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Ronald Graham:

Laying the Foundations of Online Optimization

Susanne Albers

Abstract. This chapter highlights fundamental contributions made
by Ron Graham in the area of online optimization. In an online
problem relevant input data is not completely known in advance but
instead arrives incrementally over time. In two seminal papers on
scheduling published in the 1960s, Ron Graham introduced the con-
cept of worst-case approximation that allows one to evaluate solutions
computed online. The concept became especially popular when the
term competitive analysis was coined about 20 years later. The frame-
work of approximation guarantees and competitive performance has
been used in thousands of research papers in order to analyze (online)
optimization problems in numerous applications.
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An architect of discrete mathematics

Born in 1935, Ron Graham entered university at age 15. Already at that time
he was interested in a career in research. He first enrolled at the University
of Chicago but later transferred to the University of California at Berkeley,
where he majored in electrical engineering. During a four-year Air Force service
in Alaska he completed a B.S. degree in physics at the University of Alaska,
Fairbanks, in 1958. He moved back to the University of California at Berkeley
where he was awarded a M.S. and a Ph.D. degree in mathematics in 1961 and
1962, respectively.
Immediately after graduation Ron Graham joined Bell Labs. Some friends

were afraid that this could be the end of his research but, on the contrary,
he built the labs into a world-class center of research in discrete mathematics
and theoretical computer science. Ron Graham rose from Member of Technical
Staff to Department Head and finally to Director of the Mathematics Center
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Figure 1: Ron Graham at work and at leisure. Pictures taken in New Jersey
in the late 1060s and mid 1970s, respectively. Printed with the permission of
Ron Graham.

at Bell Labs. After establishment of AT&T Labs Research he served as the
first Vice President of the Information Sciences Research Lab and later became
the first Chief Scientist of AT&T Labs. After 37 years of dedicated service he
retired from AT&T in 1999. Since then he has held the Jacobs Endowed Chair
of Computer and Information Science at the University of California at San
Diego.

Ron Graham is a brilliant mathematician. He has done outstanding work
in Ramsey Theory, quasi-randomness, the theory of scheduling and packing
and, last not least, computational geometry. The “Graham scan” algorithm
for computing the convex hull of a finite set of points in the plane is standard
material in algorithms courses. His creativity and productivity are witnessed
by more than 300 papers and five books. Ron Graham was a very close friend
of Paul Erdős and allowed to look not only after his mathematical papers but
also his income. Together they have published almost 30 articles. Ron Graham
is listed in the Guinness Book of Records for the use of the largest number
that ever appeared in a mathematical proof. He has many interests outside
mathematics and, in particular, a passion for juggling. It is worth noting that
he served not only as President of the American Mathematical Society but also
as President of the International Jugglers’ Association.

Ron Graham has received numerous awards. He was one of the first recipients
of the Pólya Prize awarded by the Society for Industrial and Applied Math-
ematics. In 2003 he won the Steele Prize for Lifetime Achievement awarded
by the American Mathematical Society. The citation credits Ron Graham as
“one of the principle architects of the rapid development worldwide of discrete
mathematics in recent years” [2].
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Scheduling and performance guarantees

The technical results presented in this chapter arose from extensive research
on scheduling theory conducted at Bell Labs in the mid 1960s. Even today
they exhibit some remarkable features: (1) They can be perfectly used to teach
the concepts of provably good algorithms and performance guarantees to non-
specialists, e.g., high school students or scientists from other disciplines. (2)
The specific scheduling strategies are frequently used as subroutines to solve
related scheduling problems. (3) The results stimulate ongoing research; some
major problems are still unresolved.
Consider a sequence σ = J1, . . . , Jn of jobs that must be scheduled on m

identical machines operating in parallel. Job Ji has a processing time of pi,
1 ≤ i ≤ n. The jobs of σ arrive one by one. Each job Ji has to be assigned
immediately and irrevocably to one of the machines without knowledge of any
future jobs Jk, k > i. Machines process jobs non-preemptively: Once a machine
starts a job, this job is executed without interruption. The goal is to minimize
the makespan, i.e. the maximum completion time of any job in the schedule
constructed for σ.
The scheduling problem defined above is an online optimization problem.

The relevant input arrives incrementally. For each job Ji an algorithm has to
make scheduling decisions not knowing any future jobs Jk with k > i. Despite
this handicap, a strategy should construct good solutions. Graham [5] proposed
a simple greedy algorithm. The algorithm is also called List scheduling, which
refers to the fact that σ is a list of jobs.

Algorithm List: Schedule each job Ji on a machine that currently
has the smallest load.

The load of a machine is the sum of the processing times of the jobs presently
assigned to it.
A natural question is, what is the quality of the solutions computed by

List. Here Graham introduced the concept of worst-case approximation. For
any job sequence σ, compare the makespan of the schedule constructed by
List to that of an optimal schedule for σ. How large can this ratio grow, for
any σ? Formally, let List(σ) denote the makespan of List ’s schedule for σ.
Furthermore, let OPT(σ) be the makespan of an optimal schedule for σ. We
would like to determine

c = sup
σ

List(σ)

OPT (σ)
,

which gives a worst-case performance guarantee for List. In online optimization
such a guarantee is called competitive ratio. Following Sleator and Tarjan [8],
an online algorithm A is c-competitive if, for any input, the cost of the solution
computed by A is at most c times that of an optimal solution for that input.
Graham [5] gave an elegant proof that List is (2− 1/m)-competitive, i.e. re-

markably List achieves a small constant performance ratio. For the proof, fix an
arbitrary job sequence σ and consider the schedule computed by List. Without
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Figure 2: Analysis of List

loss of generality, number the machines in order of non-increasing load. Hence
machine 1 is one having the highest load and defines the makespan. Figure 2
depicts an example. In the time interval [0,List(σ)) machine 1 continuously
processes jobs. Any other machine j, 2 ≤ j ≤ m, first processes jobs and then
may be idle for some time. Let Ji0 be the job scheduled last on machine 1. We
observe that in List ’s schedule Ji0 does not start later than the finishing time
of any machine j, 2 ≤ j ≤ m, because List assigns each job to a least loaded
machine. This implies that the idle time on any machine j, 2 ≤ j ≤ m, cannot
be higher than pi0 , the processing time of Ji0 . Considering the time interval
[0,List(σ)) on all the m machines we obtain

mList(σ) ≤

n∑

i=1

pi + (m− 1)pi0 .

Dividing by m and taking into account that pi0 ≤ max1≤i≤n pi, we obtain

List(σ) ≤
1

m

n∑

i=1

pi + (1−
1

m
) max
1≤i≤n

pi.

A final argument is that the optimum makespan OPT (σ) cannot be smaller
than 1

m

∑
n

i=1
pi, which is the average load on the m machines. Moreover,

obviously OPT (σ) ≥ max1≤i≤n pi. We conclude that List(σ) ≤ OPT (σ) +
(1− 1/m)OPT (σ) = (2− 1/m)OPT (σ).
Graham [5] also showed that the above analysis is tight. List does not achieve

a competitive ratio smaller than 2− 1/m. Consider the specific job sequence σ
consisting of m(m− 1) jobs of processing time 1 followed by a large job having
a processing time of m. List distributes the small jobs evenly among the m
machines so that the final job cause a makespan of m − 1 + m = 2m − 1.
On the other hand the optimum makespan is m because an optimal schedule
will reserve one machine for the large job and distribute the small jobs evenly
among the remaining m − 1 machines. Figure 3 shows the schedules by List
and OPT.
The above nemesis job sequence motivated Graham to formulate a second

algorithm. Obviously List ’s performance can degrade if large jobs arrive at
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Figure 3: The worst-case performance of List. Online schedule (left) and an
optimal schedule (right).

the end of the input sequence. Why not sort the jobs initially? Graham [6]
proposed a Sorted List algorithm that first sorts the jobs in order of non-
increasing processing time and then applies List scheduling. Of course Sorted
List is not an online algorithm because the entire job sequence must be known
and rearranged in advance.

Graham [6] proved that Sorted List achieves a worst-case approximation
ratio of 4/3− 1/(3m). The analysis is more involved than that of List but the
global idea can be described in one paragraph: Consider an arbitrary sorted job
sequence σ and assume without loss of generality that the last job of σ defines
Sorted List ’s makespan. If this is not the case, then one can consider the prefix
sequence σ′ such that the last job of σ′ defines Sorted List ’s makespan for σ′ and
σ. It suffices to consider two cases. (1) If the last job Jn of σ has a processing
time pn of at most OPT (σ)/3, then using the same arguments as above one
can establish a performance factor of 4/3 − 1/(3m). (2) If pn > OPT (σ)/3,
then all jobs of σ have a processing time greater than OPT (σ)/3. Hence in
an optimal schedule each machine can contain at most two jobs and n ≤ 2m.
Assume for simplicity n = 2m. One can show that there exists an optimal
schedule that pairs the largest with the smallest job, the second largest with
the second smallest job and so on. That is, the pairing on the m machines is
(J1, J2m), (J2, J2m−1), . . . , (Jm, Jm+1). If n = 2m − k, for some k ≥ 1, then
there is an optimal schedule that is identical to the latter pairing except that
J1, . . . , Jk are not combined with any other job. Sorted List produces a schedule
that is no worse than this optimal assignment, i.e., in this case the performance
ratio is equal to 1.

The above results led to a considerable body of further research. It was open
for quite some time if online algorithms for makespan minimization can attain
a competitive ratio smaller than 2−1/m. It turned out that this is indeed pos-
sible. Over the past 20 years the best competitiveness of deterministic online
strategies was narrowed down to [1.88, 1.9201]. More specifically, there exists a
deterministic online algorithm that is 1.9201-competitive, and no deterministic
online strategy can attain a competitive ratio smaller than 1.88. If job pre-
emption is allowed, i.e., the processing of a job may be stopped and resumed
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later, the best competitiveness drops to e/(e− 1) ≈ 1.58. The book chapter [7]
contains a good survey of results.

During the last few years researchers have explored settings where an on-
line algorithm is given extra information or ability to serve the job sequence.
For instance, on online algorithm might be able to migrate a limited number
of jobs or alternatively might know the total processing time of all jobs in
σ. In these scenarios significantly improved performance guarantees can be
achieved. Using limited job migration, the competitiveness reduces to approx-
imately 1.46. The recent manuscript [1] points to literature for these extended
problem settings. Nonetheless a major question is still unresolved. What is the
best competitive ratio that can be achieved by randomized online algorithms?
It is known that no randomized online strategy can attain a competitiveness
smaller than e/(e−1). However, despite considerable research interest, no ran-
domized online algorithm that provably beats deterministic ones, for general
m, has been devised so far.

Finally, as mentioned above, the design and analysis of online algorithms
has become a very active area of research. We refer the reader to two classical
books [3, 4] in this field.
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