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The purpose of this paper is to solve a special class of combinational games consisting of two-pile counter pickup
games for which the maximum number of counters that can be removed on each successive move changes during the
play of the games. Two players alternate moving. Each player in his turn first chooses one of the piles, and his choice
of piles can change from move to move. He then removes counters from this chosen pile. A functionf : Z+ → Z+

is given which determines the maximum size of the next move in terms of the current move size. The game ends as
soon as one of the two piles is empty, and the winner is the last player to move in the game. The games for which
f (k) = k, f (k) = 2k, and f (k) = 3k use the same formula for computing the smallest winning move size. Here we
find all the functionsf for which this formula works, and we also give the winning strategy for each function. See [7]
for a discussion of the single pile game.
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1 Introduction
Two players alternate removing counters from two piles. Each player in his turn first chooses one of the
piles, which can change from move to move. He then removes counters from this pile.

An ordered triple(a,b,x) = (b,a,x) of positive integers is called a position, wherea andb represent the
sizes of the two piles of counters, andx represents the greatest number of counters that can be removed
from the chosen pile on the next move. A functionf : Z+ → Z+ is given which determines the maximum
size of the next move in terms of the current move size. Thus a move in a game is an ordered pair
of positions(a,b,x) 7→ (a− k,b, f (k)), where 1≤ k ≤ min(a,x), or (a,b,x) 7→ (a,b− k, f (k)), where
1≤ k ≤ min(b,x). The game ends as soon asoneof the two piles is empty, and the winner is the last
player to move in the game. At the start of the game, the position(a,b,x) is specified.

We started this project by studying the strategy for the simple move functionsf (k) = k, f (k) = 2k,
and f (k) = 3k. We then noticed that the smallest winning move size for each of these three functions
is computed by the same formula, which we will soon state in the main theorem. We then took upon
ourselves the problem of finding (with proof) all functionsf : Z+ → Z+ for which this formula works.
This paper gives the complete solution to this problem. This also explains why many of the functions that
we must include may seem quite artificial.

1365–8050c© 2005 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France

http://dmtcs.loria.fr/
http://dmtcs.loria.fr/volumes/


2 Arthur Holshouser and Harold Reiter

As an example, consider the functionf (k) = k and the initial position(a,b,x) = (3,4,2). This means
the first moving player can take 1 or 2 counters from either pile. Suppose he removes 2 counters from the
pile with 4 counters. The move can be depicted as(3,4,2) 7→ (3,4−2, f (2)) = (3,2,2). Then the second
moving player can remove 1 or 2 from either pile. Suppose he takes 2 from the pile with 2 counters. He
wins the game because he has created an empty pile.

Notation. The set of positive integers is denoted byZ+ andB = {1,2,4,8,16,32, . . .}, the binary base.

Definition 1. For each positive integer N, g(N) is the greatest power of 2 that divides N. Also,g(0) = ∞.

Thusg(1) = 1, g(24) = 8 since8 | 24 and16 does not divide24. Observe that N≥ g(N), andg(N) ∈ B
when N∈ Z+.

2 Admissible Functions

Definition 2. A function f : Z+ → Z+, f (∞) = ∞, is calledadmissibleif it satisfies the following four
conditions:

1. For all N∈ Z+, f (g(N))≤ f (N).

2. For all N∈ B, f (N) < 4N.

3. For all N∈ B, N ≤ f (N).

4. For all N∈ B, f (N) < 2N or N+ f (N)≤ f (2N).

The admissible functions are precisely the ones that satisfy our main theorem. It is easy to see that
f (N) = N, f (N) = 2N, f (N) = 3N satisfy these 4 conditions, butf (N) = 4N does not. Also, ifr > 0 is a
real number,f (N) = brnc satisfies these 4 conditions if and only if 1≤ r < 4. Also, f (N) = drne satisfies
these 4 conditions if and only if 1≤ r ≤ 3. Of course, the functions included in Definition 2 can be far
more complex than any of these ‘primitive’ functions.

We now make the problem more precise.

3 The Problem

Two players play the game using an admissible functionf . If a,b are the two pile sizes, thepile position
can be denoted either as(a,b) or as(b,a). For every pile position(a,b), we wish to computeL(a,b),
which we define as the least winning move size. This means that a winning move is a removeL(a,b)
counters from one of the piles. Of course,L(a,b) by itself does not necessarily tell the player from which
pile L(a,b) is to be removed. However, this fact will be revealed in the proof that we soon give. We also
state this strategy immediately after the main theorem. Also, ifx< L(a,b), the removal ofx counters must
be a losing move no matter from which of the two pilesx counters is removed.
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4 The Solution
We defineL(a,b) = ∞ if a = 0 or b = 0 because the game is over once one pile is empty. We can easily
see thatL(a,b) is the leastx∈ {1,2,3, . . . ,min{a,b}} such thatf (x) < L(a−x,b) or f (x) < L(a,b−x).
Of course,L(a,b) = L(b,a).

In this paper, it is more convenient to denote a pile position as(a,N), wherea≤ b andN = b−a. Thus
(a,N) means that ‘a’ is the smaller pile size andN is the difference between the larger pile size and the
smaller pile size. Hence we wish to computeL(a,N), 0≤ a, 0≤ N. Of course,L(0,N) = ∞.

The following theorem findsL(a,N) for all admissible functions.

Main Theorem. Let f : Z+ → Z+ be an admissible function. For all positions(a,N), where a≥ 1, the
least winning move L(a,N) is computed by the following rule:

Case 1 If a≤ f (g(N)), then L(a,N) = a.

Case 2 If a> f (g(N)), then L(a,N) = g(N).

Sinceg(0) = ∞, f (∞) = ∞ anda < ∞, this meansL(a,0) = a.

Strategy. The strategy also provides a partial outline of the proof of the main theorem.

Case 1 Ifa≤ f (g(N)), thenL(a,N) = a. The moving player removesa counters from the smaller pile
and wins immediately.

Case 2 Ifa > f (g(N)), thenL(a,N) = g(N) and, from Note 1, which we state and prove in section 5,
g(N) < a. The strategy has two subcases.

A. Supposeg(N−g(N)) ≥ 4g(N). This includes the subcase whereN−g(N) = 0. The moving
player removesg(N) counters from the larger pile.

B. Supposeg(N− g(N)) = 2g(N). Observe that (2(B)1) and (2(B)2) below are not mutually
exclusive.

(1) Supposef (g(N) < 2g(N)). Then the moving player removesg(N) from the larger pile.

(2) Supposeg(N) + f (g(N)) ≤ f (2g(N)). If f (g(N)) < a− g(N), then the moving player
removesg(N) from the smaller pile. But iff (g(N)) ≥ a−g(N), then the moving player
removesg(N) from the larger pile.

Remark. At the end of the paper, we show that the main theorem is true for an arbitraryf : Z+ →
Z+, f (∞) = ∞, if and only if f is admissible.

5 Preliminary Work
Note1. In case 1,L(a,N) = a ≤ f (g(N)). In case 2,L(a,N) = g(N) ≤ f (g(N)) < a, where we note
thatg(N)≤ f (g(N)) is true by Condition 3 onf sinceg(N) ∈ B = {1,2,4,8, . . .}. Therefore, if the main
theorem is true for a position(a,N),a≥ 1, thenL(a,N)≤ a andL(a,N)≤ f (g(N)). Of course,L(a,N)≤ a
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is also clear since the removal ofa counters from the smaller pile is an immediate win. We will prove the
main theorem by first proving three lemmas.

Lemma 1. For all x,N ∈ Z+, if g(x) < g(N) and x< N, theng(x) = g(N−x) = g(N+x). If g(x) < g(N)
and x> N theng(x) = g(N+x).

Proof. Use the binary representation.

Corollary. If x,N ∈ Z+ and x< g(N), theng(x) ≤ x < g(N) ≤ N which impliesg(x) = g(N− x) =
g(N+x).

Lemma 2. Let f : Z+ → Z+ be admissible. Supposex,y∈ B andx < y. Then f(x)≤ f (y).

Proof. Supposef (x) > f (y). Then it is easy to see that there existsx∈ B such thatf (x) > f (2x), since
f cannot be non-decreasing on{x,2x,4x,8x, . . . ,y}. Now since 2x ∈ B, we know by Condition 3 onf
that f (2x) ≥ 2x. Therefore,f (x) > f (2x) ≥ 2x. This meansf (x) > 2x. Therefore, sincex∈ B, we know
by Condition 4 onf that x+ f (x) ≤ f (2x). Therefore, f (x) < f (2x), which contradicts the fact that
f (x) > f (2x).

Given the position(a,N), suppose we removexcounters from the larger pile. The new position becomes
(a,N−x) as long as 0≤N−x. However, ifN−x < 0, the new position becomes(a+N−x,x−N). This
is because whenN−x < 0, the smaller pile size becomesa+N−x, the larger pile size becomes ‘a’ , and
the difference between the larger and smaller pile size becomesx−N. We now state Lemma 3.

Lemma 3. Suppose f is admissible and the conclusion of the main theorem is true for all positions
(a,N),a≥ 1. For the position(a,N), suppose a≤ f (g(N)). That is,(a,N) comes under Case 1 of the
main theorem ( 4). Suppose x counters are removed from the larger pile, where N< x < a+N. The new
position becomes(a+N−x,x−N), where1≤ a+N−x < a and1≤ x−N. Then it cannot be the case
that f(x) < L(a+N−x,x−N).

Proof. Since the main theorem is true for the position(a+N−x,x−N) and also 1≤ a+N−x < a,1≤
x−N, we know by note 1 thatL(a+N−x,x−N)≤ min

(
a+N−x, f (g(x−N))

)
. We now consider two

cases:

Case A: g(x) 6= g(N), and

Case B:g(x) = g(N).

Case A Sinceg(x) 6= g(N) andx−N≥ 1, it is easy to see thatg(x)≥ g(x−N). Note thatg(x) ∈ B,g(x−
N) ∈ B. Now from lemma 2 and Condition 1 onf , we know thatf (x) ≥ f (g(x)) ≥ f (g(x−N)).
Therefore, if f (x) < L(a+ N− x,x−N), we would have (by combining the above information)
f (x) < L(a+N−x,x−N)≤ f (g(x−N))≤ f (x), a contradiction sincef (x) < f (x) is impossible.
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Case B Since we are assuming in lemma 3 thata≤ f (g(N)), we havea≤ f (g(N)) = f (g(x)) ≤ f (x),
where f (g(x))≤ f (x) from Condition 1 onf . Therefore,a≤ f (x). Now f (x) < L(a+N−x,x−N)
implies f (x) < L(a+ N− x,x−N) ≤ a+ N− x < a≤ f (x), a contradiction sincef (x) < f (x) is
impossible.

It is important to note that although lemma 3 assumes the main theorem is true for all positions(a,N),
a≥ 1, it can also be used later in the induction argument since 1≤ a+N−x < a, the induction will be on
a, and we will only be interested in the position(a+N−x,x−N).

6 Proof of the Main Theorem

Starting the Induction

We now prove that the main theorem is true for all positions(a,N),a≥ 1, by mathematical induction on
a. Of course,L(0,N) = ∞. Now L(1,N) = 1 is obvious for allN since the removal of 1 counter from the
smaller pile is an immediate win. Also,a = 1≤ f (g(N)) is true for allN, which means that the theorem
requiresL(1,N) = 1.

Since the induction is started, we can assume the theorem is true for all positions(a,N),a= 1,2, . . . ,a−
1,a≥ 2. We will now prove that the theorem is true for all positions(a,N). We do this by induction onN
in the order(a,0),(a,1),(1,2),(a,3), . . . .

First, note that for all positions(a,N),a≥ 1, it is true thatL(a,N) ≤ a. This is because the removal
of a counters from the smaller pile is an immediate win sincea is the smaller pile size. We now show
that L(a,0) = a, as is required by the theorem. By symmetry, sincea = b, we see thatL(a,0) is the
leastx ∈ {1,2, . . . ,a} such that f (x) < L(a− x,x). First, we show thatx /∈ {1,2,3, . . . ,a− 1}. Now
f (g(x)) ≤ f (x) by Condition 1 onf . From note 1 (sincea− x ≥ 1) and from the induction, we know
that L(a− x,x) ≤ f (g(x)) ≤ f (x). Therefore, ifx ∈ {1,2, . . . ,a− 1} and f (x) < L(a− x,x), we would
have f (x) < L(a− x,x) ≤ f (x), a contradiction. Of course, whenx = a, we have the obvious fact that
f (x) = f (a) < L(a−a,a) = L(0,a) = ∞. Therefore,L(a,0) = a is true, as it should be.

Main Induction

Next, we deal successively withL(a,N),N ≥ 1 andN starting atN = 1 and increasing. We assume that
main theorem is true forN ∈ {1,2, . . . ,N−1}, and we show it is true for(a,N).

To evaluateL(a,N), we must find the leastx∈ {1,2,3, . . . ,a} such that

(a) f (x) < L(a,N−x), andN−x≥ 0, or

(b) f (x) < L(a−x,N+x),

where we note in (a) that we only need to considerx whereN− x≥ 0. This is because of two reasons.
First, whena > f (g(N)), we need to proveL(a,N) = g(N). Now g(N)≤N whenN ∈ Z+. Therefore, we
only need to considerx in the range 1,2,3, . . .g(N), and obviously 0≤ N−x in this range. Second, when
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a≤ f (g(N)), lemma 3 along with the mathematical induction of those(a,N)’s that we have already dealt
with shows us thatf (x) < L(a+N−x,x−N) is impossible when 1≤ a+N−x < a andN−x < 0.

Note that 1≤ a+ N− x < a when x ∈ {1,2,3, . . . ,a},1 ≤ N, andN− x < 0 which means that the
induction ona can be used. This means that lemma 3 can be used with the induction ona sincea+N−x<

a, a technicality that we mentioned above. We will now consider two cases for(a,N), which correspond
to the two cases given in the main theorem.

7 The Two Cases
Case 1a≤ f (g(N)). We must showL(a,N) = a.

Case 2a > f (g(N)). We must showL(a,N) = g(N).

Case 1

a≤ f (g(N)). We must showL(a,N) = a. Therefore, we must show that the leastx∈ {1,2,3, . . . ,a} such
that (a) or (b) is true isx= a. Of course, (b) is true forx= asincef (a) < L(a−a,N+a) = L(0,N+a) = ∞.
So let us show thatx∈ {1,2,3, . . . ,a−1} will not work in (a) or (b).

We take care of (a) first, and we consider two subcases for (a). Of course, we can assumeN−x≥ 0 in
(a) as we have already shown.

Subcase A f (x) ≥ a. If (a) is true, we havef (x) < L(a,N− x) ≤ a≤ f (x), a contradiction. Note that
L(a,N− x) ≤ a is true since for any position(a,N),a≥ 1, it is always true thatL(a,N) ≤ a
sincea is the smaller pile size.

Subcase Bf (x) < a. We havef (x) < a≤ f (g(N)) from the definitions of Subcase B and Case 1. First,
supposeg(N)≤ g(x). Sinceg(N) ∈ B,g(x) ∈ B, from lemma 2 and Condition 1 onf we have
f (g(N)) ≤ f (g(x)) ≤ f (x), a contradiction sincef (x) < f (g(N)) is true. Therefore,g(x) <

g(N) is true.x < N is true sincex≤ N. So by lemma 1,g(x) = g(N−x). Therefore,f (g(N−
x)) = f (g(x)) ≤ f (x) by Condition 1 onf . Of course, 1≤ N− x is true sincex < N. Now
if (a) is true, we havef (x) < L(a,N− x) andN− x ≥ 0. Actually N− x ≥ 1. Therefore,
f (x) < L(a,N−x)≤ f (g(N−x))≤ f (x), a contradiction. Note 1 and the induction hypothesis
implies thatL(a,N−x)≤ f (g(N−x)) sinceN−x < N and 1≤ a.

We next show thatx∈ {1,2,3, . . . ,a−1} will not work in (b). We consider two subcases.

Subcase A: f (x) ≥ a−x. If (b) is satisfied,f (x) < L(a−x,N+x) ≤ a−x≤ f (x), a contradiction. Note
thatL(a−x,N+x)≤ a−x sinceL(a,N)≤ a whena≥ 1, and 1≤ a−x = a.

Subcase B:f (x) < a− x. This means thatx+ f (x) < a. First supposeg(x) ≥ g(N). Therefore,f (x) ≥
f (g(x)) ≥ f (g(N)), by Condition 1 onf and lemma 2 sinceg(x) ∈ B,g(N) ∈ B. Therefore,
x+ f (x) ≥ x+ f (g(N)) ≥ x+ a, definition of Case 1,> a > x+ f (x), a contradiction since
x+ f (x) > x+ f (x) is impossible. Therefore,g(x) < g(N) is true. This impliesg(x) =
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g(N + x), lemma 1. Thusf (x) ≥ f (g(x)) = f (g(N + x)) , by Condition 1 onf . But if
x satisfies (b), we havef (x) < L(a− x,N + x) ≤ f (g(N + x)) ≤ f (x), a contradiction. By
note 1 and the inductionL(a−x,N+x)≤ f ( g(N+x)) since 1≤ a−x < a.

We now deal with Case 2.

Case 2

a > f (g(N)). We must showL(a,N) = g(N). Therefore, we must show that the leastx∈ {1,2,3, . . . ,a}
such that (a) or (b) is satisfied isx = g(N) . Of course,N ≥ 1. Note thatg(N) ≤ f (g(N)) < a , by
Condition 3 onf (sinceg(N) ∈ B) and the definition of Case 2. Also, rememberg(N)≤ N.

Dealing with x∈ {1,2, . . . ,g(N)−1}.

Let us first show thatx ∈ {1,2,3, . . . ,g(N)−1} will not work in (a) or (b). Note thatN− x ≥ 1 when
x< g(N)≤N. Nowx< g(N) impliesg(x) = g(N−x) = g(N+x) by lemma 1. Therefore, by Condition 1
on f , f (x)≥ f (g(x)) = f (g(N−x)) = f (g(N+x)).

If (a) is satisfied byx < g(N), we havef (x) < L(a,N− x),1≤ N− x . Therefore, by note 1, the fact
that 1≤ N−x, and the induction (sinceN−x < N), we havef (x) < L(a,N−x) ≤ f (g(N−x)) ≤ f (x),
a contradiction. If (b) is satisfied, we havef (x) < L(a−x,N+x) ≤ f (g(N+x)) ≤ f (x), a contradiction.
Note that 1≤ a− x is true sincex < g(N) ≤ f (g(N)) < a, (as stated above). ThusL(a− x,N + x) ≤
f (g(N+x)) follows by note 1, the induction (sincea−x < a) and 1≤ a−x.

Dealing with x = g(N).
Let us now show thatx = g(N) will satisfy at least one of (a) or (b). We consider two possibilities.
Remember,g(N) < a andg(N)≤ N.

First, supposeg(N−g(N))
g(N) ≥ 4. This also includes the case whereN−g(N) = 0, so thatg(N−g(N)) = ∞.

We show thatx = g(N) satisfies (a). That isf (x) < L(a,N− x),0≤ N− x. Of course, 0≤ N− x is
obvious sinceg(N)≤ N. Lettingx = g(N), we haveg(N−x)≥ 4x. But f (x) < 4x is true by Condition 2
on f sincex = g(N) ∈ B. Therefore,f (x) < 4x≤ g(N− x). Therefore,f (x) < g(N− x). Also, f (x) =
f (g(N)) < a, by the definition of Case 2. Therefore,f (x) = f (g(N)) < L(a,N− x), since f (x) < a and
f (x) < g(N−x) andL(a,N−x) ∈ {a,g(N−x)} where we note thatL(a,N−x) ∈ {a,g(N−x)} is true by
induction since 0≤ N−x < N. This means that (a) is satisfied byx = g(N).

Next, supposeg(N−g(N))
g(N) � 4. This meansg(N−g(N))

g(N) = 2.

Now by Condition 4 onf ,x = g(N) satisfies eitherf (x) < 2x or x+ f (x) ≤ f (2x) sincex = g(N) ∈ B,
whereB = {1,2,4,8, . . .}.

First, supposef (x) < 2x. We show thatx = g(N) satisfies (a). That is, we showf (x) < L(a,N− x)
andN− x ≥ 0. Of course,N− x = N− g(N) ≥ 0 is true. Lettingx = g(N) in g(N− g(N)) = 2g(N),
we haveg(N− x) = 2x. This meansf (x) = f (g(N)) < 2x = g(N− x). Therefore, f (x) < g(N− x).
Also, f (x) = f (g(N)) < a, by the definition of Case 2. Therefore,f (x) = f (g(N)) < L(a,N− x) since
f (x) < a, f (x) < g(N−x) andL(a,N−x)∈ {a,g(N−x)} by the mathematical induction sinceN−x< N.
This means (a) is satisfied byx = g(N).
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We next assumex = g(N) satisfiesx+ f (x) ≤ f (2x) along with the above assumption thatx = g(N)
satisfiesg(N−x) = 2x.

Now g(N−g(N)) = 2g(N) implies 4g(N)≤ g(N+g(N)) sinceN must be of the binary form

N = XXXX· · ·X1100· · ·00.

That is 4x≤ g(N+x).
We now consider two subcases, wherex = g(N). Recall thatf (g(N)) < a in Case 2.

Subcase A: f (x) < a−x. We show that (b) is satisfied byx= g(N). That is, we showf (x) < L(a−x,N+
x). Remember,x = g(N) < a.

Now f (x) < 4x, by Condition 2 onf sincex = g(N) ∈ B. Therefore, we knowf (x) < a−x
and f (x) < 4x≤ g(N + x), whenx = g(N). Therefore,f (x) < L(a− x,N + x) since f (x) <

a− x, f (x) < g(N + x),1≤ a− x andL(a− x,N + x) ∈ {a− x,g(N + x)}, by the induction
sincea−x < a. This means (b) is satisfied byx = g(N).

Subcase B:f (x) ≥ a− x. We now show that (a) is satisfied byx = g(N). This means that we show
f (x) < L(a,N−x). Of course, 0≤ N−g(N) = N−x.

Now a≤ x+ f (x)≤ f (2x), by the definition of Subcase B and the above assumption aboutx. Therefore,
a ≤ f (2x). Also, g(N− x) = 2x from the above assumption. Therefore,f (g(N− x)) = f (2x). Thus
a≤ f (2x) = f (g(N−x)). That is,a≤ f (g(N−x)). Therefore, the induction on the main theorem implies
L(a,N−x)= asinceN−x< N anda≤ f (g(N−x)). Also by the definition of Case 2,f (x)= f (g(N))< a.
Therefore,f (x) < L(a,N−x), which means that (a) is satisfied byx = g(N).

We now state the converse of the main theorem.

Converse Theorem.Suppose f: Z+ → Z+, f (∞) = ∞, is given, and we play our game with this function
f . Suppose also that the conclusion of the main theorem is true for f . Then it is also true that f satisfies
all of the 4 conditions listed in Definition 2.

Proof.

(1) We show thatf satisfies Condition 1. Therefore, suppose there existsx∈Z+ such thatf (g(x)) > f (x).
We show that this leads to a contradiction. Consider the position(a,N) = ( f (g(x)) + x,0). Now
since the main theorem is true,L( f (g(x))+x,0) = f (g(x))+x. Let us now removex counters from
one of the equal piles. This gives the new position(a,N) = ( f (g(x)),x). Now a = f (g(x)) and
f (g(N)) = f (g(x)). Thusa ≤ f (g(N)). Therefore,( f (g(x)),x) comes under Case 1 of the main
theorem, which meansL( f (g(x)),x) = f (g(x)).

This also meansf (x) < L( f (g(x)),x) = f (g(x)) since we are assuming thatf (x) < f (g(x)). Now
sincex< f (g(x))+x, this means thatL( f (g(x))+x,0) = f (g(x))+x cannot be true, which contradicts
the main theorem.
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(2) We show thatf satisfies Condition 2. Suppose there existsx∈ B such thatf (x) ≥ 4x. Consider the
position(a,N) = (a,3x), wherea∈ Z+,a > g(N),a > f (g(N)),a > f

(
g(N−g(N))

)
anda−g(N) >

f
(
g(N+g(N))

)
.

In binary we can writex = 10000︸︷︷︸,N = 3x = 110000︸︷︷︸, where 0000︸︷︷︸ represents a string of 0’s. Since

x ∈ B, it is obvious thatN = 3x satisfiesg(N) = g(3x) = x,g(N− g(N)) = 2g(N) = 100000︸︷︷︸, and

g(N+g(N)) = 4g(N) = 1000000︸︷︷︸. Of course, by assumption,f (x) = f (g(N)) ≥ 4g(N) = 4x. Since

the main theorem is true for(a,N) = (a,3x), we know the following. First, sincea > f (g(N)), we
know thatL(a,N) = g(N). Of course, we are also assuminga > g(N). This means that the removal
of g(N) from at least one of the two piles must be a winning move. Therefore, one of the following
must be true. Eitherf (g(N)) < L(a,N− g(N)) or f (g(N)) < L(a− g(N),N + g(N). Now by the
assumption ona, we know thata > f

(
g(N−g(N))

)
anda−g(N) > f

(
g(N+g(N))

)
. Therefore, by

the main theorem,L(a,N−g(N)) = g(N−g(N)) = 2g(N).

Also, L(a−g(N),N + g(N)) = g(N + g(N)) = 4g(N). So we needf (g(N)) < 2g(N) or f (g(N)) <

4g(N). But sinceg(N) = x and f (g(N)) ≥ 4g(N), this is impossible. Therefore, the main theorem
cannot hold for the position(a,N), a contradiction.

(3) We show thatf satisfies Condition 3. Suppose there existsx∈ B such that 1≤ f (x) < x. Consider
the position(a,N) = (2x,2x). Sincex∈ B, we can write this asx = 10000︸︷︷︸, and 2x = 100000︸︷︷︸,3x =

110000︸︷︷︸. Of course,g(2x) = 2x sincex∈ B.

Now no matter whether the position(a,N) = (2x,2x) satisfies Case 1 or Case 2 of the main theorem,
L(a,N) = L(2x,2x) ∈ {a,g(N)}= {2x,2x}, which meansL(2x,2x) = 2x. Let us now removex coun-
ters from the smaller pile, which gives the new position(x,3x). We show thatf (x) < L(x,3x). This
meansL(2x,2x) cannot exceedx, which means thatL(2x,2x) = 2x is false, contradicting the main
theorem.

Now L(x,3x) ∈ {x,g(3x)} = {x,x}. Therefore,L(x,3x) = x and f (x) < x = L(x,3x) is true by the
assumption that we made aboutx.

(4) We show thatf satisfies Condition 4. Suppose there existsx∈ B such thatf (x) ≥ 2x andx+ f (x) >

f (2x).

Consider the position(a,N) = (x+ f (x),3x)). Sincex∈ B,g(N) = g(3x) = x. Now a > f (g(N)) is
true sincea= x+ f (x) > f (x) = f (g(N)). Therefore,(a,N) comes under Case 2 of the main theorem,
andL(a,N) = L(x+ f (x),3x) = g(N) = x. This means that the removal ofx counters from one of the
two piles must be a winning move. This means that either 4a or 4b must be true.

a. f (x) < L(x+ f (x),2x). Now g(2x) = 2x. Therefore,f (g(2x)) = f (2x).

Now x+ f (x) > f (g(2x)) = f (2x) is true by the assumption onx.

Therefore, by Case 2 of the main theorem, we know thatL(x+ f (x),2x) = g(2x) = 2x. Therefore,
f (x) < L(x+ f (x),2x) = 2x is impossible sincef (x)≥ 2x is also assumed forx.
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b. f (x) < L( f (x),4x). Now L(a,N) ≤ a is always true whena≥ 1 sincea is the smaller pile size.
Therefore,f (x) < L( f (x),4x)≤ f (x) must be true, which is impossible.

The Misère Version

The strategy given in this papercannotbe used to play the misère version of this game. The misère version
is a totally different game.
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