator.

2010 Mathematics Subject Classification: 49R05, 49J35, 81Q10
Keywords and Phrases: Minimax Principle, Hardy-Dirac Inequality, Coulomb-Dirac Operator

1 Introduction

The relativistic dynamics of an electron moving in an atomic field is described by a Dirac operator with potential V having a Coulomb singularity. Since we want to consider such Dirac operators in two and three dimensions simultaneously, we assume throughout the text that $n \in\{2,3\}$. In n dimensions the relativistic electron corresponds to a $2(n-1)$ component spinor and V is a $2(n-1) \times 2(n-1)$ hermitian matrix function on \mathbb{R}^{n}. We say that V belongs to \mathfrak{P}_{n} if for some $\nu \in[0,1 /(4-n))$ the inequality $0 \geq V \geq-\nu /|\cdot| \otimes \mathbb{I}_{\mathbb{C}^{2}(n-1)}$ holds.

This motivates the following question. Does the Dirac operator with potential $V \in \mathfrak{P}_{n} \cup\left\{-1 /((4-n)|\cdot|) \otimes \mathbb{I}_{\mathbb{C}^{2}(n-1)}\right\}$

$$
\tilde{D}_{n}(V):=\left\{\begin{array}{l}
-\mathrm{i} \boldsymbol{\sigma} \cdot \nabla+\sigma_{3}+V \text { if } n=2 \tag{1}\\
-\mathrm{i} \boldsymbol{\alpha} \cdot \nabla+\beta+V \text { if } n=3
\end{array} \text { defined on } \mathrm{C}_{0}^{\infty}\left(\mathbb{R}^{n} \backslash\{0\} ; \mathbb{C}^{2(n-1)}\right)\right.
$$

have a unique self-adjoint extension? In (11) are $\boldsymbol{\sigma}=\left(\sigma_{1}, \sigma_{2}\right), \boldsymbol{\alpha}=\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$ vectors; $\sigma_{1}, \sigma_{2}, \sigma_{3}$ the standard Pauli matrices; $\boldsymbol{\alpha}_{i}=\left(\begin{array}{cc}0_{\mathbb{C}^{2}} & \sigma_{i} \\ \sigma_{i} & 0_{\mathbb{C}^{2}}\end{array}\right)$ for $i \in$ $\{1,2,3\}$ and $\beta=\left(\begin{array}{cc}\mathbb{I}_{\mathbb{C}^{2}} & 0_{\mathbb{C}^{2}} \\ 0_{\mathbb{C}^{2}} & -\mathbb{I}_{\mathbb{C}^{2}}\end{array}\right)$. It is the uniqueness not the existence of a self-adjoint extension that is doubtful. For example the Coulomb-Dirac operator $\tilde{D}_{n}\left(-\nu /|\cdot| \otimes \mathbb{I}_{\mathbb{C}^{2(n-1)}}\right)$ is essentially self-adjoint if $n=2, \nu=0$ or $n=3, \nu \in[0, \sqrt{3} / 2]$ but for $n=2, \nu \in(0,1 / 2]$ or $n=3, \nu \in(\sqrt{3} / 2,1]$ there are infinitely many self-adjoint extensions (see Lemma 14). Thus it is also natural to ask, whether there is a physically distinguished self-adjoint extension? In fact for $V \in \mathfrak{P}_{n}$ there is a unique self-adjoint extension $D_{n}(V)$ of $\tilde{D}_{n}(V)$, for which the wave functions in its domain possess finite mean kinetic energy, i.e. $\mathfrak{D}\left(D_{n}(V)\right) \subset \mathrm{H}^{1 / 2}\left(\mathbb{R}^{n} ; \mathbb{C}^{2(n-1)}\right)$. The existence of this distinguished selfadjoint extension is proven in Section 3 There we apply some general results developed in [15]. Note that for $\nu \in[0,1 /(4-n))$ the domain of the CoulombDirac operator $D_{n}\left(-\nu /|\cdot| \otimes \mathbb{C}_{\mathbb{C}^{2}(n-1)}\right)$ is contained in $\mathrm{H}^{1 / 2}\left(\mathbb{R}^{n} ; \mathbb{C}^{2(n-1)}\right)$ and for $\tilde{D}_{n}\left(((n-4)|\cdot|)^{-1} \otimes \mathbb{I}_{\mathbb{C}^{2(n-1)}}\right)$ there is no self-adjoint extension with this property. In this sense $1 /(4-n)$ is a critical constant. At this point we want to mention that in the context of Theorem 5 we define a distinguished self-adjoint extension of $\tilde{D}_{n}\left(-\nu /|\cdot| \otimes \mathbb{I}_{\mathbb{C}^{2(n-1)}}\right)$ for $\nu \in[0,1 /(4-n)]$, i.e. the case of a Coulomb potential with the critical coupling constant $1 /(4-n)$ is in particular included here.
Let $V \in \mathfrak{P}_{n}$. As in Proposition 1 in [4] one can prove that there is a gap in the essential spectrum of $D_{n}(V)$. To be more precise

$$
\sigma_{\mathrm{ess}}\left(D_{n}(V)\right)=(-\infty,-1] \cup[1, \infty)
$$

In 1986 James D. Talman proposed in [17] a formal minimax characterisation of the lowest eigenvalue in the gap of the essential spectrum of the operator $D_{3}(V)$. In this work we prove a minimax characterisation of eigenvalues in the gap of $D_{3}(V)$ in the spirit of Talman and an analogous result for $D_{2}(V)$. The exact result is:

THEOREM 1 (Talman minimax principle). Let $V \in \mathfrak{P}_{n}$. If the $k^{\text {th }}$ eigenvalue μ_{k} of $D_{n}(V)$ in $(-1,1)$, counted from below with multiplicity, exists, then it is given by

$$
\begin{gathered}
\mu_{k}=\inf _{\substack{\mathfrak{M} \subset \mathbf{H}^{1 / 2}\left(\mathbb{R}^{n} ; \mathbb{C}^{n-1}\right) \\
\operatorname{dim} \mathfrak{M}=k}} \sup _{\psi \in\left(\mathfrak{M} \oplus \mathrm{H}^{1 / 2}\left(\mathbb{R}^{n} ; \mathbb{C}^{n-1}\right)\right) \backslash\{0\}} \frac{\mathrm{d}_{n}[\psi]+\mathrm{v}[\psi]}{\|\psi\|^{2}} . \\
\\
\\
\text { Documenta Mathematica } 21 \text { (2016) 1151-1169 }
\end{gathered}
$$

Here d_{n} and v are the quadratic forms associated to the operators $D_{n}(0)$ and V.

About Theorem 1 we want to remark that for $n=3$ there is an historical overview of results of the same type in [13] and that for $n=2$ there is no comparable result known. Moreover, Theorem 1 improves in the three dimensional case Theorem 3 in 13, which is the best known result for a Dirac operator with an electrostatic potential having strong Coulomb singularity.
Furthermore, we give a different proof of the Esteban-Séré minimax principle (see Theorem 2 in [13] and [9) and prove an analogous result for two dimensional Dirac operators:

Theorem 2 (Esteban-Séré minimax principle). Let $V \in \mathfrak{P}_{n}$. If the $k^{\text {th }}$ eigenvalue μ_{k} of $D_{n}(V)$ in $(-1,1)$, counted from below with multiplicity, exists, then it is given by

$$
\mu_{k}=\inf _{\substack{\mathfrak{M} \subset P_{n}^{+} \mathbf{H}^{1 / 2}\left(\mathbb{R}^{n} ; \mathbb{C}^{2(n-1)}\right) \\ \operatorname{dim} \mathfrak{M}=k}} \sup _{\psi \in\left(\mathfrak{M} \oplus P_{n}^{-} \mathbf{H}^{1 / 2}\left(\mathbb{R}^{n} ; \mathbb{C}^{2(n-1)}\right)\right) \backslash\{0\}} \frac{\mathrm{d}_{n}[\psi]+\mathrm{v}[\psi]}{\|\psi\|^{2}} .
$$

Here P_{n}^{+}is the projector on the non-negative spectral subspace of $D_{n}(0)$ and $P_{n}^{-}:=\mathbb{I}-P_{n}^{+}$.

A direct application of Theorem 1 is:
Theorem 3 (Hardy-Dirac inequality). Let v be a scalar function on \mathbb{R}^{n} such that $v \otimes \mathbb{I}_{\mathbb{C}^{2}(n-1)} \in \mathfrak{P}_{n}$. Moreover, we define the operator:

$$
K_{n}:=\left\{\begin{array}{l}
-\mathrm{i} \partial_{1}-\partial_{2} \text { if } n=2 \\
-\mathrm{i} \boldsymbol{\sigma} \cdot \nabla \text { if } n=3
\end{array}\right.
$$

and denote by $\lambda(v)$ the smallest eigenvalue of $D_{n}\left(v \otimes \mathbb{I}_{\mathbb{C}^{2}(n-1)}\right)$ in the gap $(-1,1)$. Then for all $\varphi \in \mathrm{H}^{1}\left(\mathbb{R}^{n} ; \mathbb{C}^{n-1}\right)$ the inequality

$$
\begin{equation*}
0 \leq \int_{\mathbb{R}^{n}} \frac{\left|K_{n} \varphi(\mathbf{x})\right|^{2}}{1+\lambda(v)-v(\mathbf{x})} \mathrm{d} \mathbf{x}+\int_{\mathbb{R}^{n}}(1-\lambda(v)+v(\mathbf{x}))|\varphi(\mathbf{x})|^{2} \mathrm{~d} \mathbf{x} \tag{2}
\end{equation*}
$$

holds.
We follow the tradition of [5] and call these type of inequality Hardy-Dirac inequality. In [6] it is demonstrated, how one can prove Hardy-Dirac inequalities for $n=3$ with the help of the Talman minimax principle.
We know that the lowest eigenvalue of $D_{n}\left(-\nu /|\cdot| \otimes \mathbb{I}_{\mathbb{C}^{2}(n-1)}\right)$ in $(-1,1)$ is $\sqrt{1-((4-n) \nu)^{2}}$ for $\nu \in(0,1 /(4-n))$ (see [7] and [19]). Thus Theorem 3 implies with a simple limiting argument

Corollary 4. Let $\nu \in[0,1 /(4-n)]$. Then
$0 \leq \int_{\mathbb{R}^{n}}\left(\frac{\left|K_{n} \varphi\right|^{2}}{1+\sqrt{1-((4-n) \nu)^{2}}+\frac{\nu}{|x|}}+\left(1-\sqrt{1-((4-n) \nu)^{2}}-\frac{\nu}{|x|}\right)|\varphi|^{2}\right) \mathrm{d} \mathbf{x}$
holds for all $\varphi \in \mathrm{H}^{1}\left(\mathbb{R}^{n} ; \mathbb{C}^{n-1}\right)$.
Let $\nu \in[0,1 /(4-n)]$. With the help of Corollary 4 and Theorem 1 in [8] $\left(\tilde{D}_{n}\left(-\nu /|\cdot| \otimes \mathbb{I}_{\mathbb{C}^{2}(n-1)}\right)\right.$ corresponds to H there) we know that there is only one self-adjoint extension of $\tilde{D}_{n}\left(-\nu /|\cdot| \otimes \mathbb{I}_{\mathbb{C}^{2(n-1)}}\right)$ with a positive Schur complement. We denote this distinguished self-adjoint extension by D_{n}^{ν}. Now we want to give an explicit description of an operator core of D_{n}^{ν}. For this purpose we introduce polar and spherical coordinates. We denote by the coordinate pair $(\rho, \vartheta) \in[0, \infty) \times[0,2 \pi)$ the radial and angular polar coordinates in \mathbb{R}^{2} and by the coordinate triplet $(r, \theta, \phi) \in[0, \infty) \times[0, \pi) \times[0,2 \pi)$ the radial, inclination and azimuthal spherical coordinates in \mathbb{R}^{3}. For $m \in\{-1 / 2,1 / 2\}^{n-1}$ we define the function $\zeta_{n, m}^{\nu}$ in polar coordinates for $n=2$

$$
\begin{equation*}
\zeta_{2, m}^{\nu}(\rho, \vartheta):=\xi(\rho) \rho^{\sqrt{1 / 4-\nu^{2}}-1 / 2}\binom{\nu \frac{\mathrm{e}^{-\mathrm{i}(1 / 2+m) \vartheta}}{\sqrt{2 \pi}}}{-\mathrm{i}\left(\sqrt{1 / 4-\nu^{2}}+(-1)^{1 / 2-m} / 2\right) \frac{\mathrm{e}^{\mathrm{i}(1 / 2-m) \vartheta}}{\sqrt{2 \pi}}} \tag{3}
\end{equation*}
$$

and in spherical coordinates for $n=3$

$$
\begin{equation*}
\zeta_{3, m}^{\nu}(r, \theta, \phi):=\xi(r) r^{\sqrt{1-\nu^{2}}-1}\binom{\nu \Omega_{\frac{1}{2}+m_{2}, m_{1},-m_{2}}(\theta, \phi)}{-\mathrm{i}\left(\sqrt{1-\nu^{2}}+(-1)^{\frac{1}{2}-m_{2}}\right) \Omega_{\frac{1}{2}-m_{2}, m_{1}, m_{2}}(\theta, \phi)} ; \tag{4}
\end{equation*}
$$

with the spherical spinor $\Omega_{l, m, s}$ (see Relation (7) in [10]) and the smooth cut-off function ξ (i.e., $\xi \in \mathbb{C}^{\infty}\left(\mathbb{R}_{+} ; \mathbb{R}_{+}\right), \xi(t)=1$ for $t \in(0,1)$ and $\xi(t)=0$ for $t>2$). In the next theorem we give a characterisation of an operator core of D_{n}^{ν} with the help of the functions $\zeta_{n, m}^{\nu}$ introduced in (3) and (4).
Theorem 5 (Operator core). Let $\nu \in[0,1 /(4-n)]$. The set
$\mathfrak{C}_{n}^{\nu}:=\mathrm{C}_{0}^{\infty}\left(\mathbb{R}^{n} \backslash\{0\} ; \mathbb{C}^{2(n-1)}\right)+\left\{\begin{array}{l}\{0\}, \text { if } n=2, \nu=0 \text { or } n=3, \nu \in\left[0, \frac{\sqrt{3}}{2}\right] ; \\ \operatorname{span}\left\{\zeta_{n, m}^{\nu}: m \in\{-1 / 2,1 / 2\}^{n-1}\right\}, \text { else } ;\end{array}\right.$
is an operator core for D_{n}^{ν}.
The knowledge of the operator core of D_{n}^{ν} is important for the proof of estimates on the square of the operator, see e.g. [14]. In Remark 15 we show that for $\nu \in[0,1 /(4-n))$ the set \mathfrak{C}_{n}^{ν} is an operator core for $D_{n}\left(-\nu /|\cdot| \otimes \mathbb{I}_{\mathbb{C}^{2}(n-1)}\right)$. A direct consequence is:

Corollary 6. Let $\nu \in[0,1 /(4-n))$. The distinguished self-adjoint extensions of $\tilde{D}_{n}\left(-\nu /|\cdot| \otimes \mathbb{I}_{\mathbb{C}^{2(n-1)}}\right)$ in the sense of [15] and [8] coincide, i.e.,

$$
D_{n}^{\nu}=D_{n}\left(-\nu /|\cdot| \otimes \mathbb{I}_{\mathbb{C}^{2(n-1)}}\right)
$$

The proofs of the minimax characterisations rely on the angular momentum channel decomposition of the Coulomb-Dirac operator in the momentum space. This representation and the corresponding unitary transformations are introduced in the next section. In the remaining sections we prove in the order of enumeration: Theorems (1) 2, 3 and 5,

2 Angular momentum channel decomposition in the momentum SPACE

The Fourier transform connects the quantum mechanical descriptions of a particle in the configuration and momentum space. We use the standard unitary Fourier transform \mathcal{F}_{n} in $\mathrm{L}^{2}\left(\mathbb{R}^{n}\right)$ given for $\varphi \in \mathrm{L}^{1}\left(\mathbb{R}^{n}\right) \cap \mathrm{L}^{2}\left(\mathbb{R}^{n}\right)$ by

$$
\begin{equation*}
\mathcal{F}_{n} \varphi:=\frac{1}{(2 \pi)^{n / 2}} \int_{\mathbb{R}^{n}} \mathrm{e}^{-\mathrm{i}\langle\cdot, \mathbf{x}\rangle} \varphi(\mathbf{x}) \mathrm{d} \mathbf{x} . \tag{6}
\end{equation*}
$$

For the angular momentum channel decomposition in n dimensions we use an orthonormal basis in $\mathrm{L}^{2}\left(\mathbb{S}^{n-1} ; \mathbb{C}^{n-1}\right)$. For $n=2$ this orthonormal basis is $\left((2 \pi)^{-1 / 2} \mathrm{e}^{\mathrm{i} m(\cdot)}\right)_{m \in \mathbb{Z}}$. In three dimensions we use spherical spinors $\Omega_{l, m, s}$, which are defined in Relation (7) in [10], with $l \in \mathbb{N}_{0}, m \in\{-l-1 / 2, \ldots, l+1 / 2\}$ and $s \in\{-1 / 2,1 / 2\}$. The corresponding index sets are denoted by

$$
\begin{equation*}
\mathfrak{T}_{2}:=\mathbb{Z} ; \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathfrak{T}_{3}:=\left\{(l, m, s): l \in \mathbb{N}_{0}, m \in\left\{-l-\frac{1}{2}, \ldots, l+\frac{1}{2}\right\}, s= \pm \frac{1}{2}, \Omega_{l, m, s} \neq 0\right\} \tag{8}
\end{equation*}
$$

Furthermore, we define subsets $\mathfrak{T}_{n}^{ \pm}$of \mathfrak{T}_{n} :

$$
\mathfrak{T}_{n}^{a}:= \begin{cases}2 \mathbb{Z} & \text { if } n=2, a=+; \tag{9}\\ 2 \mathbb{Z}+1 & \text { if } n=2, a=-; \\ \left\{(l, m, s) \in \mathfrak{T}_{3}: s= \pm 1 / 2\right\} & \text { if } n=3, a= \pm .\end{cases}
$$

Note that if $(l, m,-1 / 2) \in \mathfrak{T}_{3}^{-}$then $l \in \mathbb{N}$.
Moreover, we introduce bijective maps

$$
\begin{equation*}
T_{2}: \mathfrak{T}_{2} \rightarrow \mathfrak{T}_{2}, T_{2} k:=k+1 \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
T_{3}: \mathfrak{T}_{3} \rightarrow \mathfrak{T}_{3}, T_{3}(l, m, s):=(l+2 s, m,-s) \tag{11}
\end{equation*}
$$

We can represent any $\varphi \in \mathrm{L}^{2}\left(\mathbb{R}^{2} ; \mathbb{C}\right)$ in polar coordinates and $\zeta \in \mathrm{L}^{2}\left(\mathbb{R}^{3} ; \mathbb{C}^{2}\right)$ in spherical coordinates as

$$
\begin{align*}
\varphi(\rho, \vartheta) & =\sum_{k \in \mathfrak{T}_{2}}(2 \pi \rho)^{-1 / 2} \varphi_{k}(\rho) \mathrm{e}^{\mathrm{i} k \vartheta} \tag{12}\\
\zeta(r, \theta, \phi) & =\sum_{(l, m, s) \in \mathfrak{T}_{3}} r^{-1} \zeta_{(l, m, s)}(r) \Omega_{l, m, s}(\theta, \phi) \tag{13}
\end{align*}
$$

with

$$
\begin{align*}
\varphi_{k}(\rho) & :=\sqrt{\frac{\rho}{2 \pi}} \int_{0}^{2 \pi} \varphi(\rho, \vartheta) \mathrm{e}^{-\mathrm{i} k \vartheta} \mathrm{~d} \vartheta \tag{14}\\
\zeta_{(l, m, s)}(r) & :=r \int_{0}^{2 \pi} \int_{0}^{\pi}\left\langle\Omega_{l, m, s}(\theta, \phi), \zeta(r, \theta, \phi)\right\rangle_{\mathbb{C}^{2}} \sin (\theta) \mathrm{d} \theta \mathrm{~d} \phi . \tag{15}
\end{align*}
$$

With the help of (14) and (15) we define the unitary operator

$$
\begin{equation*}
\mathcal{U}_{n}: \mathrm{L}^{2}\left(\mathbb{R}^{n} ; \mathbb{C}^{n-1}\right) \rightarrow \bigoplus_{j \in \mathfrak{T}_{n}} \mathrm{~L}^{2}\left(\mathbb{R}_{+}\right) ; \quad \psi \mapsto \bigoplus_{j \in \mathfrak{T}_{n}} \psi_{j} \tag{16}
\end{equation*}
$$

For the proof of the following lemma see Theorem 2.2.5 in (1) (based on Lemmata 2.1, 2.2 of [2]) for $n=2$ and Section 2.2 in [1] for $n=3$.

Lemma 7. For $j \in\left(\mathbb{N}_{0} / 2-1 / 2\right)$ and $z \in(1, \infty)$ let

$$
\begin{equation*}
Q_{j}(z)=2^{-j-1} \int_{-1}^{1}\left(1-t^{2}\right)^{j}(z-t)^{-j-1} \mathrm{~d} t \tag{17}
\end{equation*}
$$

be a Legendre function of the second kind (see Section 15.3 in [21]). Let the sesquilinear form \mathbf{q}_{j} be defined on $\mathrm{L}^{2}\left(\mathbb{R}_{+},\left(1+p^{2}\right)^{1 / 2} \mathrm{~d} p\right) \times \mathrm{L}^{2}\left(\mathbb{R}_{+},\left(1+p^{2}\right)^{1 / 2} \mathrm{~d} p\right)$ by

$$
\begin{equation*}
\mathrm{q}_{j}[f, g]:=\pi^{-1} \int_{0}^{\infty} \int_{0}^{\infty} \overline{f(p)} Q_{j}\left(\frac{1}{2}\left(\frac{q}{p}+\frac{p}{q}\right)\right) g(q) \mathrm{d} q \mathrm{~d} p . \tag{18}
\end{equation*}
$$

For the special case $f=g$ we introduce $\mathrm{q}_{j}[f]:=\mathrm{q}_{j}[f, f]$. Then for every $\zeta, \eta \in \mathrm{H}^{1 / 2}\left(\mathbb{R}^{n}\right)$ the relation

$$
\int_{\mathbb{R}^{n}} \frac{\bar{\zeta}(\mathbf{x}) \cdot \eta(\mathbf{x})}{|\mathbf{x}|} \mathrm{d} \mathbf{x}=\left\{\begin{array}{l}
\sum_{k \in \mathfrak{T}_{2}} \mathrm{q}_{|k|-1 / 2}\left[\left(\mathcal{F}_{2} \zeta\right)_{k},\left(\mathcal{F}_{2} \eta\right)_{k}\right] \text { if } n=2, \tag{19}\\
\sum_{(l, m, s) \in \mathfrak{T}_{3}} \mathrm{q}_{l}\left[\left(\mathcal{F}_{3} \zeta\right)_{(l, m, s)},\left(\mathcal{F}_{3} \eta\right)_{(l, m, s)}\right] \text { if } n=3,
\end{array}\right.
$$

holds.

The operators $-\mathrm{i} \boldsymbol{\sigma} \cdot \nabla$ and $-\mathrm{i} \boldsymbol{\alpha} \cdot \nabla$ are partially diagonalised in the momentum space by the unitary transforms

$$
\begin{equation*}
\mathcal{W}_{2}: \mathrm{L}^{2}\left(\mathbb{R}^{2} ; \mathbb{C}^{2}\right) \rightarrow \bigoplus_{k \in \mathfrak{T}_{2}} \mathrm{~L}^{2}\left(\mathbb{R}_{+} ; \mathbb{C}^{2}\right) ; \quad\binom{\varphi}{\psi} \mapsto \bigoplus_{k \in \mathfrak{T}_{2}}\binom{\varphi_{k}}{\psi_{T_{2} k}} \tag{20}
\end{equation*}
$$

and

$$
\mathcal{W}_{3}: \mathrm{L}^{2}\left(\mathbb{R}^{3} ; \mathbb{C}^{4}\right) \rightarrow \bigoplus_{(l, m, s) \in \mathfrak{T}_{3}} \mathrm{~L}^{2}\left(\mathbb{R}_{+} ; \mathbb{C}^{2}\right) ;\left(\begin{array}{l}
\psi_{1} \tag{21}\\
\psi_{2} \\
\psi_{3} \\
\psi_{4}
\end{array}\right) \mapsto \bigoplus_{(l, m, s) \in \mathfrak{T}_{3}}\binom{\psi_{(l, m, s)}^{+}}{\psi_{T_{3}(l, m, s)}^{-}}
$$

with

$$
\begin{equation*}
\psi_{(l, m, s)}^{+}:=\binom{\psi_{1}}{\psi_{2}}_{(l, m, s)} \text { and } \psi_{(l, m, s)}^{-}:=\binom{\psi_{3}}{\psi_{4}}_{(l, m, s)} \tag{22}
\end{equation*}
$$

for $(l, m, s) \in \mathfrak{T}_{3}$. To be more precise:
Lemma 8. For the self-adjoint operators $-\mathrm{i} \boldsymbol{\sigma} \cdot \nabla$ and $-\mathrm{i} \boldsymbol{\alpha} \cdot \nabla$ the relations

$$
\left(\mathcal{W}_{n} \mathcal{F}_{n}\right)^{*}\left(\bigoplus_{j \in \mathfrak{T}_{n}}\left(\begin{array}{cc}
0 & (\cdot) \tag{23}\\
(\cdot) & 0
\end{array}\right)\right)\left(\mathcal{W}_{n} \mathcal{F}_{n}\right)= \begin{cases}-\mathrm{i} \boldsymbol{\sigma} \cdot \nabla & \text { if } n=2 \\
-\mathrm{i} \boldsymbol{\alpha} \cdot \nabla & \text { if } n=3\end{cases}
$$

hold.
Proof. By a straightforward calculation and Relation 2.1.28 in 1] the relations

$$
\begin{align*}
\boldsymbol{\sigma} \cdot \mathbf{x} & =\left(\begin{array}{cc}
0 & \mathrm{e}^{-\mathrm{i} \vartheta} \rho \\
\mathrm{e}^{\mathrm{i} \vartheta} \rho & 0
\end{array}\right) \text { for } \mathbf{x} \in \mathbb{R}^{2} ; \tag{24}\\
\boldsymbol{\sigma} \cdot \frac{\mathbf{x}}{|\mathbf{x}|} \Omega_{l, m, s} & =\Omega_{l+2 s, m,-s} \text { for } \mathbf{x} \in \mathbb{R}^{3} \text { and }(l, m, s) \in \mathfrak{T}_{3} \tag{25}
\end{align*}
$$

hold.
The set $\mathrm{C}_{0}^{\infty}\left(\mathbb{R}^{n} ; \mathbb{C}^{2(n-1)}\right)$ is dense in $\mathrm{H}^{1}\left(\mathbb{R}^{n} ; \mathbb{C}^{2(n-1)}\right)$. Thus it is enough to work with $\psi \in \mathrm{C}_{0}^{\infty}\left(\mathbb{R}^{2} ; \mathbb{C}^{2}\right)$ and $\zeta \in \mathrm{C}_{0}^{\infty}\left(\mathbb{R}^{3} ; \mathbb{C}^{4}\right)$.
Moreover, the Fourier transform diagonalises differential operators:

$$
\begin{array}{r}
\langle\psi,-\mathrm{i} \boldsymbol{\sigma} \cdot \nabla \psi\rangle=\left\langle\mathcal{F}_{2} \psi, \boldsymbol{\sigma} \cdot \boldsymbol{p} \mathcal{F}_{2} \psi\right\rangle, \\
\langle\zeta,-\mathrm{i} \boldsymbol{\alpha} \cdot \nabla \zeta\rangle=\left\langle\mathcal{F}_{3} \zeta, \boldsymbol{\alpha} \cdot \boldsymbol{p} \mathcal{F}_{3} \zeta\right\rangle . \tag{27}
\end{array}
$$

Here we denote by \boldsymbol{p} the independent variable of multiplication in $\mathrm{L}^{2}\left(\mathbb{R}^{n} ; \mathrm{d} \mathbf{p}\right)$. Now we prove (23) for $n=3$. We obtain by the representation (13) of the upper and lower bispinor of $\mathcal{F}_{3} \zeta$ and the notation introduced in (22) that the right hand side of (27) is equal to

$$
\begin{equation*}
\left.2 \sum_{\substack{\left(l^{\prime}, m^{\prime}, s^{\prime}\right) \in \mathfrak{T}_{3} \\(l, m, s) \in \mathfrak{T}_{3}}} \Re\left(\left.\left\langle\left.\boldsymbol{p}\right|^{-1}\left(\mathcal{F}_{3} \zeta\right)_{\left(l^{\prime}, m^{\prime}, s^{\prime}\right)}^{+} \Omega_{l^{\prime}, m^{\prime}, s^{\prime}},(\boldsymbol{\sigma} \cdot \boldsymbol{p})\right| \boldsymbol{p}\right|^{-1}\left(\mathcal{F}_{3} \zeta\right)_{(l, m, s)}^{-} \Omega_{l, m, s}\right\rangle\right) \tag{28}
\end{equation*}
$$

The expression in (28) is equal to

$$
\begin{align*}
& 2 \sum_{(l, m, s) \in \mathfrak{T}_{3}} \Re\left(\left\langle\left(\mathcal{F}_{3} \zeta\right)_{(l+2 s, m,-s)}^{+},(\cdot)\left(\mathcal{F}_{3} \zeta\right)_{(l, m, s)}^{-}\right\rangle\right) \\
& =\sum_{(l, m, s) \in \mathfrak{T}_{3}}\left\langle\binom{\left(\mathcal{F}_{3} \zeta\right)_{(l, m, s)}^{+}}{\left(\mathcal{F}_{3} \zeta\right)_{T_{3}(l, m, s)}^{-}},\left(\begin{array}{cc}
0 & (\cdot) \\
(\cdot) & 0
\end{array}\right)\binom{\left(\mathcal{F}_{3} \zeta\right)_{(l, m, s)}^{+}}{\left(\mathcal{F}_{3} \zeta\right)_{T_{3}(l, m, s)}^{-}}\right\rangle \\
& =\left\langle\mathcal{W}_{3} \mathcal{F}_{3} \zeta,\left(\bigoplus_{(l, m, s) \in \mathfrak{T}_{3}}\left(\begin{array}{cc}
0 & (\cdot) \\
(\cdot) & 0
\end{array}\right)\right) \mathcal{W}_{3} \mathcal{F}_{3} \zeta\right\rangle \tag{29}
\end{align*}
$$

by the sequential application of (25), (21) and (6). Thus the claim of Lemma 8 is a consequence of (27), (28) and (29).
For $n=2$ we obtain (23) by an analogous procedure, i.e., we represent the upper and lower component of $\mathcal{F}_{2} \psi$ by (12) in (26) and perform a calculation, which involves (24).

3 Proof of Theorem 1

Let $V \in \mathfrak{P}_{n}$. We use the abstract minimax principle Theorem 1 of [13] to prove the Talman minimax principle. We apply the theorem with $q:=\mathrm{d}_{n}$ (quadratic form associated to $\left.D_{n}(0)\right), B:=D_{n}(V)$ and $\Lambda_{ \pm}$as the projector $T_{n}^{ \pm}$on the upper and lower $(n-1)$ components of a $2(n-1)$ spinor, i.e.,

$$
T_{n}^{+}\binom{\varphi}{\psi}=\binom{\varphi}{0}, \quad T_{n}^{-}\binom{\varphi}{\psi}=\binom{0}{\psi}, \text { for } \varphi, \psi \in \mathrm{L}^{2}\left(\mathbb{R}^{n} ; \mathbb{C}^{n-1}\right)
$$

That $D_{n}(V)$ plays the role of B in [13] is a consequence of Theorem 2.1 in [15] and the following lemma.

Lemma 9. Let $V \in \mathfrak{P}_{n}$. Then the quadratic form v associated to the operator V is a form perturbation of $D_{n}(0)$ in the sense of Definition 2.1 in [15].

Proof. V is $D_{n}(0)$ form bounded by the Herbst inequality (see Theorem 2.5 in [11]). Moreover, the inequality

$$
\left\|r^{-1 / 2} D_{n}(0)^{-1} r^{-1 / 2}\right\| \leq 4-n
$$

holds. This is proven in Section 2 in 12 for $n=3$. The same arguments also apply for $n=2$ (see Step 1 in the proof of Theorem 1 in [4). Thus

$$
\left\|V^{1 / 2} D_{n}(0)^{-1} V^{1 / 2}\right\| \leq\left\|V^{1 / 2} r^{1 / 2}\right\|^{2} \cdot\left\|r^{-1 / 2} D_{n}(0)^{-1} r^{-1 / 2}\right\|<1
$$

Hence $1+V^{1 / 2} D_{n}(0)^{-1} V^{1 / 2}$ has a bounded inverse by the Neumann series. Now the claim follows from Theorem 2.2 in [15] with $A:=D_{n}(0)$ and $t:=0$.

Since the assumptions (i) and (ii) of Theorem 1 in [13] are obviously fulfilled, it remains to check assumption (iii). Thus it is enough to find an operator $L_{n}: \mathrm{H}^{1 / 2}\left(\mathbb{R}^{n} ; \mathbb{C}^{n-1}\right) \rightarrow \mathrm{H}^{1 / 2}\left(\mathbb{R}^{n} ; \mathbb{C}^{n-1}\right)$ such that

$$
\inf _{\varphi \in \mathrm{H}^{1 / 2}\left(\mathbb{R}^{n} ; \mathbb{C}^{n-1}\right) \backslash\{0\}} \frac{\mathrm{d}_{n}\left[\binom{\varphi}{L_{n} \varphi}\right]+\mathrm{v}\left[\binom{\varphi}{L_{n}^{\prime} \varphi}\right]}{\left\|\binom{\varphi}{L_{n} \varphi}\right\|^{2}}>-1
$$

Now we give in three steps an explicit construction of L_{n} and show that L_{n} satisfies the requirements. For $k \in \mathfrak{T}_{2}$ and $(l, m, s) \in \mathfrak{T}_{3}$ we define in the first step various constants:

$$
\begin{align*}
c_{n} & :=2(4-n) \frac{\Gamma\left(\frac{n+1}{4}\right)^{2}}{\Gamma\left(\frac{n-1}{4}\right)^{2}} ; \tag{30}\\
c_{2, k} & :=\left\{\begin{array}{l}
c_{2}^{-1} \text { if } k \in \mathfrak{T}_{2}^{-}, \\
c_{2} \text { if } k \in \mathfrak{T}_{2}^{+}
\end{array}\right. \tag{31}\\
c_{3,(l, m, s)} & :=c_{3}^{2 s} . \tag{32}
\end{align*}
$$

In the second step we define the operator R_{n}

$$
\begin{equation*}
R_{n}: \bigoplus_{j \in \mathfrak{T}_{n}} \mathrm{~L}^{2}\left(\mathbb{R}_{+}\right) \rightarrow \bigoplus_{j \in \mathfrak{T}_{n}} \mathrm{~L}^{2}\left(\mathbb{R}_{+}\right) ; \bigoplus_{j \in \mathfrak{T}_{n}} \psi_{j} \mapsto \bigoplus_{j \in \mathfrak{T}_{n}} c_{n, j} \psi_{T_{n}^{-1} j} \tag{33}
\end{equation*}
$$

Finally we define

$$
\begin{equation*}
L_{n}:=\left(\mathcal{U}_{n} \mathcal{F}_{n}\right)^{*} R_{n}\left(\mathcal{U}_{n} \mathcal{F}_{n}\right) \tag{34}
\end{equation*}
$$

The desired properties of L_{n} are proven in the following lemma:
Lemma 10. Let $\varphi \in \mathrm{H}^{1 / 2}\left(\mathbb{R}^{n} ; \mathbb{C}^{n-1}\right)$ then $L_{n} \varphi \in \mathrm{H}^{1 / 2}\left(\mathbb{R}^{n} ; \mathbb{C}^{n-1}\right)$ and the following inequality

$$
\begin{equation*}
\frac{c_{n}^{2}-1}{c_{n}^{2}+1}\left\|\binom{\varphi}{L_{n} \varphi}\right\|^{2} \leq \mathrm{d}_{n}\left[\binom{\varphi}{L_{n} \varphi}\right]-\frac{1}{4-n} \int_{\mathbb{R}^{n}} \frac{1}{|\mathbf{x}|}\left|\binom{\varphi(\mathbf{x})}{\left(L_{n} \varphi\right)(\mathbf{x})}\right|^{2} \mathrm{~d} \mathbf{x} \tag{35}
\end{equation*}
$$

holds.
Proof. We recall that

$$
\mathrm{H}^{1 / 2}\left(\mathbb{R}^{n}\right)=\left\{\psi \in \mathrm{L}^{2}\left(\mathbb{R}^{n}\right):\left(1+|\cdot|^{2}\right)^{1 / 4} \mathcal{F}_{n} \psi \in \mathrm{~L}^{2}\left(\mathbb{R}^{n}\right)\right\}
$$

Thus the unitarity of \mathcal{U}_{n} implies

$$
\begin{equation*}
\mathrm{H}^{1 / 2}\left(\mathbb{R}^{n}\right)=\left\{\psi \in \mathrm{L}^{2}\left(\mathbb{R}^{n}\right): \bigoplus_{j \in \mathfrak{T}_{n}}\left(1+(\cdot)^{2}\right)^{1 / 4}\left(\mathcal{F}_{n} \psi\right)_{j} \in \bigoplus_{j \in \mathfrak{T}_{n}} \mathrm{~L}^{2}\left(\mathbb{R}_{+}\right)\right\} \tag{36}
\end{equation*}
$$

Moreover we observe that the operator R_{n} is bounded, which together with (36) and (34) implies that $L_{n} \varphi \in \mathrm{H}^{1 / 2}\left(\mathbb{R}^{n}\right)$.

Now we define the quadratic form p on $\mathrm{L}^{2}\left(\mathbb{R}_{+},\left(1+p^{2}\right)^{1 / 2} \mathrm{~d} p\right)$ by

$$
\mathrm{p}[\chi]:=\int_{0}^{\infty} p|\chi(p)|^{2} \mathrm{~d} p
$$

For the proof of (35) we recall that the quadratic form (18) satisfy the inequalities

$$
\begin{align*}
\mathrm{q}_{k+1 / 2}[\zeta] & \leq \mathrm{q}_{k-1 / 2}[\zeta] ; \\
\mathrm{q}_{k+1}[\zeta] & \leq \mathrm{q}_{k}[\zeta] ; \\
\mathrm{q}_{0}[\zeta] & \leq c_{3}^{-1} \mathrm{p}[\zeta], \quad \mathrm{q}_{1}[\zeta] \leq c_{3} \mathrm{p}[\zeta] \tag{37}\\
\mathrm{q}_{-1 / 2}[\zeta] & \leq 2 c_{2}^{-1} \mathrm{p}[\zeta], \quad \mathrm{q}_{1 / 2}[\zeta] \leq 2 c_{2} \mathrm{p}[\zeta] ;
\end{align*}
$$

for $k \in \mathbb{N}_{0}$ and $\zeta \in \mathrm{L}^{2}\left(\mathbb{R}_{+},\left(1+p^{2}\right)^{1 / 2} \mathrm{~d} p\right)$ (see [2] and [10]).
By Lemma 7 we obtain

$$
\int_{\mathbb{R}^{n}} \frac{|\varphi(\mathbf{x})|^{2}}{|\mathbf{x}|} \mathrm{d} \mathbf{x}=\left\{\begin{array}{l}
\sum_{k \in \mathfrak{T}_{2}} \mathrm{q}_{|k|-1 / 2}\left[\left(\mathcal{F}_{2} \varphi\right)_{k}\right] \text { if } n=2 \tag{38}\\
\sum_{(l, m, s) \in \mathfrak{T}_{3}} \mathrm{q}_{l}\left[\left(\mathcal{F}_{3} \varphi\right)_{(l, m, s)}\right] \text { if } n=3
\end{array}\right.
$$

and by (31) - (34)

$$
\begin{align*}
& \int_{\mathbb{R}^{n}} \frac{\left|\left(L_{n} \varphi\right)(\mathbf{x})\right|^{2}}{|\mathbf{x}|} \mathrm{d} \mathbf{x} \\
& =\left\{\begin{array}{l}
\sum_{k \in \mathfrak{T}_{2}^{+}} c_{2}^{2} \mathrm{q}_{|k|-\frac{1}{2}}\left[\left(\mathcal{F}_{2} \varphi\right)_{k-1}\right]+\sum_{k \in \mathfrak{T}_{2}^{-}} c_{2}^{-2} \mathrm{q}_{|k|-\frac{1}{2}}\left[\left(\mathcal{F}_{2} \varphi\right)_{k-1}\right] \text { if } n=2 ; \\
\sum_{\left(l, m, \frac{1}{2}\right) \in \mathfrak{T}_{3}^{+}} c_{l}^{2} \mathfrak{q}_{l}\left[\left(\mathcal{F}_{3} \varphi\right)_{\left.\left(l+1, m,-\frac{1}{2}\right)\right]+\sum_{\left(l, m,-\frac{1}{2}\right) \in \mathfrak{T}_{3}^{-}} c_{l}^{-2} \mathrm{q}_{l}\left[\left(\mathcal{F}_{3} \varphi\right)_{\left(l-1, m, \frac{1}{2}\right)}\right] \text { if } n=3 .}\right.
\end{array} .\right. \tag{39}
\end{align*}
$$

Note that $(l, m, s) \in \mathfrak{T}_{3}^{-}$implies $l \in \mathbb{N}$. Hence (37) implies that the right hand sides of (38) can be estimated by

$$
\begin{equation*}
(4-n)\left(\sum_{j \in \mathfrak{T}_{n}^{+}} c_{n}^{-1} \mathrm{p}\left[\left(\mathcal{F}_{n} \varphi\right)_{j}\right]+\sum_{j \in \mathfrak{T}_{n}^{-}} c_{n} \mathrm{p}\left[\left(\mathcal{F}_{n} \varphi\right)_{j}\right]\right) \tag{40}
\end{equation*}
$$

and the right hand side of (39) by

$$
\begin{equation*}
(4-n)\left(\sum_{j \in \mathfrak{T}_{n}^{+}} c_{n} \mathrm{p}\left[\left(\mathcal{F}_{n} \varphi\right)_{T_{n}^{-1} j}\right]+\sum_{j \in \mathfrak{T}_{n}^{-}} c_{n}^{-1} \mathrm{p}\left[\left(\mathcal{F}_{n} \varphi\right)_{T_{n}^{-1} j}\right]\right) \tag{41}
\end{equation*}
$$

By $T_{n}\left(\mathfrak{T}_{n}^{ \pm}\right)=\mathfrak{T}_{n}^{\mp}$ we conclude that (41) is equal to (40). This together with the relation

$$
\left(\mathcal{F}_{n} L_{n} \varphi\right)_{T_{n} j}=c_{n, T_{n} j}\left(\mathcal{F}_{n} \varphi\right)_{j} \text { for all } j \in \mathfrak{T}_{n}
$$

implies

$$
\begin{align*}
& \frac{1}{4-n} \int_{\mathbb{R}^{n}} \frac{1}{|\mathbf{x}|}\left|\binom{\varphi(\mathbf{x})}{\left(L_{n} \varphi\right)(\mathbf{x})}\right|^{2} \mathrm{~d} \mathbf{x} \leq \\
& \sum_{j \in \mathfrak{T}_{n}} \int_{\mathbb{R}_{+}}\left\langle\binom{\left(\mathcal{F}_{n} \varphi\right)_{j}(p)}{\left(\mathcal{F}_{n} L_{n} \varphi\right)_{T_{n} j}(p)},\left(\begin{array}{ll}
0 & p \\
p & 0
\end{array}\right)\binom{\left(\mathcal{F}_{n} \varphi\right)_{j}(p)}{\left(\mathcal{F}_{n} L_{n} \varphi\right)_{T_{n} j}(p)}\right\rangle_{\mathbb{C}^{2}} \mathrm{~d} p . \tag{42}
\end{align*}
$$

A straightforward calculation using (31) - (34) gives

$$
\begin{align*}
& \left\langle\binom{\varphi}{L_{n} \varphi},\left(\begin{array}{cc}
\mathbb{I}_{\mathbb{C}^{n-1}} & 0 \\
0 & \mp \mathbb{I}_{\mathbb{C}^{n-1}}
\end{array}\right)\binom{\varphi}{L_{n} \varphi}\right\rangle \\
& =\left(1 \mp c_{n}^{-2}\right) \sum_{j \in \mathfrak{T}_{n}^{+}}\left\|\left(\mathcal{F}_{n} \varphi\right)_{j}\right\|^{2}+\left(1 \mp c_{n}^{2}\right) \sum_{j \in \mathfrak{T}_{n}^{-}}\left\|\left(\mathcal{F}_{n} \varphi\right)_{j}\right\|^{2} . \tag{43}
\end{align*}
$$

By Lemma 8 we know that the right hand side of Relation (42) plus the minus case of the left hand side of (43) is equal to $\mathrm{d}_{n}\left[\binom{\varphi}{L_{n} \varphi}\right]$. Thus we obtain (35) by (42) and (43).

4 Proof of Theorem 2

We proceed analogously to the proof of Theorem 1. Thus it is enough to find an operator $G_{n}: P_{n}^{+} \mathrm{H}^{1 / 2}\left(\mathbb{R}^{n} ; \mathbb{C}^{2(n-1)}\right) \rightarrow P_{n}^{-} \mathrm{H}^{1 / 2}\left(\mathbb{R}^{n} ; \mathbb{C}^{2(n-1)}\right)$ such that

$$
\begin{equation*}
\inf _{\varphi \in P_{n}^{+} \mathbf{H}^{1 / 2}\left(\mathbb{R}^{n} ; \mathbb{C}^{2(n-1)}\right) \backslash\{0\}} \frac{\mathrm{d}_{n}\left[\varphi+G_{n} \varphi\right]+\mathrm{v}\left[\varphi+G_{n} \varphi\right]}{\left\|\varphi+G_{n} \varphi\right\|^{2}}>-1 \tag{44}
\end{equation*}
$$

holds. In the following lemma we prove that a possible choice of G_{n} is

$$
\begin{equation*}
G_{n}:=\left(\mathcal{W}_{n} \mathcal{F}_{n}\right)^{*} E_{n}\left(\mathcal{W}_{n} \mathcal{F}_{n}\right), \tag{45}
\end{equation*}
$$

with

$$
\begin{align*}
E_{n}: \bigoplus_{j \in \mathfrak{T}_{n}} \mathrm{~L}^{2}\left(\mathbb{R}_{+} ; \mathbb{C}^{2}\right) \rightarrow & \bigoplus_{j \in \mathfrak{T}_{n}} \mathrm{~L}^{2}\left(\mathbb{R}_{+} ; \mathbb{C}^{2}\right) ; \tag{46}\\
& \bigoplus_{j \in \mathfrak{T}_{n}} \Psi_{j}
\end{align*}>\bigoplus_{j \in \mathfrak{T}_{n}} \frac{1-c_{n, j}(\cdot)+\sqrt{1+(\cdot)^{2}}}{c_{n, j}+(\cdot)+c_{n, j} \sqrt{1+(\cdot)^{2}}}\left(\begin{array}{cc}
0 & -1 \tag{47}\\
1 & 0
\end{array}\right) \Psi_{j} .
$$

Lemma 11. Let $\varphi \in P_{n}^{+} \mathrm{H}^{1 / 2}\left(\mathbb{R}^{n} ; \mathbb{C}^{2(n-1)}\right)$ then $G_{n} \varphi \in P_{n}^{-} \mathrm{H}^{1 / 2}\left(\mathbb{R}^{n} ; \mathbb{C}^{2(n-1)}\right)$ and the relation

$$
\begin{equation*}
L_{n}\left(\varphi+G_{n} \varphi\right)_{1}=\left(\varphi+G_{n} \varphi\right)_{2} \tag{48}
\end{equation*}
$$

holds.

Remark 12. By Lemma 10 and Relation (48) we conclude (44).
Proof of Lemma 11. By Lemma 8 we deduce that $\psi \in P_{n}^{ \pm} \mathrm{H}^{1 / 2}\left(\mathbb{R}^{n} ; \mathbb{C}^{2(n-1)}\right)$ if and only if there exists $\underset{j \in \mathfrak{T}_{n}}{ } \zeta_{j} \in \underset{j \in \mathfrak{T}_{n}}{ } \mathrm{~L}^{2}\left(\mathbb{R}_{+} ;\left(1+p^{2}\right)^{1 / 2} \mathrm{~d} p\right)$ such that

$$
\left(\mathcal{W}_{n} \mathcal{F}_{n} \psi\right)_{j}(p)=\left\{\begin{array}{l}
\zeta_{j}(p)\left(\frac { 1 } { (\frac { p } { 1 + \sqrt { 1 + p ^ { 2 } } }) } \left(\begin{array}{l}
("+" \text { case }) \\
\zeta_{j}(p)\binom{\frac{-p}{1+\sqrt{1+p^{2}}}}{1}("-" \text { case })
\end{array}\right.\right. \text { } \tag{49}
\end{array}\right.
$$

holds for every $j \in \mathfrak{T}_{n}$ and $p \in \mathbb{R}_{+}$. Hence we get $G_{n} \varphi \in P_{n}^{-} \mathbf{H}^{1 / 2}\left(\mathbb{R}^{n} ; \mathbb{C}^{2(n-1)}\right)$. By (49), (46) we obtain that there exists $\bigoplus_{j \in \mathfrak{T}_{n}} \chi_{j} \in \bigoplus_{j \in \mathfrak{T}_{n}} \mathrm{~L}^{n}\left(\mathbb{R}_{+} ;\left(1+p^{2}\right)^{1 / 2} \mathrm{~d} p\right)$ such that

$$
\left(\mathcal{W}_{n} \mathcal{F}_{n} \varphi\right)_{j}(p)=\chi_{j}(p)\left(\frac{1}{p}\right)
$$

and

$$
\begin{align*}
& \left(\left(\mathbb{I}+E_{n}\right) \mathcal{W}_{n} \mathcal{F}_{n} \varphi\right)_{j}=\binom{\tilde{\chi}_{j}}{c_{n, T_{n} j} \tilde{\chi}_{j}} \text { with } \\
& \tilde{\chi}_{j}(p):=\frac{c_{n, j}\left(p^{2}+\left(1+\sqrt{1+p^{2}}\right)^{2}\right)}{\left(1+\sqrt{1+p^{2}}\right)\left(c_{n, j}+p+c_{n, j} \sqrt{1+p^{2}}\right)} \chi_{j}(p) \text { for } p \in \mathbb{R}_{+} \tag{50}
\end{align*}
$$

hold for every $j \in \mathfrak{T}_{n}$. Hence we get by (45),(33) and (34) the relation

$$
\varphi+G_{n} \varphi=\left(\mathcal{W}_{n} \mathcal{F}_{n}\right)^{*} \bigoplus_{j \in \mathfrak{T}_{n}}\binom{\tilde{\chi}_{j}}{c_{n, T_{n} j} \tilde{\chi}_{j}}=\binom{\left(\mathcal{U}_{n} \mathcal{F}_{n}\right)^{*} \bigoplus_{j \in \mathfrak{T}_{n}} \tilde{\chi}_{j}}{L_{n}\left(\mathcal{U}_{n} \mathcal{F}_{n}\right)^{*} \bigoplus_{j \in \mathfrak{T}_{n}} \tilde{\chi}_{j}}
$$

Thus we have proven Relation (48).

5 Proof of Theorem 3

Since the right hand side of (22) is continuous in the $\mathrm{H}^{1}\left(\mathbb{R}^{n} ; \mathbb{C}^{n-1}\right)$ norm (see Theorem 2.5 in [11), we can assume that $\varphi \in \mathrm{C}_{0}^{\infty}\left(\mathbb{R}^{n} \backslash\{0\} ; \mathbb{C}^{n-1}\right) \backslash\{0\}$ by the density of $\mathrm{C}_{0}^{\infty}\left(\mathbb{R}^{n} \backslash\{0\} ; \mathbb{C}^{n-1}\right)$ in $\mathrm{H}^{1}\left(\mathbb{R}^{n} ; \mathbb{C}^{n-1}\right)$.

By the application of Theorem $\mathbb{1}$ we obtain

$$
\begin{align*}
\lambda(v) \leq & \sup _{\psi \in \mathrm{H}^{1}\left(\mathbb{R}^{n} \backslash\{0\} ; \mathbb{C}^{n-1}\right)} I_{n, v, \varphi}(\psi) \text { with } \tag{51}\\
I_{n, v, \varphi} & : \mathrm{H}^{1}\left(\mathbb{R}^{n} \backslash\{0\} ; \mathbb{C}^{n-1}\right) \rightarrow \mathbb{R} ; \tag{52}\\
I_{n, v, \varphi}(\psi) & :=\frac{\left\langle\binom{\varphi}{\psi},\left(\begin{array}{cc}
(1+v) \otimes \mathbb{I}_{\mathbb{C}^{n-1}} & K_{n} \\
K_{n} & (-1+v) \otimes \mathbb{I}_{\mathbb{C}^{n-1}}
\end{array}\right)\binom{\varphi}{\psi}\right\rangle}{\left\|\binom{\varphi}{\psi}\right\|^{2}} \tag{53}
\end{align*}
$$

Note that we calculate the suprema in (51) over $\mathrm{H}^{1}\left(\mathbb{R}^{n} \backslash\{0\} ; \mathbb{C}^{n-1}\right)$ instead of $\mathrm{H}^{1 / 2}\left(\mathbb{R}^{n} ; \mathbb{C}^{n-1}\right)$. This is justified by a density argument, which makes use of the form boundedness of $v \otimes \mathbb{I}_{\mathbb{C}^{2(n-1)}}$ with respect to $D_{n}(0)$ (see Lemma 9) and the density of $\mathbf{H}^{1}\left(\mathbb{R}^{n} \backslash\{0\} ; \mathbb{C}^{n-1}\right)$ in $\mathrm{H}^{1 / 2}\left(\mathbb{R}^{n} ; \mathbb{C}^{n-1}\right)$.
Thus the proof of Theorem 3 basically follows from the following lemma.
Lemma 13. We define

$$
\begin{aligned}
J_{n, v, \varphi}:(-1, \infty) & \rightarrow \mathbb{R} \\
J_{n, v, \varphi}(\lambda) & :=\int_{\mathbb{R}^{n}}\left(\frac{\left|K_{n} \varphi(\mathbf{x})\right|^{2}}{1+\lambda-v(\mathbf{x})}+(1-\lambda+v(\mathbf{x}))|\varphi(\mathbf{x})|^{2}\right) \mathrm{d} \mathbf{x} .
\end{aligned}
$$

For $\lambda \in(-1, \infty), J_{n, v, \varphi}(\lambda) \leq 0$ implies

$$
\sup _{\psi \in \mathrm{H}^{1}\left(\mathbb{R}^{n} \backslash\{0\} ; \mathbb{C}^{n-1}\right)} I_{n, v, \varphi}(\psi) \leq \lambda
$$

Proof. We introduce

$$
\begin{equation*}
\psi_{n, v, \varphi}:(-1, \infty) \rightarrow \mathrm{H}^{1}\left(\mathbb{R}^{n} \backslash\{0\} ; \mathbb{C}^{n-1}\right) ; \quad \psi_{n, v, \varphi}(\lambda):=\frac{K_{n} \varphi}{1+\lambda-v} \tag{54}
\end{equation*}
$$

For every $\zeta \in \mathbf{H}^{1}\left(\mathbb{R}^{n} \backslash\{0\} ; \mathbb{C}^{n-1}\right)$ the inequality

$$
\begin{aligned}
& \left(I_{n, v, \varphi}\left(\psi_{n, v, \varphi}(\lambda)+\zeta\right)-\lambda\right)\left(\|\varphi\|^{2}+\left\|\psi_{n, v, \varphi}(\lambda)+\zeta\right\|^{2}\right) \\
& =J_{n, v, \varphi}(\lambda)+2 \Re\left\langle\zeta, K_{n} \varphi-(1+\lambda-v) \psi_{n, v, \varphi}(\lambda)\right\rangle+ \\
& \left\langle K_{n} \varphi-(1+\lambda-v) \psi_{n, v, \varphi}(\lambda), \psi_{n, v, \varphi}(\lambda)\right\rangle-\langle\zeta,(1+\lambda-v) \zeta\rangle \leq J_{n, v, \varphi}(\lambda)
\end{aligned}
$$

holds, and thus we conclude the claim.
By Lemma 13 and (51) we obtain

$$
\begin{equation*}
J_{n, v, \varphi}(\lambda(v)-\varepsilon)>0 \text { for } \varepsilon \in(0,1+\lambda(v)) \tag{55}
\end{equation*}
$$

Letting $\varepsilon \searrow 0$ in (55) we obtain Theorem 3

6 Proof of Theorem 5

The proof is based on:
Lemma 14. Let $\nu \in[0,1 /(4-n)]$. The restriction of $\left(\tilde{D}_{n}\left(-\nu /|\cdot| \otimes \mathbb{I}_{\mathbb{C}^{2(n-1)}}\right)\right)^{*}$ to \mathfrak{C}_{n}^{ν} is essentially self-adjoint.

Proof. For $m \in \mathfrak{T}_{2}$ and $(l, m, s) \in \mathfrak{T}_{3}$ we define

$$
\begin{aligned}
\kappa_{m} & :=m+1 / 2 \\
\kappa_{(l, m, s)} & :=2 s l+s+1 / 2
\end{aligned}
$$

Furthermore we introduce for every $j \in \mathfrak{T}_{n}$ the operator $D^{j, \nu}$ in $\mathrm{L}^{2}\left(\mathbb{R}_{+} ; \mathbb{C}^{2}\right)$ by the differential expression

$$
d^{j, \nu}:=\left(\begin{array}{cc}
-\frac{\nu}{r} & -\frac{\mathrm{d}}{\mathrm{~d} r}-\frac{\kappa_{j}}{r} \\
\frac{\mathrm{~d}}{\mathrm{~d} r}-\frac{\kappa_{j}}{r} & -\frac{\nu}{r}
\end{array}\right)
$$

on $\mathbb{C}_{0}^{\infty}\left(\mathbb{R}_{+} ; \mathbb{C}^{2}\right)$. Now we observe that any solution of the equation $d^{j, \nu} \varphi=0$ in \mathbb{R}_{+}is a linear combination of the two functions
and

$$
\varphi_{j, 2}^{\nu}(r):=\left\{\begin{array}{l}
\binom{0}{1} r^{-\kappa_{j}} \text { if } \nu=0, \\
\binom{\nu}{-\sqrt{\kappa_{j}^{2}-\nu^{2}}-\kappa_{j}} r^{-\sqrt{\kappa_{j}^{2}-\nu^{2}}} \text { if } 0<\nu^{2}<\kappa_{j}^{2} \\
\binom{\nu \ln (r)}{1-\kappa_{j} \ln (r)} \text { if } \nu^{2}=\kappa_{j}^{2} .
\end{array}\right.
$$

Through the application of the results of 20 as in Section 2 in 14 we obtain that the closure $D_{\text {ex }}^{j, \nu}$ of the restriction of $\left(D^{j, \nu}\right)^{*}$ to $\mathfrak{C}^{\mathfrak{j}, \nu}$ is self-adjoint with

$$
\mathfrak{C}^{\mathfrak{j}, \nu}:=\left\{\begin{array}{l}
\mathrm{C}_{0}^{\infty}\left(\mathbb{R}_{+} ; \mathbb{C}^{2}\right) \dot{+} \operatorname{span}\left\{\xi \varphi_{j, 1}^{\nu}\right\} \text { if } \kappa_{j}^{2}-\nu^{2}<1 / 4 \\
\mathrm{C}_{0}^{\infty}\left(\mathbb{R}_{+} ; \mathbb{C}^{2}\right) \text { else. }
\end{array}\right.
$$

Here ξ is a smooth cut-off function with $\xi \in \mathrm{C}^{\infty}\left(\mathbb{R}_{+} ; \mathbb{R}_{+}\right), \xi(t)=1$ for $t \in(0,1)$
and $\xi(t)=0$ for $t>2$. Thus we conclude the claim by

$$
\begin{align*}
&\left(\tilde{D}_{n}\left(-\nu /|\cdot| \otimes \mathbb{I}_{\mathbb{C}^{2}(n-1)}\right)\right)^{*}=\left(\mathcal{W}_{n} \mathcal{M}_{n}\right)^{*}\left(\bigoplus_{j \in \mathfrak{T}_{n}}\left(D^{j, \nu}+\sigma_{3}\right)^{*}\right) \mathcal{W}_{n} \mathcal{M}_{n} \text { with } \tag{56}\\
& \mathcal{M}_{n}:=\operatorname{diag}(1, \mathrm{i}) \otimes \mathbb{I}_{\mathbb{C}^{n-1}}
\end{align*}
$$

(see Section 7.3.3 in 19 for $n=2$ and Section 2.1 in 1 for $n=3$) and the fact that σ_{3} is a bounded operator in $L^{2}\left(\mathbb{R}_{+} ; \mathbb{C}^{2}\right)$.

Remark 15. Let $\nu \in[0,1 /(4-n))$ and $j \in \mathfrak{T}_{n}$. By the embedding

$$
\mathrm{H}^{1 / 2}\left(\mathbb{R}^{n}\right) \subset \mathrm{L}^{2}\left(\mathbb{R}^{n},\left(1+|\mathbf{x}|^{-1}\right) \mathrm{d} \mathbf{x}\right)
$$

and (56) we obtain that the domain of $\left(\mathcal{W}_{n} M_{n} D_{n}\left(-\nu /|\cdot| \otimes \mathbb{I}_{\mathbb{C}^{2(n-1)}}\right)\left(\mathcal{W}_{n} M_{n}\right)^{*}\right)_{j}$ is in $\mathrm{L}^{2}\left(\mathbb{R}_{+},\left(1+r^{-1}\right) \mathrm{d} r\right)$. Hence there is a self-adjoint extension of $D^{j, \nu}$ with domain in $\mathrm{L}^{2}\left(\mathbb{R}_{+},\left(1+r^{-1}\right) \mathrm{d} r\right)$. By $\xi \varphi_{j, 2}^{\nu} \notin \mathrm{L}^{2}\left(\mathbb{R}_{+},\left(1+r^{-1}\right) \mathrm{d} r\right)$ for $\nu>0$ and Theorem 1.5 in [20] we get that $D_{\mathrm{ex}}^{j, \nu}$ is the unique self-adjoint extension of $D^{j, \nu}$ with domain in $\mathrm{L}^{2}\left(\mathbb{R}_{+},\left(1+r^{-1}\right) \mathrm{d} r\right)$. Therefore, we obtain

$$
\left(\mathcal{W}_{n} M_{n} D_{n}\left(-\nu /|\cdot| \otimes \mathbb{I}_{\mathbb{C}^{2}(n-1)}\right)\left(\mathcal{W}_{n} M_{n}\right)^{*}\right)_{j}=D_{\mathrm{ex}}^{j, \nu}
$$

We conclude that the closure of $\left(\tilde{D}_{n}\left(-\nu /|\cdot| \otimes \mathbb{I}_{\mathbb{C}^{2}(n-1)}\right)\right)^{*}$ restricted to \mathfrak{C}_{n}^{ν} is $D_{n}\left(-\nu /|\cdot| \otimes \mathbb{I}_{\mathbb{C}^{2(n-1)}}\right)$.
As a consequence of Lemma 14 it remains to prove that $\zeta_{n, m}^{\nu} \in \mathfrak{D}\left(D_{n}^{\nu}\right)$ for $m \in\{-1 / 2,1 / 2\}^{n-1}$ and $(n, \nu) \in(\{2\} \times(0,1 / 2]) \cup(\{3\} \times(\sqrt{3} / 2,1])$. We introduce the symmetric and non-negative (by Corollary (4) quadratic form q_{n}^{ν} on $\mathrm{C}_{0}^{\infty}\left(\mathbb{R}^{n} \backslash\{0\} ; \mathbb{C}^{n-1}\right)$ by

$$
\begin{aligned}
\mathrm{q}_{n}^{\nu}[\varphi]:= & \int_{\mathbb{R}^{n}}\left(\frac{\left|K_{n} \varphi\right|^{2}}{1+\sqrt{1-((4-n) \nu)^{2}}+\frac{\nu}{|\mathbf{x}|}}+\right. \\
& \left.\left(1-\sqrt{1-((4-n) \nu)^{2}}-\frac{\nu}{|\mathbf{x}|}\right)|\varphi|^{2}\right) \mathrm{d} \mathbf{x} .
\end{aligned}
$$

Note that q_{n}^{ν} is closable by Theorem X. 23 in [16. We denote the domain of the closure of q_{n}^{ν} by \mathfrak{Q}_{n}^{ν}.
By the characterisation of $\mathfrak{D}\left(D_{n}^{\nu}\right)$ in Theorem 1 in [8], it is enough to show that for all $m \in\{-1 / 2,1 / 2\}^{n-1}$ the upper $(n-1)$ spinor of $\zeta_{n, m}^{\nu}$ is in \mathfrak{Q}_{n}^{ν}, i.e., $\varsigma_{n, m}^{\nu} \in \mathfrak{Q}_{n}^{\nu}$ with $\varsigma_{2, m}^{\nu}$ given in polar coordinates by

$$
\varsigma_{2, m}^{\nu}(\rho, \vartheta):=\xi(\rho) \rho^{\sqrt{1 / 4-\nu^{2}}-1 / 2} \mathrm{e}^{-\mathrm{i}(m+1 / 2) \vartheta} ;
$$

and $\varsigma_{3, m}^{\nu}$ in spherical coordinates by

$$
\varsigma_{3, m}^{\nu}(r, \theta, \phi):=\xi(r) r^{\sqrt{1-\nu^{2}}-1} \Omega_{1 / 2+m_{2}, m_{1},-m_{2}}(\theta, \phi)
$$

We achieve this goal by the application of the following abstract lemma

Lemma 16. Let q be a closable and non-negative quadratic form on a dense linear subspace \mathfrak{Q} of the Hilbert space \mathfrak{H} and $\psi \in \mathfrak{H}$. If there is a sequence $\left(\psi_{n}\right)_{n \in \mathbb{N}} \subset \mathfrak{Q}$ with $\sup _{n \in \mathbb{N}} \mathrm{q}\left[\psi_{n}\right]<\infty$ which converges weakly in \mathfrak{H} to ψ, then ψ is in the domain of the closure of q .
Proof. We denote by $\overline{\mathrm{q}}$ the closure of q and by $\overline{\mathfrak{Q}}$ the domain of $\overline{\mathrm{q}}$. There is a unique self-adjoint operator $B: \overline{\mathfrak{Q}} \rightarrow \mathfrak{H}$ with

$$
\overline{\mathrm{q}}[\varphi]=\|B \varphi\|^{2} \text { for all } \varphi \in \overline{\mathfrak{Q}}
$$

by Theorem 2.13 in [18] (B^{2} corresponds to A there). Thus we know that

$$
\sup _{n \in \mathbb{N}}\left\|B \psi_{n}\right\|^{2}<\infty
$$

Hence there is a $\Psi \in \mathfrak{H}$ and a subsequence $\left(B \psi_{n_{k}}\right)_{n_{k} \in \mathbb{N}}$ of $\left(B \psi_{n}\right)_{n \in \mathbb{N}} \subset \mathfrak{H}$ that converges weakly to Ψ by the Banach-Alaoglu Theorem. This implies that $\left(\left(\psi_{n_{k}}, B \psi_{n_{k}}\right)\right)_{n_{k} \in \mathbb{N}}$ converges weakly to $(\psi, \Psi) \in \mathfrak{H} \oplus \mathfrak{H}$. By the closedness of the graph of B and Theorem 8 in Chapter 1 of [3] we deduce the claim.

Now we pick $v \in C_{0}^{\infty}\left(\mathbb{R}_{+}\right)$such that $v(r)=\xi(r)$ for all $r \in[1, \infty)$ and $0 \leq$ $v(r) \leq 1$ for $r \in(0,1)$. Let $k \in \mathbb{N}$. We define

$$
v_{k}(r):= \begin{cases}v(k r) & \text { if } r \in(0,1 / k] \\ 1 & \text { if } r \in(1 / k, 1] \\ \xi(r) & \text { else }\end{cases}
$$

and the function $\varsigma_{2, m, k}^{\nu}$ in the polar coordinates by

$$
\varsigma_{2, m, k}^{\nu}(\rho, \vartheta):=v_{k}(\rho) \rho^{\sqrt{1 / 4-\nu^{2}}-1 / 2} \mathrm{e}^{-\mathrm{i}(m+1 / 2) \vartheta}
$$

and $\varsigma_{3, m, k}^{\nu}$ in the spherical coordinates by

$$
\varsigma_{3, m, k}^{\nu}(r, \theta, \phi):=v_{k}(r) r^{\sqrt{1-\nu^{2}}-1} \Omega_{1 / 2+m_{2}, m_{1},-m_{2}}(\theta, \phi)
$$

The sequence $\left(\varsigma_{n, m, k}^{\nu}\right)_{k \in \mathbb{N}}$ converges to $\varsigma_{n, m}^{\nu}$ in $\mathrm{L}^{2}\left(\mathbb{R}^{n} ; \mathbb{C}^{n-1}\right)$. By Lemma 16 it is thus enough to prove that

$$
\begin{equation*}
\sup _{k \in \mathbb{N}} \mathrm{q}_{n}^{\nu}\left[\varsigma_{n, m, k}^{\nu}\right]<\infty \tag{57}
\end{equation*}
$$

Let $\varphi \in \mathrm{C}_{0}^{\infty}\left(\mathbb{R}^{n} \backslash\{0\} ; \mathbb{C}^{n-1}\right)$. At first we observe that

$$
\begin{equation*}
\mathbf{q}_{n}^{\nu}[\varphi] \leq \int_{\mathbb{R}^{n}}\left(\frac{|x|}{\nu}\left|K_{n} \varphi\right|^{2}-\frac{\nu}{|x|}|\varphi|^{2}+|\varphi|^{2}\right) \mathrm{d} \mathbf{x} . \tag{58}
\end{equation*}
$$

A tedious calculation shows

$$
K_{n}=\left\{\begin{array}{l}
-\mathrm{i} \mathrm{e}^{i \vartheta}\left(\partial_{\varrho}-\frac{1}{\rho} A_{2}\right) \text { with } A_{2}:=-\mathrm{i} \partial_{\vartheta} \text { if } n=2 \tag{59}\\
-\mathrm{i}\left(\boldsymbol{\sigma} \cdot \frac{x}{|x|}\right)\left(\partial_{r}-\frac{1}{r} A_{3}\right) \text { with } A_{3}:=\boldsymbol{\sigma} \cdot(-\mathrm{ix} \wedge \nabla) \text { if } n=3
\end{array}\right.
$$

Using (59) and integration by parts we obtain that the right hand side of (58) is equal to

$$
\begin{equation*}
\int_{\mathbb{R}^{n}}\left(\frac{|\mathbf{x}|}{\nu}\left|\partial_{|\mathbf{x}|} \varphi\right|^{2}+\frac{1}{\nu|\mathbf{x}|}\left|\left(1 /(4-n)+A_{n}\right) \varphi\right|^{2}-\frac{\left(\nu+\frac{1}{(4-n)^{2} \nu}\right)}{|\mathbf{x}|}|\varphi|^{2}+|\varphi|^{2}\right) \mathrm{d} \mathbf{x} . \tag{60}
\end{equation*}
$$

By (60) and Relation 2.1.37 in [1 we obtain

$$
\begin{align*}
& \int_{\mathbb{R}^{n}}\left(\frac{|x|}{\nu}\left|K_{n} \varsigma_{n, m, k}^{\nu}\right|^{2}-\frac{\nu}{|x|}\left|\varsigma_{n, m, k}^{\nu}\right|^{2}+\left|\varsigma_{n, m, k}^{\nu}\right|^{2}\right) \mathrm{d} \mathbf{x} \\
= & \int_{0}^{\infty}\left(\frac{t^{n}}{\nu}\left|\partial_{t} v_{k}(t) t \sqrt{(4-n)^{-2}-\nu^{2}}-(4-n)^{-1}\right|^{2}\right. \tag{61}\\
& \left.-\nu v_{k}(t)^{2} t^{2 \sqrt{(4-n)^{-2}-\nu^{2}}-1}+v_{k}(t)^{2} t^{2 \sqrt{(4-n)^{-2}-\nu^{2}}}\right) \mathrm{d} t .
\end{align*}
$$

A straightforward calculation shows that (61) is equal to

$$
\begin{align*}
& \int_{0}^{\infty}\left(\nu^{-1} v_{k}^{\prime}(t)^{2} t^{2} \sqrt{(4-n)^{-2}-\nu^{2}}+1\right. \\
&\left.v_{k}(t)^{2} t^{2 \sqrt{(4-n)^{-2}-\nu^{2}}}\right) \mathrm{d} t \tag{62}\\
&= \int_{0}^{1 / k} \nu^{-1} k^{2} v^{\prime}(k t)^{2} t^{2 \sqrt{(4-n)^{-2}-\nu^{2}}+1} \mathrm{~d} t+\int_{1}^{\infty} \nu^{-1} v^{\prime}(t)^{2} r^{2 \sqrt{(4-n)^{-2}-\nu^{2}}+1} \mathrm{~d} t \\
&+ \int_{0}^{\infty} v_{k}(t)^{2} t^{2} \sqrt{(4-n)^{-2}-\nu^{2}} \mathrm{~d} t .
\end{align*}
$$

An upper bound for the expression in (62) is

$$
\begin{equation*}
\int_{0}^{\infty} \nu^{-1} v^{\prime}(t)^{2} t^{2 \sqrt{(4-n)^{-2}-\nu^{2}}+1} \mathrm{~d} t+\int_{0}^{\infty} \xi(t)^{2} t^{2 \sqrt{(4-n)^{-2}-\nu^{2}}} \mathrm{~d} t . \tag{63}
\end{equation*}
$$

The combination of (63), (62) (61) and (58) implies (57).

References

[1] Alexander A. Balinsky and William D. Evans. Spectral analysis of relativistic operators. Imperial College Press, 2011.
[2] Abdelkader Bouzouina. Stability of the two-dimensional Brown-Ravenhall operator. Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 132(05):1133-1144, 2002.
[3] Ward Cheney. Analysis for applied mathematics, volume 208. Springer Science \& Business Media, 2013.
[4] Jean-Claude Cuenin and Heinz Siedentop. Dipoles in graphene have infinitely many bound states. Journal of Mathematical Physics, 55(12), 2014.
[5] Jean Dolbeault, Maria J. Esteban, Michael Loss, and Luis Vega. An analytical proof of Hardy-like inequalities related to the Dirac operator. Journal of Functional Analysis, 216(1):1-21, 2004.
[6] Jean Dolbeault, Maria J. Esteban, and Eric Séré. On the eigenvalues of operators with gaps. Application to Dirac operators. Journal of Functional Analysis, 174(1):208-226, 2000.
[7] Shi-Hai Dong and Zhong-Qi Ma. Exact solutions to the Dirac equation with a Coulomb potential in $2+1$ dimensions. Physics Letters A, 312(1):7883, 2003.
[8] Maria J. Esteban and Michael Loss. Self-adjointness via partial Hardy-like inequalities. In Mathematical results in quantum mechanics, pages 41-47. World Sci. Publ., Hackensack, NJ, 2008.
[9] Maria J. Esteban and Eric Séré. Existence and multiplicity of solutions for linear and nonlinear Dirac problems. In Partial Differential Equations and their Applications, volume 12 of CRM Proceedings and Lecture Notes, pages 107-118. American Mathematical Society, 1997.
[10] William D. Evans, Peter Perry, and Heinz Siedentop. The spectrum of relativistic one-electron atoms according to Bethe and Salpeter. Communications in Mathematical Physics, 178(3):733-746, 1996.
[11] Ira W. Herbst. Spectral theory of the operator $\left(p^{2}+m^{2}\right)^{1 / 2}-Z e^{2} / r$. Communications in Mathematical Physics, 53(3):285-294, 1977.
[12] Tosio Kato. Holomorphic families of Dirac operators. Mathematische Zeitschrift, 183(3):399-406, 1983.
[13] Sergey Morozov and David Müller. On the minimax principle for CoulombDirac operators. Mathematische Zeitschrift, 280:733-747, 2015.
[14] Sergey Morozov and David Müller. Lieb-Thirring and Cwickel-LiebRozenblum inequalities for perturbed graphene with a Coulomb impurity. Preprint, 2016.
[15] Gheorghe Nenciu. Self-adjointness and invariance of the essential spectrum for Dirac operators defined as quadratic forms. Communications in Mathematical Physics, 48(3):235-247, 1976.
[16] Michael Reed and Barry Simon. Methods of modern mathematical physics II: Fourier analysis, self-adjointness, volume 2. Academic Press, 1975.
[17] James D. Talman. Minimax principle for the Dirac equation. Physical Review Letters, 57(9):1091-1094, 1986.
[18] Gerald Teschl. Mathematical methods in quantum mechanics, volume 99. American Mathematical Society, 2009.
[19] Bernd Thaller. The Dirac equation. Springer-Verlag, Berlin, 1992.
[20] Joachim Weidmann. Oszillationsmethoden für Systeme gewöhnlicher Differentialgleichungen. Mathematische Zeitschrift, 119:349-373, 1971.
[21] Edmund T. Whittaker and George N. Watson. A course of modern analysis. Cambridge University Press, 1996.

David Müller
Mathematik, LMU
Theresienstr. 39
80333 München
Germany
dmueller@math.lmu.de

