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The (k,n)-perfect shuffle, a generalisation of the 2-way perfect shuffle, cuts a déclcafds intdk equal size decks

and interleaves them perfectly with the first card of the last deck at the top, the first card of the second-to-last deck as
the second card, and so on. Itis formally defined to be the permuggtipni — ki (modkn+1),i € {1,2,...,kn}.

We uncover the cycle structure of tkle n)-perfect shuffle permutation by a group-theoretic analysis and show how

to compute representative elements from its cycles by an algorithm @k time andO((logkn)?) space. Con-
sequently it is possible to realise tlie n)-perfect shuffle via an in-place, linear-time algorithm. Algorithms that
accomplish this for the 2-way shuffle have already been demonstrated.

Keywords: permutation, perfect shuffl&way shuffle, cycle decomposition, linear time algorithm.

1 Introduction

The(k, n)-perfect shuffleuts a deck okn cards intdk equal size subdecks and interleaves those subdecks
perfectly. After the shuffle, the first card of the last subdeck becomes the first card of the new deck, the
first card of the second-to-last subdeck becomes the second card, and so on. S€é Figure 1.

This is a generalisation of the well-knovaway perfect shuffleWe define thgk, n)-perfect shuffle
permutationto be the permutatiopy, : i — ki (mod(kn+1)),i € {1,2,...,kn}.

The perfect shuffle has many interesting mathematical properties and applications in computer science.
The group structure of the 2-way perfect shuffle and some applications to network design are given in
on the 2-way perfect shuffle. See, for exampie, [Sta/T, Bat9T, Lei92]_Tn [EMOQ] it is shown that the clas-
sic problem of merging two lists in-place, with stability, can be reduced to the problem of accomplishing
the 2-way perfect shuffle in-place. It may be tkaway shuffling is applicable tk-way merging. Hence
efficient realisations of shuffling permutations could permit efficient simulation of parallel algorithms on
sequential machines, and may open up new merging methods.
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Fig. 1: The(3,4)-perfect shuffle illustrated

We have in mind the algorithmic problem of permuting, in-place, a list represented by a one-dimensional
array of elements indexed by the integers 1 throkighBy “in-place” we mean without the use of sub-
stantial extra space over and above that which the list elements already occupy. To be precise, we allow
ourselves no more thaB((logkn)?) extra bits for program variables and data structures. This definition
was originally proposed by Knuth IKnii73, Section 5.5, Exercise 3]. The intention was to permit some
fixed number of program variables plus recursion.

Permutations are made up of disjoint cycles and it is easy to move all the elements of one cycle,
using just one extra location, by a so-called “cycle leader” algorithm [FIMP95]. The method proceeds
by repeatedly making a space in the list, computing the index of the element that belongs in that space
and moving that element, and thus creating a new space. For example, to pesaut€l 2 4) (36 5),
we can move the elements as indicated in Figure 2. In that figure, the numbers on the arrows define the
order in which the moves take place.

If we can easily find an unmoved element with which to start a new cycle when the current cycle
terminates, then the entire task becomes easy. This is the case for some commonly used permutations
such as reversal and cyclic shifts. In those cases, if the current cycle was started at IGradiefements
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Fig. 2: Realising the Perfect Shuffle

remain to be moved at the end of the current cycle, then it is easy to show that the element atilachtion
has yet to be moved. The problem with the perfect shuffle is that the cycle structure is more complicated,
and it is no longer immediately apparent how to compute the beginning of a new cycle when needed.

We analyse the structure of the generalised perfect shuffle permutation in terms of the size, number and
location of its cycles. Then we construct an in-pl@é&n) time procedure that computes a set containing
one element from each cycle. A cycle leader algorithm can use this set to realise the perfect shuffle
in-place and in time linear in the total number of elements being shuffled.

We call this set of elements a sets#eddcalledcycle leadersn [EMPY5]). The seed set is a set of
array indices with the following properties:

1. No two seeds are in the same cycle.
2. Every cycle contains a seed.

The methods in[[EMP95] can be used to compute a seed set for any permutatieteofents in time
O(nlogn) and usingd((logn)?) bits. We show how to compute a seed set ugigogkn)?) space and
O(kn) time. A linear time and in-place algorithm for the 2-way perfect shuffle was given by Ellis and
Markov [EMO0]. That method does not compute a seed set. An alternative method JEKFO00], which does
compute a seed set, uses about half the number of moves at the expense of more arithmetic, as compared
to the first method. The method described in this paper is a generalisation of this latter method. We give a
characterisation of the cyclespf, in group theory terms and we present a linear time, in-place algorithm
for computing a seed set.

2 The Algebraic Structure of the Cycles of pyp,

We use some basic concepts from number theory and group theory. Most of them can be found in, for
example, [[Ion64, Agny 2, Hei 75, B$S96, Bak84]. We are concerned with the ring of integers modulo
wherem (mod n) denotes the integer that is congruentri@nd contained if0,1,...,n—1}. The ring

of integers modula, denoted byZ/(n), is the set{0,1,...,n— 1} together with operations- and -

defined bya+b = (a+b) (modn), a-b=ab (modn). Clearly, the zero element and unit element of
Z/(n) are 0 and 1 respectively. For convenience, we vafitnstead ofa- b, andx instead ofx (modn)

whenx is assumed to be an element®f(n). The group of units ofZ/(n) is denoted byZ/(n))*.
(z/(n))*={aeZ/(n):gcda,n) =1}, where gcd denotes greatest common divisor. The gf@um))*

has¢(n) elements, wherg is the Eulerd function. Whenn =2 4, p' or 2p' (wherep is an odd prime
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andl > 1), there exists a primitive root af, so that(Z/(n))* is cyclic and(Z/(n))* is isomorphic to the
additive groupZ/(¢(n)).

Now we consider the cycle structure of the permutagign LetC be a cycle o, andabe an element
of C. Letm=kn+ 1. By the definition opy ,, we know thaC = (a,ka k?a, ... k'~ 1a) wherer is the least
positive integer wittkk"a= a (modm). Letg= gcd(a,m) andd = m Thend 7é 1 andkrél =2 § (modd) and
gcdk,d) = gcd(2,d) = 1. This implies thak, 2 g€ (z/(d))* and that{l K,... K1} = < >d is a subgroup

of (Z/(d))* generated bk and{g,kg, kr L ={1k... K} is a coset of(k)q in (Z/(d))*.

HenceC is formed from the setk)q g 7 ={aka K%a,...,kK~1a}. Thatis,C is formed from1 times a
coset of(kyq In (Z/(d))*.

Conversely, for any nontrivial divisad of m (that is,d|m andd # 1), let (k)q be the subgroup of
(Z/(d))* generated bk, and letr = |(k)q| anda € (Z/(d))*. Then, by definitionr is the least positive
integer such tha&t’ = 1 (modd) andk’a= a (modd) andk’ &" = &" (modd ) = & (modm). Therefore,
(2P, k&P, ... k'~12M is a cycle of thek, n)-perfect shuffle permutation.

In summary, we have the following theorem regarding the cycle structure ¢htkipperfect shuffle
permutation:

Theorem 1 The r-tuple(ag, a,...,a&—1) is a cycle of thék, n)-perfect shuffle permutation if and only if
there is a nontrivial divisor d of ka- 1 and an ac (Z/(d))* such that r is the least positive integer such

that K = 1 (modd) and a = 2¥" i mod (kn+ 1) fori =0,1,...,r — L.

Example. Letk = 3 andn = 17. Thenkn+ 1 =52, and the nontrivial divisors of 52 are£13,26,52.
We then find the following cycles (not all valuesaére shown):

d
2
4
13

cycle

(26)

(13 39)

(412 36)

(8 24 20)

(16 48 40)

(28 32 44)
(2618)

(10 30 38)

(14 42 22)

(34 50 46)
(139272935)
(51545314119)
(721113347 37)
(175149432523

26

=

52
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3 The Computation of a Seed Set

In what remains we will use “divisor” to mean “nontrivial divisor”. To compute a seed set it is sufficient,

by Theorenf]l, to compute a complete set of coset representatiyég of (Z/(d))* for each divisod of

kn+ 1. We can speed up this computation by using the decomposition properties of integers and abelian
groups.
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Letd be a divisor okn+1 and let the prime factorisation dfbed)*q,? - - - g wheregs > gz > - - > Gs.
By the Chinese Remainder Theorem (see for exanipie [BS96, Theorem 5.5.4]), we know that the mapping

f(x) = (f1(x), f2(X), ..., fs(x)), wherefi(x) =xmodq" 1)

is an isomorphism from the ring/(d) to the ringZ/(dy*) ® Z/(dy?) © - -- © Z/(9). Therefore the units
of the two rings correspond to each other, so that the restrictidnoof(Z/(d))* forms an isomorphism
from the group(Z/(d))* to the group

(Z/(a") ®Z/(0%) @ -+ DL/ (%) = (Z/(0)"))" > (Z/(0"))" x -+ x (Z/(0s"))"

([BS96, Lemma 5.6.1]). Furthermoré induces an isomorphism on the group quotients,
0 (Z/(d)"/(Ka — (Z/(ar')" x (Z/(6g))" x -+ x (Z/ ()" /{(12(K), f2(K), ..., Ts(K)))

where((f1(K), f2(k),..., fs(k))) denotes the subgroup 6L/ (d;*))* x (Z/(02))* x - -- x (Z/(g))* gen-
erated by( f1(k), fa(k), ..., fs(k)).

If g is an odd prime, og; = 2 andy; < 2, then we deduce from our earlier remarks tt%t,t(qi”i))*
is a cyclic group. Let; be a primitive root ohi”i andw; = indg fi(k) (mod qi“i). Sincew; is the least
positive integer such thaf" = fi(k) (modg") and fi(k) = kmodq", w; is also the index ok (modg").
Therefore(Z/(q"))* = (gi) = Z/(¢(q")) with the isomorphisnp(g¥) = x. Clearly,@( fi(k)) = w;.

If g =2 andu; > 3, theni = s. We know that & does not have a primitive root, but the order of 5 (mod
2%) is 2%-2, and the set

{(-1)¥8":u=0,1,...,2%2-1,v=0,1}

forms a reduced set of residues modufe. See for example_ [BakB4], page 25. Therefore, for any odd
integerx, there exists a unique paiw(x),w (x)) such thatw(x) € {0,1,...,2%2 -1} , w(x) € {0,1}
andx = (—1)V®5¥X) (mod 2). Hence(Z/(2%))* = Z/(2%2) x Z/(2) with isomorphism@(x) =
(W(X), W (x)). Letws, W, be such thaf—1)"s5" = fs(k) = k (mod 25).

Suppose thats # 2 orgs = 2 andus < 2. Then the mapping

h((02, 0%, ..., 0)) = (X1, X2, ..., Xs) )

is an isomorphism from the group

(Z/(0)"))" > (Z/(ag?))" x -~ x (Z/(0%))"

to the group
Z/ (@A) x Z/(§(dp")) x -+~ < Z/(9(0sF))

and h maps(fy(k), f2(k),..., fs(k)) = (91,052, ..., 0%) to (W1, Wo,...,Ws). Therefore,h induces an
isomorphism

h*(Z/(A))" > (Z/ ()" %+ x (Z/(65%))"/{(Fa(K), Ta(K), ..., fs(K)))

(Z/ (@A) X Z/(9(ap?)) x -+ x Z/(9(d))) /(Wa, e, ..., ). (3)

R
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Hence, if we take a complete set of coset representatives of

((wa,wa,...,we)) in Z/(§(ar") x Z/(9(0g?)) x -+ x Z/(9(as)),

transform it first by~ and then byf %, we will obtain a set of seeds correspondinglto
Alternatively, suppose thag = 2 andus > 3. Theng;,i =1,...,5— 1 are odd primes and the mapping

h/((g§l7 R g)s(s:ll7 (_1)V5u)> = (Xla ooy Xso1, U,V) (4)
is an isomorphism from the group
(Z/(P1))* X -+ X (Z/(P1))* x (Z/(2%))*
to the group
Z/((dh) x -~ x Z/(9(ag7)) x Z/(2*72) x 2/ (2)
and
N ((fi(K),..., fs 1(K), fs(K))) = h’((gvlvl,...,glv_ﬁl, (—1)‘”85‘”5)) = (Wi, ..., Ws_1,Ws, Wj).

Therefore}Y induces an isomorphism

W™ (Z/ ()" % - x (2 (A1) (Z/(2%))" /{(fu(K), F2(K), ..., Fs(K))
= (Z/(9(a") x -+ X 2/ (057 {)) X Z/(2*72) x Z/(2)) /(W ..., Ws-1,Ws, W) (5)

Hence, again, if we take a complete set of coset representatives of the above groups, first transform it
by ! and then byf ~1, we will obtain a subset of a seed set correspondirdj to

The computation of the complete coset representatives of the group quotients can be accomplished
using the following theorem, which is of independent interest.

Theorem 2 Let s andt,ty,...,ts be positive integers and
G=Z/(ta) XZ/(t2) X --- x Z/ (ts) (6)

be an abelian group witfw;, wo, ..., ws) € G. Letlcm denote the least common multiple and lgbac;
be defined by the following relations:

g = gedw,t), 1<i<s

bo = 1 (7)
b = ti/a, 1<i<s

¢ = agcdlem(bg, by, by, ... bi_1),b), 1<i<s.

Then the following statements hold:
(I) |<(W1,W27 .. ,WS)>| = |Cm(b1, ey b‘g,17 bs);
(i) (c1,c2,...,Cs) is the lexicographically least non-zero element and generator of the subgroup

(W1, Wo, ..., Ws));
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(i) {(er,e,...,65) : 0< @ <} is a complete set of coset representative§af, wo, ..., ws)) in G.

Proof We first prove [(i) and[{ii) by induction og the number of groups in the produpt (6)sk 1, then
b; =t1/a1 andcy = a;ged(1,by) = a3 = ged(wa,tg). Since 0< ¢ <t; andwp < t; andxwi + Yyt = ¢
for some integerg andy, it follows thatc; = xwy modt;. Hencec; € (wi) and{c1) C (w1). However,
wy = zgcd(wy,t1) = zg implies that(wi) C (c1). Hence(ci) = (wp). For anyt, 1 <t < ¢y, since
gcdwi,ty) = ¢1 andcs £ t, the congruencersx =t (modts) has no solution, so thatZ (wi). Therefore
c1 is the lexicographically least non-zero elemenfwf). Hence(w;) = {xc;: 0 <x <ty/c1}. It follows
that|(wy)| = |{c1)| =t1/c1 = b1 =lecm(by). Thus [ii) and [{ji) are true whes= 1.

Suppose now thaf] (i) and](ii) are true wher<ils < j — 1. We prove that they remain true fer=
j. Clearly, the groupg(w,Ws,...,wj)) is a subgroup of(wg,Wy,...,wj_1)) x (wj). By the induction
hypothesis|((wq,Wo,...,Wj_1))| =lcm(bg,bo,...,bj_1) and|{w;)| = b;j. Then,

|Cm(b17 bz, ey bj,l)(Wl,Wz, . ,Wj,l) = (Wl,Wz, o ,Wj,l) and bjo = W;j.
Since
lcm(lem(by, by, ..., bj_1),bj) =lcm(by, by,...,bj)
and is a multiple of both lcifiby, b, ..., bj_1) andb;, it follows that
lcm(by, by, ..., bj) (Wi, Wa, ..., Wj) = (W1, Wo,...,Wj).

Since Ienflem(by, by, ..., bj_1),b;) is the least common multiple of Icfin, by, ..., bj_1) andbj, then for
any 0<t <lem(by,by,...,bj),
either

0 <tmod lcm(by,by,...,bj_1) <lem(by,by,...,bj_1)

or
0 <tmodb; < b;.

This implies that (w1, W, ..., Wj) # (W1,Wa,...,Wj). Therefore|((wy,Wa,...,w;))|=lcm(by, by, ...,bj),
and so i) is true.

Let(cy,C, ..., C)) be the lexicographically least non-zero elemen(imy, wa, ..., wj)).
Then(cy,c, . .. 7c’j_1) is an element of(wy, Wy, ..., wj_1)). By the induction hypothesi$cs, co, . .., Cj_1)
is the lexicographically least element @, wo, ..., wj_1), SO that(c’l,c’z,...,c’jfl) > (€1,C2,...,Cj—1).
However,(Cy,Co, . ..,Cj—1) € (W1, W2,...,Wj_1)).
Hence there exists an integesuch tha&(wy, W, ...,Wj_1) = (C1,C2,...,Cj_1). But

X(W1,Wg, ..., Wj_1,Wj) = (C1,C2, ..., Cj_1,XWj) > (C1,C), ..., Cj_1,C)).

Hence(c] ,c’z,...,c’j_l) < (C€1,C,...,Cj_1). It follows that(c] ,c’,...,c’j_l) = (C1,C,...,Cj—1).

It remains to show thatj = cj. Consider the mapping : {(wy, Wy, ..., wj_1,W;j)) — (w;j) such that
f(X1,X2,...,Xj—1,Xj) = Xj. Thenf is a homomorphism. The kernel éfis ((w1,wo,...,wj_1,0)) and
(w1, W, ..., Wj_1,0)) = (W1, W2,...,Wj_1)). Sincef is a homomorphismf ({(wi,Ws, ..., wWj_1,W;))) is
a subgroup ofw;) and isomorphic to the group quotiefttvy, wo, ..., Wj_1,W;))/{(Wi,Wa, ...,Wj_1,0)).
Therefore

| f(<(Wl7W27 cee aijlij)>)| = |<(W15W27 cee aWj)>)/<(W13W27 ce- 7Wj*170>|
_lem(by, by, ..., bj) (8)
N |Cm(b1, bz, ey bjfl) ’
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Since [if) is true for a product of a single group by the initial cages a lexicographically least element
of (wj) in Z/(t;) and(a;) = (w;). Therefore the least element bf((w1,wo,...,w;j))) in (a;) is

bj . ajbj|Cm(b1,b2,...,bj,1)

ai =
J |Cm(b1,b2,...,bj) lecm(bi.b bi_1.bi
fem(by by, b 1) (bs, bz bj-a,by)

=a; gcd(lem(by, by, ..., bj-1),bj) =c;.
Butc; is also a generator df(((wy,Wo,...,wj))) in (a;) and

|<C>‘ . |Cm(b1,b2,...,bj)
Y1 lem(by, by, ..., bj 1)

This implies that; = f(c},c,...,¢)) > ¢j.

Since the image irf of any element in the cosétw:,w»,...,w;_1,0)) +(0,...,0,c;) is (0,...,0,c;j),
it follows that(cy, ¢z, - ,€j—1,Cj) € ((W1,Wo,---,wj)). Then, by the choice dtt;,c,,... 70’1-), (€,C5,...,
c’j_l,c’j) < (c,C,...,Cj-1,Cj). This implies that; < ¢j. Thereforec| = ¢j and(cy,Cz,---,¢j) is the
lexicographically least non-zero element(Qfv;, wo, ..., w;)).

By the induction hypothesigcy,Cz,...,Cj—1) is a generator of the grouf{wi,ws,...,wj_1)) and
[((c1,C2,...,Cj—1))| =lem(by,by,...,bj_1). Hence we have

|<(C;|_,Cz,.. .,Cj,]_,Cj)>| = |Cm(|Cm(b1,b2, .. .,bj,l), ‘(C]>|)

lcm(by, by, ..., b))
’ |Cm(b1, bz, ey bj,l)

=lcm(lem(by, by,...,bj_1) ) =lem(by, by, ..., b;).
This implies that/(cy, Co,...,Cj—1,Cj)) = (W1, Wo,...,Wj_1,W;j)). Hence [i) and[i) are true.

Finally, we prove [(il). LetE = {(e1,&,...,6) :0< & < ¢}. Lete¢€ be distinct elements of
E and, without loss of generality, assume tleat €. Then€ —e < (c1,Cp,...,Cs) and so€ —e ¢
{(w1, W, ..., Ws)). This implies thak and€ are not in the same coset {fw, Wy, ..., Ws)) in Z/(t1) x
Z/(tz) x --- x Z/(ts). However, the number of cosets(@vi, Wy, ..., Ws)) INZ/(t1) X Z/(t2) x - -- X Z/ (ts)
istity---ts/lcm(by, by, ... bs), and we have

[E|=c1---cs = aigedlem(bo),bs)---asgedlem(by, ..., bs 1),bs)
= (ay---as)gcdlem(bp),b1)---gedllem(by, by, ..., bs_1),bs)
(alas)(blbs)

lem(ba,...,bs)
B ty---tg
lcm(by, ... bs)

ThereforeE is a complete set of coset representative§af,ws, ..., ws)) in G. |
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4  The Algorithm and Complexity Analysis

In this section, we present an algorithm based on the principles described in the previous section. The
analysis of the time and space complexity of the algorithm follows that presentedin [EKFOQ] for the 2-
way shuffle.

The Seed Set Generator for theék, n)-Perfect Shuffle Permutation

Step 1 Letm=kn+1 andS= 0.
Step 2 Compute the prime factorisation of, saym= pel’1 pgz - p& wherepy > p2 > --- > pr.

Step 3 For each prime factop;, compute a primitive root ofy and call itg ;. If & > 2, compute a
primitive root of pi2 and call itg; ».

Step 4 For each prime factorp;, computew; ; := indg , k (mod py). If & > 2, computew; > := indg; , 2
(mod p?).

Step 5 Compute each divisor ah and its prime factorisation. As a divisdiis generated, carry out steps
5.1t05.3.

Step 5.1 Let the prime factorisation af bed;*q,? - - - g4 whereq; > @z > - - > gs. For each prime
factorq; of d, supposg is the index such thay = p;.
Defineg; as follows: ifu; = 1 theng; = gj.1, if p; # 2 theng; = gj 2, if pj =2 andu; > 2 then
0i = 0j,2, otherwiseg; = 5. Definew; = w; 1 if Uy =1 orw; = w;j if uy = 2. Otherwise, if
pi # 2, computen; = indg j (modd") or if pj = 2 andu; > 3, compute and defing,w, such
that (—1)"5% = j (mod 24).

Step 5.2 Setbg = 1. Computec; fori=1,2,...,shy

. M2 ifp=2 u>3;

"7 ¢(q"), otherwise;

a = gedw, tj), )
bi =ti/a,

¢i = agcdlem(bg, by, by, ... bi_1),by)

Step 5.3If gs # 2, orgs = 2 andus < 2, for every integer vectofks, ko, ..., ks) with 0 < k < ¢,
solve the system of congruences

x = ¢ (modgs?)
X = g'gz (moday?) (10)
X = ¢ (modgk)

Obtain a solutiorxin {1,2,...,d} and add{" to S.
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Otherwise, for every integer vect@ks, ky, ..., ks, ki) with 0 < kj < ¢; andk, = 0,1, solve the
system of congruences

X = g'il (modqy?)
X = g'gz (modgy?)
(11)
— Ks—1 Us—1
X = 094 (mOdqs—l)
X = (=1)k5% (mod 2%)

obtain a solutiorxin {1,2,...,d} and add{" to S.
Step 6 OutputS.

Proof of Correctness If d is not divisible by 2 with u; > 3, by Theorenf]2 and equatiof(10), we know
that in step 5.3, each vect(, ko, ..., ks) with 0 < kj < ¢; is a coset representative of the quotient

(Z/(9(ar")) X Z/(9(02)) x -~ x Z/($(ce))) / (W, Wa, ..., Ws))
Then the solution of equatiofi{10)

x= Y0 Y((ke, ke, . ko)) = FL((GL 2, ..., d))

where f andh are defined by formdg](1) andl] (2) respectively, corresponds to a coset representative of
quotient(Z/(d))*/(k)q and thereforeX{" corresponds to a seed of a cycle by Theofpm 1.

If d is divisible by 25, us > 3, then by Theoren] 2, each vectg, ... ks 1,ks, k) with 0 < k <
¢; andki = 0,1 corresponds to a coset representative. .., ks 1,ks, kL) of ((wq,... ,Ws_1,Ws,W,)) in
Z/(t1) x --- x Z/(ts-1) X Z/(ts) X Z/(2). Hence it corresponds to a se€H of a cycle, by Theorerfi 1,
sincex = f W Y((ky,...,ks_1,ks, k.)) wherex is the solution of equatior] ([L1) arfdandh’ are defined
by the forms[[[L) and]4) respectively. ]

The algorithm just given is a generalisation of that presented’in TEKF0O0]. There it was shown, using
some known results regarding the number and distribution of primitive roots, that the entire computation
of a seed set for the 2-way shuffle can be accomplished @ingarithmetic operations.

The difference between the algorithm for tkevay shuffle and that for the 2-way shuffle is in the
computation of the indices. We can use the same method for computigg fadompute ing k. We can

solve the congrueno((.Ll)""i5""I = k (mod 2') using the usual Hensel lifting technique (see for example
[VG99)) in O(u?) = O(kn) bit operations. These differences do not increase the overall time complexity
of the algorithm. Therefore the more general algorithm can also be realised i@tkng

The extra space needed for the variable used by the algorithm is the same as[thafin [EKF00], so the
space complexity is alsO((logkn)?).

We conclude that a seed set for tfien)-perfect shuffle permutation can be computed in-place and
in time linear in the total number of elements being shuffled. It follows that(khe)-perfect shuffle
permutation can be realised in-place and in linear time by way of a cycle leader algorithm as described in
the introduction. We leave as open questions whether or not this result can be used to generalise the 2-way
merge algorithm in[[EMOQ] tk-way merging and whether or not the space requirement can be further
reduced.
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