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The purpose of this paper is to solve a special class of combinational games consisting of two-pile counter pickup
games for which the maximum number of counters that can be removed on each successive move changes during the
play of the games. Two players alternate moving. Each player in his turn first chooses one of the piles, and his choice
of piles can change from move to move. He then removes counters from this chosen pile. A findibn- Z+

is given which determines the maximum size of the next move in terms of the current move size. The game ends as
soon as one of the two piles is empty, and the winner is the last player to move in the game. The games for which
f(k) =k, f(k) = 2k, and f (k) = 3k use the same formula for computing the smallest winning move size. Here we

find all the functionsf for which this formula works, and we also give the winning strategy for each functionl_See [7]

for a discussion of the single pile game.
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1 Introduction

Two players alternate removing counters from two piles. Each player in his turn first chooses one of the
piles, which can change from move to move. He then removes counters from this pile.

An ordered triplg(a, b, x) = (b, a,X) of positive integers is called a position, wherandb represent the
sizes of the two piles of counters, ardepresents the greatest number of counters that can be removed
from the chosen pile on the next move. A functibnZ™ — Z™* is given which determines the maximum
size of the next move in terms of the current move size. Thus a move in a game is an ordered pair
of positions(a,b,x) — (a—k,b, f(k)), where 1< k < min(a,x), or (a,b,x) — (a,b—k, f(k)), where
1 <k < min(b,x). The game ends as soona@se of the two piles is empty, and the winner is the last
player to move in the game. At the start of the game, the positidn x) is specified.

We started this project by studying the strategy for the simple move funcfiggs= k, f (k) = 2k,
and f (k) = 3k. We then noticed that the smallest winning move size for each of these three functions
is computed by the same formula, which we will soon state in the main theorem. We then took upon
ourselves the problem of finding (with proof) all functiohs Z™ — Z* for which this formula works.
This paper gives the complete solution to this problem. This also explains why many of the functions that
we must include may seem quite artificial.
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As an example, consider the functidfk) = k and the initial positior(a,b,x) = (3,4,2). This means
the first moving player can take 1 or 2 counters from either pile. Suppose he removes 2 counters from the
pile with 4 counters. The move can be depicted34d,2) — (3,4—2,f(2)) = (3,2,2). Then the second
moving player can remove 1 or 2 from either pile. Suppose he takes 2 from the pile with 2 counters. He
wins the game because he has created an empty pile.

Notation. The set of positive integers is denoteddy andB = {1,2,4,8,16,32,... }, the binary base.

Definition 1. For each positive integer Ng(N) is the greatest power of 2 that divides N. Alg@0) = co.
Thusg(1) = 1, g(24) = 8 since8| 24 and 16 does not divid@4. Observe that N> g(N), andg(N) € B
when Ne Z+.

2 Admissible Functions

Definition 2. A function f: Z+ — Z* f(w) = oo, is calledadmissibleif it satisfies the following four
conditions:

1. ForallNe z*, f(g(N)) < f(N).
2. ForallNeB, f(N) <4N.
3. ForallNe B, N < f(N).

4. ForallNeB, f(N) < 2N or N+ f(N) < f(2N).

The admissible functions are precisely the ones that satisfy our main theorem. It is easy to see that
f(N) =N, f(N) =2N, f(N) = 3N satisfy these 4 conditions, bfifN) = 4N does not. Also, if > 0is a
real numberf (N) = |rn| satisfies these 4 conditions if and only iKlr < 4. Also, f(N) = [rn] satisfies
these 4 conditions if and only if £ r < 3. Of course, the functions included in Definitioh 2 can be far
more complex than any of these ‘primitive’ functions.

We now make the problem more precise.

3 The Problem

Two players play the game using an admissible funcfiolf a,b are the two pile sizes, thale position

can be denoted either éa,b) or as(b,a). For every pile positior{a,b), we wish to computé (a,b),

which we define as the least winning move size. This means that a winning move is a refadve
counters from one of the piles. Of couréa, b) by itself does not necessarily tell the player from which
pile L(a,b) is to be removed. However, this fact will be revealed in the proof that we soon give. We also
state this strategy immediately after the main theorem. Alsogit (a,b), the removal ok counters must

be a losing move no matter from which of the two pilesounters is removed.
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4 The Solution

We definel(a,b) = « if a= 0 orb = 0 because the game is over once one pile is empty. We can easily
see that (a,b) is the leask € {1,2,3,...,min{a,b}} such thatf (x) < L(a—x,b) or f(x) < L(a,b—Xx).
Of coursel (a,b) = L(b,a).

In this paper, it is more convenient to denote a pile positiofagd), wherea < bandN =b—a. Thus
(a,N) means thatd’ is the smaller pile size anll is the difference between the larger pile size and the
smaller pile size. Hence we wish to compute,N), 0 <a, 0 < N. Of courseL(0,N) = co.

The following theorem find& (a, N) for all admissible functions.

Main Theorem. Let f: Z* — Z* be an admissible function. For all positioiia, N), where a> 1, the
least winning move (a,N) is computed by the following rule:

Case 1 Ifa< f(g(N)), then La,N) =
Case 2 Ifa> f(g(N)), then L(a,N) =g(N).
Sinceg(0) = w, f(w0) = 0 anda < o, this meand.(a,0) = a
Strategy. The strategy also provides a partial outline of the proof of the main theorem.

Case 1 Ifa< f(g(N)), thenL(a,N) = a. The moving player removes counters from the smaller pile
and wins immediately.

Case 2 Ifa> f(g(N)), thenL(a,N) = g(N) and, from Note 1, which we state and prove in sedfipn 5,
9g(N) < a. The strategy has two subcases.

A. Supposeg(N —g(N)) > 4g(N). This includes the subcase whéte- g(N) = 0. The moving
player removeg(N) counters from the larger pile.

B. Supposeg(N —g(N)) = 2g(N). Observe thaf (2(B)1) and (2(B)2) below are not mutually
exclusive.

(1) Suppose (g(N) < 2g(N)). Then the moving player removgsN) from the larger pile.

(2) Supposeg(N) + f(G(N)) < f(2g(N)). If f(G(N)) < a—g(N), then the moving player
removeg(N) from the smaller pile. But iff (§(N)) > a—g(N), then the moving player
removegy(N) from the larger pile.

Remark. At the end of the paper, we show that the main theorem is true for an arbitra@/ —
Z*, f(00) = o, if and only if f is admissible.

5 Preliminary Work

Notel. In casd LL(a,N) =a < f(g(N)). In casq PL(a,N) =g(N) < f(g(N)) < a, where we note
thatg(N) < f(g(N)) is true by Conditiofi B orf sinceg(N) € B = {1,2,4,8,...}. Therefore, if the main
theorem is true for a positiofa,N),a> 1, thenL(a,N) <aandL(a,N) < f(g(N)). Of courseL(a,N) <a
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is also clear since the removal @tounters from the smaller pile is an immediate win. We will prove the
main theorem by first proving three lemmas.

Lemma 1. Forall x,N € Z*, if g(x) < g(N) and x< N, theng(x) =g(N —x) =g(N+x). If g(x) <g(N)
and x> N theng(x) = g(N + x).

Proof. Use the binary representation. O

Corollary. If x,N € Z* and x< g(N), theng(x) < x < g(N) < N which impliesg(x) = g(N — x) =
g(N+x).

Lemma 2. Let f: ZT — Z* be admissible. Suppo®gy € B andx < y. Then {X) < f(y).

Proof. Supposef (X) > f(y). Then itis easy to see that there exists B such thatf (x) > f(2x), since
f cannot be non-decreasing ¢R, 2%,4%,8%,...,y}. Now since & € B, we know by Conditiof |3 orf
that f (2x) > 2x. Therefore,f(x) > f(2x) > 2x. This meand (x) > 2x. Therefore, sinc& € B, we know
by Condition[4 onf thatx+ f(x) < f(2x). Therefore,f(x) < f(2x), which contradicts the fact that
f(x) > f(2x). O

Given the positiorfa, N), suppose we remowecounters from the larger pile. The new position becomes
(a,N—x) as long as & N —x. However, ifN — x < 0, the new position becoméa-+ N — x,x— N). This
is because wheN — x < 0, the smaller pile size becomas- N — x, the larger pile size becomes |, and
the difference between the larger and smaller pile size becemés We now state Lemnq 3.

Lemma 3. Suppose f is admissible and the conclusion of the main theorem is true for all positions
(a,N),a> 1. For the position(a,N), suppose & f(g(N)). That is,(a,N) comes under Cagg 1 of the
main theorem [(J4). Suppose x counters are removed from the larger pile, wheredNa+ N. The new
position become&@+ N —x,x— N), wherel <a+ N —x < aandl <x—N. Then it cannot be the case
that f(x) < L(a+N—x,x—N).

Proof. Since the main theorem is true for the positiai- N —x,x—N) and also K< a+ N—x< a,1 <
x— N, we know by notﬂl that(a+N —x,x—N) < min(a+N—Xx, f(g(x—N))). We now consider two
cases:

Case A:g(x) #9(N), and

Case B:g(x) =g(N).

Casd A Sinceg(x) #g(N) andx— N > 1, itis easy to see thg(x) > g(x— N). Note thag(x) € B,g(x—
N) € B. Now from lemm4 P and Conditidrj 1 ofy we know thatf (x) > f(g(x)) > f(g(x—N)).

Therefore, iff(x) < L(a+ N —x,x— N), we would have (by combining the above information)
f(x) <L(a+N—x,x—N) < f(g(x—N)) < f(x), a contradiction sincé(x) < f(x) is impossible.
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Case[B Since we are assuming in lemina 3 that f(g(N)), we havea < f(g(N)) = f(g(x)) < f(x),
wheref (g(x)) < f(x) from Conditior{ 1 onf. Thereforea < f(x). Now f(x) < L(a+N—x,x—N)
implies f(x) < L(a+N—x,x—N) <a+N-x< a< f(x), a contradiction sincé (x) < f(x) is
impossible.

O

It is important to note that although lemina 3 assumes the main theorem is true for all pdsitidns
a>1, it can also be used later in the induction argument since@% N — x < a, the induction will be on
a, and we will only be interested in the positiéa+ N — x,x— N).

6 Proof of the Main Theorem

Starting the Induction

We now prove that the main theorem is true for all posititmdN),a > 1, by mathematical induction on
a. Of courseL(O,N) = . NowL(1,N) =1 is obvious for alN since the removal of 1 counter from the
smaller pile is an immediate win. Alsa,= 1 < f(g(N)) is true for allN, which means that the theorem
requiresL(1,N) = 1.

Since the induction is started, we can assume the theorem is true for all po&tiNnga=1,2,...,a—
1,a> 2. We will now prove that the theorem is true for all positidgasN). We do this by induction o
in the order(a,0),(a,1),(1,2),(a,3),....

First, note that for all position&a,N),a > 1, it is true thatL(a,N) < a. This is because the removal
of a counters from the smaller pile is an immediate win siads the smaller pile size. We now show
thatL(a,0) = a, as is required by the theorem. By symmetry, siace b, we see that.(a,0) is the
leastx € {1,2,...,a} such thatf(x) < L(a—x,x). First, we show thak ¢ {1,2,3,...,a—1}. Now
f(@(x)) < f(x) by Condition1 onf. From note [L (since— x > 1) and from the induction, we know
thatL(a—x,x) < f(g(x)) < f(x). Therefore, ifx € {1,2,...,a— 1} and f(x) < L(a—x,x), we would
have f(x) < L(a—x,x) < f(x), a contradiction. Of course, when= a, we have the obvious fact that
f(x) = f(a) < L(a—a,a) = L(0,a) = «. Therefore| (a,0) = ais true, as it should be.

Main Induction

Next, we deal successively with(a,N),N > 1 andN starting atN = 1 and increasing. We assume that
main theorem is true faN € {1,2,...,N — 1}, and we show it is true fofa, N).
To evaluatd_(a,N), we must find the leaste {1,2,3,...,a} such that

(@) f(x) <L(a,N—x),andN—x>0, or
(b) f(x) <L(a—x,N+x),

where we note inf{a) that we only need to consiierhereN — x > 0. This is because of two reasons.
First, whena > f(g(N)), we need to provk(a,N) =g(N). Nowg(N) < N whenN € Z*. Therefore, we
only need to considerin the range 12,3,...g(N), and obviously 6< N — x in this range. Second, when
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a< f(g(N)), Iemm@ along with the mathematical induction of th(geN)’s that we have already dealt
with shows us thaf (x) < L(a+N —x,x— N) is impossible when ¥ a+ N —x < aandN —x < 0.

Note that 1< a+ N—x < awhenx € {1,2,3,...,a},1 < N, andN — x < 0 which means that the
induction oma can be used. This means that lenirha 3 can be used with the inductisimea+ N —x <
a, a technicality that we mentioned above. We will now consider two casés, i), which correspond
to the two cases given in the main theorem.

7 The Two Cases
Case la < f(g(N)). We must show.(a,N) = a.

Case 2a > f(g(N)). We must show(a,N) =g(N).

Case 1

a< f(g(N)). We must show.(a,N) = a. Therefore, we must show that the lerst {1,2,3,...,a} such
that () or[(b) is true ig = a. Of course [(p) is true for= asincef (a) < L(a—a,N+a) =L(0,N+a) =co.
So let us show that € {1,2,3,...,a— 1} will not work in (d) or [B).

We take care of {a) first, and we consider two subcase§]for (a). Of course, we can Bissume0 in
(@) as we have already shown.

Subcase Af(x) > a. If (|) is true, we havef(x) < L(a,N —x) < a < f(x), a contradiction. Note that
L(a,N —x) < ais true since for any positiofa,N),a > 1, it is always true thalt(a,N) < a
sincea is the smaller pile size.

Subcase Bf (x) < a. We havef (x) < a < f(g(N)) from the definitions of Subca$g B and Cake 1. First,
supposg(N) < g(x). Sinceg(N) € B,g(x) € B, from lemmd 2 and Conditidr| 1 ohwe have
f(@(N)) < f(g(x)) < f(x), a contradiction sincé (x) < f(g(N)) is true. Thereforeg(x) <
g(N) is true.x < N is true sincex < N. So by lemma[ig(x) = g(N —x). Thereforef (g(N —
x)) = f(g(x)) < f(x) by Condition ] onf. Of course, 1< N —x s true sincex < N. Now
if (B is true, we havef (x) < L(a,N—x) andN —x > 0. Actually N—x > 1. Therefore,
f(x) <L(a,N—x) < f(g(N—x)) < f(x), a contradiction. Not]1 and the induction hypothesis
implies thatl (a,N —x) < f(g(N —x)) sinceN —x < N and 1< a.

We next show that € {1,2,3,...,a— 1} will not work in @ We consider two subcases.

Subcase A:f(x) > a—x. If (b) is satisfied,f(x) < L(a—x,N+x) <a—x< f(x), a contradiction. Note
thatL(a—x,N+x) <a—xsinceL(a,N) <awhena>1,and 1< a—x=a

Subcase B:f(x) < a—x. This means that+ f(x) < a. First suppos@(x) > g(N). Therefore,f(x) >

( (x)) > f(g(N)), by Conditior{ 1 onf and lemma] sincg(x) € B,g(N) € B. Therefore,
+ f(x) > x+ f(g(N)) > x+ a, definition of{Case]1> a > x+ f(x), a contradiction since
+ f(X) > x+ f(X) is impossible. Thereforeg(x) < g(N) is true. This impliesg(x) =
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g(N+x), lemma[]. Thusf(x) > f(g(x)) = f(g(N+x)) , by Condition[1 onf. But if
x satisfies[(p), we havé(x) < L(a—x,N+x) < f(g(N+x)) < f(x), a contradiction. By
notel ] and the inductiob(a—x,N +x) < f(g(N+Xx)) since 1< a—x < a.

We now deal with Cadg 2.

Case 2

a> f(g(N)). We must show.(a,N) =g(N). Therefore, we must show that the least {1,2,3,...,a}
such that[(g) or (b) is satisfied is= g(N) . Of course,N > 1. Note thatg(N) < f(g(N)) < a, by
Condition 3 onf (sinceg(N) € B) and the definition of Cag¢ 2. Also, rememiéN) < N.

Dealing with x € {1,2,...,9(N) — 1}.

Let us first show thak € {1,2,3,...,g(N) — 1} will not work in (d) or [B). Note thalN —x > 1 when
x < g(N) < N. Nowx < g(N) impliesg(x) = g(N —x) =g(N +x) by lemmd 1. Therefore, by Conditiph 1
onf, f(x) > £(g(X) = fGN X)) = F(GN+x)).

If (B) is satisfied byx < g(N), we havef(x) < L(a,N—x),1 < N—x. Therefore, by note|1, the fact
that 1< N —x, and the induction (sinc —x < N), we havef(x) < L(a,N—x) < f(g(N-x)) < f(x),
a contradiction. If(p) is satisfied, we ha¥éx) < L(a—x,N+x) < f(g(N+x)) < f(x), a contradiction.
Note that 1< a—x is true sincex < g(N) < f(g(N)) < a, (as stated above). Thliga— x,N +x) <
f(g(N+x)) follows by notd 1, the induction (sin@e- x < a) and 1< a—x.

Dealing with x=9(N).

Let us now show thax = g(N) will satisfy at least one of {a) of [b). We consider two possibilities.
Rememberg(N) < aandg(N) <N.

First, suppos@% > 4. This also includes the case whéte-g(N) =0, so thag(N —g(N)) = c.
We show tha = g(N) satisfies|[(r). That i$(x) < L(a,N—x),0 < N—x. Of course, O< N —x s
obvious sinceg(N) < N. Lettingx =g(N), we haveg(N —x) > 4x. But f(x) < 4x s true by Conditiof R
on f sincex=g(N) € B. Therefore,f(x) < 4x <g(N —x). Therefore,f(x) <g(N —x). Also, f(x) =
f(9(N)) < a, by the definition of Case 2. Thereforg(x) = f(g(N)) < L(a,N —x), sincef(x) < aand
f(x) <g(N—x) andL(a,N —x) € {a,g(N —x)} where we note thdt(a,N —x) € {a,g(N —x)} is true by

induction since 0< N —x < N. This means thal [a) is satisfied by g(N).

Next, suppos@w # 4. This means'ﬁ% =2

Now by Conditiortﬁ onf,x =g(N) satisfies eithef (x) < 2x or x+ f(x) < f(2x) sincex=g(N) € B,
whereB = {1,2,4,8,...}.

First, suppose (x) < 2x. We show that = g(N) satisfies[(g). That is, we shof{x) < L(a,N —x)
andN —x > 0. Of courseN —x=N—-g(N) > 0 is true. Lettingx=g(N) in g(N—-g(N)) = 2g(N),
we haveg(N — x) = 2x. This meansf(x) = f(g(N)) < 2x=g(N —x). Therefore,f(x) < g(N — Xx).
Also, f(x) = f(g(N)) < a, by the definition of Casg|2. Thereforg(x) = f(g(N)) < L(a,N —x) since
f(x) <a, f(x) <g(N—x) andL(a,N—x) € {a,g(N —x)} by the mathematical induction sinbe— x < N.
This meand[(a) is satisfied by=g(N).
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We next assumg = g(N) satisfiesx+ f(x) < f(2x) along with the above assumption that= g(N)
satisfiegg(N — x) = 2x.
Now g(N —g(N)) = 2g(N) implies 4(N) <g(N+7g(N)) sinceN must be of the binary form

N = XXXX---X1100 - -00.

Thatis &4 <g(N+x).
We now consider two subcases, where g(N). Recall thatf (g(N)) < ain Case 2.

Subcase A:f (x) < a—x. We show thaf (b) is satisfied by=g(N). That is, we showf (x) < L(a—x,N+
x). Remembenx=g(N) < a.

Now f(x) < 4x, by Conditior{ 2 onf sincex =g(N) € B. Therefore, we knowf (x) < a— x
and f(x) < 4x <g(N +x), whenx =g(N). Therefore,f(x) < L(a— x,N+X) sincef(x) <
a—x f(x) <g(N+x),1<a—xandL(a—x,N+x) € {a—xg(N+x)}, by the induction
sincea— x < a. This means{]b) is satisfied by=g(N).

Subcase B:f(x) > a—x. We now show thaf{a) is satisfied by=g(N). This means that we show
f(x) < L(a,N—x). Of course, < N—g(N) =N —x.

Nowa < x+ f(x) < f(2x), by the definition of Subcase B and the above assumption abdherefore,
a< f(2x). Also, g(N —x) = 2x from the above assumption. Therefofdg(N —x)) = f(2x). Thus
a< f(2x) = f(g(N—x)). Thatis,a< f(g(N—x)). Therefore, the induction on the main theorem implies
L(a,N—x)=asinceN—x < Nanda< f(g(N—x)). Also by the definition of Case Z,(x) = f(g(N)) < a.
Therefore,f(x) < L(a,N —x), which means thaf[a) is satisfied y-g(N). O

We now state the converse of the main theorem.

Converse Theorem.Suppose fZ* — Z* () = w, is given, and we play our game with this function
f. Suppose also that the conclusion of the main theorem is true for f. Then itis also true that f satisfies
all of the 4 conditions listed in Definition 2.

Proof.

(1) We show thaf satisfies Conditioh|1. Therefore, suppose there exist& ™ such thatf (g(x)) > f(x).
We show that this leads to a contradiction. Consider the posiioN) = (f(g(x)) +x,0). Now
since the main theorem is true( f (g(x)) +x,0) = f(g(x)) +x. Let us now remove counters from
one of the equal piles. This gives the new posit{@N) = (f(g(x)),x). Now a= f(g(x)) and
f(g(N)) = f(g(x)). Thusa < f(g(N)). Therefore,(f(g(x)),x) comes under Ca:@ 1 of the main
theorem, which meanis(f(g(x)),x) = f(g(x)).

This also meang (x) < L(f(g(x)),x) = f(g(x)) since we are assuming thafx) < f(g(x)). Now
sincex < f(g(x)) +x, this means that( f (g(x)) +x,0) = f(g(x)) +x cannot be true, which contradicts
the main theorem.
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)

3

(4)

We show thatf satisfies Conditioh]2. Suppose there existsB such thatf (x) > 4x. Consider the
position(a,N) = (a,3x), whereac Z*,a>g(N),a> f(g(N)),a> f(g(N—-g(N))) anda—g(N) >
f(Q(N+g(N))).-
In binary we can writex = 1000QN = 3x = 110000 where 0000represents a string of 0’s. Since
~—~ —~— —~—
X € B, it is obvious thatN = 3x satisfiesg(N) = g(3x) = x,g(N —g(N)) = 2g(N) = 100000 and
g(N+9(N)) = 4g(N) = 1000000 Of course, by assumptiorfi(x) = f(g(N)) > 4g(N) = 4x. Since
the main theorem is true fd, N) = (a,3x), we know the following. First, sinca> f(g(N)), we
know thatL(a,N) =g(N). Of course, we are also assumiag- g(N). This means that the removal
of g(N) from at least one of the two piles must be a winning move. Therefore, one of the following
must be true. Eithef(g(N)) < L(a,N—g(N)) or f(@(N)) < L(a—g(N),N+g(N). Now by the
assumption om, we know thata > f (g(N—g(N))) anda—g(N) > f (g(N+9(N))). Therefore, by
the main theorer,(a,N—g(N)) =g(N—g(N)) = 2g(N).
Also, L(a—g(N),N+3(N)) = g(N+g(N)) = 49(N). So we need (g(N)) < 2g(N) or f(g(N)) <
4g(N). But sinceg(N) = x and f(g(N)) > 4g(N), this is impossible. Therefore, the main theorem
cannot hold for the positiofa, N), a contradiction.

We show thatf satisfies Conditioh|3. Suppose there existsB such that 1< f(x) < x. Consider
the position(a, N) = (2x,2x). Sincex € B, we can write this ag = 10009 and X = 10000Q3x =

110000 Of courseg(2x) = 2x sincex € B.
~—~—~

Now no matter whether the positida, N) = (2x, 2x) satisfies Cadg 1 or Cgse 2 of the main theorem,
L(a,N) =L(2x,2x) € {a,g(N)} = {2x,2x}, which mean&.(2x,2x) = 2. Let us now remove coun-
ters from the smaller pile, which gives the new positi@Bx). We show thatf (x) < L(x,3x). This
meansL (2x,2x) cannot exceed, which means thalt (2x,2x) = 2x is false, contradicting the main
theorem.

Now L(x,3x) € {x,0(3x)} = {x,x}. Therefore,L(x,3x) =x and f(x) < x = L(x,3x) is true by the
assumption that we made about

We show thaff satisfies Condition|4. Suppose there existsB such thatf (x) > 2x andx+ f(x) >
f(2x).

Consider the positiofia,N) = (x+ f(x),3x)). Sincex € B,g(N) =g(3x) =x. Nowa > f(g(N)) is
true sincea=x+ f(x) > f(x) = f(g(N)). Therefore(a,N) comes under Caf¢ 2 of the main theorem,
andL(a,N) = L(x+ f(x),3x) =g(N) = x. This means that the removal xtounters from one of the
two piles must be a winning move. This means that e[ther #ajor 4b must be true.

a. f(x) <L(x+ f(x),2x). Nowg(2x) = 2x. Therefore,f (g(2x)) = f(2x).
Now x+ f(x) > f(g(2x)) = f(2x) is true by the assumption on

Therefore, by Cad¢ 2 of the main theorem, we know tfiat- f (x), 2x) = g(2x) = 2x. Therefore,
f(x) < L(x+ f(x),2x) = 2xis impossible sincd (x) > 2x is also assumed for.
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b. f(x) < L(f(x),4x). Now L(a,N) < ais always true whem > 1 sincea is the smaller pile size.
Therefore,f(x) < L(f(x),4x) < f(x) must be true, which is impossible.

O

The Misére Version

The strategy given in this papeannotbe used to play the miése version of this game. The rai® version
is a totally different game.
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