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Graphs of low chordality
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The chordality of a graph with at least one cycle is the length of the longest induced cycle in it. The odd (even)
chordality is defined to be the length of the longest induced odd (even) cycle in it. We show that co-circular-arc
graphs and co-circle graphs have even chordality at most 4. We also identify few other classes of graphs having
bounded (by a constant) chordality values.
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1 Introduction

The chordality of an undirected grajgh which is not acyclic, is defined as the length of the longest
induced cycle in it. The chordality of an acyclic graph is defined to be 0. W&€ufe> 3) to denote a

cycle of lengtH. Aninduced cycle is called a hole. A hole is an odd hole if its length is odd and is an even
hole otherwise. Odd-chordality of a graph is the length of the longest odd hole in it. Even-chordality of a
graph is the length of the longest even hole in it. In the present paper we identify several classes of graphs
of bounded chordality. Our motivation is due to some recent interesting results connecting chordality with
other structural aspects of graphs. We list some of them below.

1. Bodlaender and Thiliko§[3] show that if a %raph has chordality at thastd maximum degree at
mostA, then its treewidth is at mo&(A—1) =3, (For the definition of treewidth and for a brief
review of its applications, both theoretical and practical, ske [2].)

2. In the same paper mentioned above, Bodlaender and Thilikos [3] prove some separator theorems
for graphs of low chordality.

3. In arecent work, Chandran and Ram [5] relate the chordality with the number of minimum cuts in
a graph (with positive edge weights). They show that if the chordality of a graphmwititles is at

mostk, then the number of minimum cuts possible in that graph is at ﬁ%@tﬂ —k, irrespective
of the weight function as long as the weights are positive.
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4. Chandran and Subramanian [6] relate the second smallest eigenswdltiee Laplacian matrix of
the graph to its chordality. They show that if the chordality oharode graph is at mo&tand the

maximum degree is at moAt thenp < %

5. Chepoi and Draganl[4] show that for any connected gfajoifi chordality at mosk there exists a
treeT on the same vertex set such thag(u,v) — dr (u,v)| < |Kk/2] + a for any pair of vertices
andv, whered(u,Vv) is the distance betweanandv, anda is a constantd = 1 if the chordality is
either 4 or 5 andi = 2 otherwise).

6. F. Dragan[IB] proposes a very simple and efficient approach to soladl grers shortest pattand
all pairs almost shortest pathroblems on graphs of low chordality.

7. F. Gavril [12] presents an algorithm that finds a maximum weight induced path in a graph with
vertices,m edges and of chordality at mdsin time O(mr¥). In general the problem is known to
be NP-hard.

8. The Strong Perfect Graph Theorem recently proved by Chudnovsky, Robertson, Seymour and
Thomas|[7], asserts that a gra@his perfect if and only if the odd chordality @ and its com-
plement is at most 3.

Many well-known graph classes have bounded chordality. For instance, it follows directly from the
definition that chordal graphs (those having no holes of length 4 or more) have chordality at most 3,
and weakly chordal graphs (those having neither holes of length at least 5 nor their complements) have
chordality at most 4. Deimer proved inl [8] that the chordality af-dimensional hypercube is at most
29-1(1—-1/(d?—5d +7)) for d > 7. It would be of interest to identify other classes of graphs of bounded
chordality.

Our main result is a proof of boundedness of even-chordality of co-circular-arc and co-circle graphs. In
addition, we also identify few other classes having bounded chordality values.

For each class, in addition to deriving bounds on their chordality values, we also provide examples to
show that these bounds are tight.

All graphs considered in this paper are finite, simple and undirected. For a Grapé denote by (G)
andE(G) its vertex set and edge set, and Bythe complement oG. As usual,P, andK, denote a
chordless path and a complete graph witliertices, respectively. Alsd; + H stands for the disjoint

union of two graph<s andH. In particularmGis the disjoint union ofm copies ofG. For a clasg” of
graphs, we use cg-to denote the class of complements of members.of

2 Co-circular-arc graphs and co-circle graphs

The main result of this section is the following theorem.

Theorem 2.1 For each graph that is the complement of either a circular-arc graph or a circle graph, its
even-chordality is at most 4 while there is no upper bound on its odd-chordality.

Below, we prove Theorefn 2.1 by looking at each of the classes mentioned and providing justifications.
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Co-circular-arc graphs: These are complements of circular-arc graphs. A circular-arc graph is the
intersection graph of the arcs on the circumference of a unit circle. Co-circular-arc graphs have even-
chordality at most 4 and this class has no bound on their odd-chordality since fdk 2aththe induced

Coky1 is co-circular-arc.

Before we see the proof of this result, we introduce a convention:

Direct each arc on the circumference of the unit circle according to the clockwise direction. Now each
arc on the circumference is specified by an ordered (ba@) whereb (respectivelye) denotes the angle

¢ € [0,2m) that the beginning point (respectively the ending point) of this directed arc makes with the
positive part of the-axis. The angle increases in the clockwise direction. It is possibléthat

Let G be a co-circular-arc graph. Let— A(v) = (by,e,) be the mapping d¥ (G) onto circular-arcs such
thatu,v € V(G) are neighbors (is) if and only if A(u) andA(v) have empty intersection. First, we prove
thatG has even-chordality at most 4.

Claim 1 We can assume, without loss of generality, that no gie) Adroperly contains any other arc
A(v).

Proof: To see this, consider any induc€gd | > 5, in G and consider any two distinct verticash in
Ci. We can always find (since> 5) two distinct verticex,d on C; such thata is a neighbor oft but
not a neighbor ofl andb is a neighbor ofd but not a neighbor of. If, say, A(a) C A(b), it implies
A(d) N A(b) # 0 andd is not a neighbor ob. Similarly, we cannot havA(b) C A(a). Hence, we can
assume that no arc properly contains any other arc. O

Claim 2 For any induced path x 0—1—...—1in G with by = 0, by < by, the endpoints of the arcs
{A(x),A(0),...,A(I)} should appear according to the following increasing sequemnce

If | =2k,
0, &, €ok—2, 00k 1, €14, bk_3,...,€2,b3,€0, b1,

by, k1, b2k, €2k—3, D012, . .., €3,04, €1, b2, &, 21T

If 1 =2k+1,
07 e2k7 b2k+17 e2k727 bZk—la R 7627 b37 %7 b17

by, €11, €ok—1, Dok, €ok—3, D0k _2, ... ,€3,04, 81,102, &, 2T

Proof: We prove this by induction ok where eithet = 2k or | = 2k + 1.

The base casds= 0,1, 2,3 corresponding t& = 0,1 can be easily verified to be true.

Assume that the claim is true for &l < k wherek > 1.

We now prove it folk + 1.

First, consider the induced path-0—1—... — 2k+ 2. The endpoints 0fx,0,1,...,2k+ 1} should
appear according to1. Since 0 and R+ 2 are not neighbors i6, A(0) andA(2k+ 2) have non-empty
intersection. Hence eithépy 2 or ex. 2 (but not both) should lie betweenHbg andep.

If box. o lies in (0,ep), theney > should come aftegy. This implies thatA(2k + 1) and A(2k+ 2) have
non-empty intersection violating the assumption that2 and X+ 2 are neighbors .

Hence onlyey» lies in A(0). In that case, the arc corresponding to the segr@epix, 2| lies within
A(2k+2). Also, ex» should come beforex. To see this, suppose it comes afgr. It certainly cannot
come afteby 1 sinceA(2k+ 1) andA(2k+ 2) have empty intersection.
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Henceeyx . » lies betweerey andby. 1. Hencebyy» comes aftebyy but beforeey 1 and this is not
possible sincdy, comes afteex_1 in O 1.

Thus,ex 2 should come beforey. Henceby 2 should come beforby. Also, it should come before
ex_1 to ensure thatl— 1 and X+ 2 are not neighbors. Also, it should come aftgr, ; to ensure that
2k+ 1 and X+ 2 are neighbors.

Since the positions diy 2 andex 2 are forced in this way, by placing these, we see that the endpoints
appear according oy . This proves Claifi]2 for = 2k + 2.

Similarly, one can prove Claifn] 2 fdr= 2k + 3 from | = 2k+ 2 by observing thati) only by, 3 is in
(0,e), (ii) bokiz should lie betweery > andey, (iii) exs should lie betweetn, and ey 1. This
proves Clainj P. O

Now consider any induced cyc® of even lengtts > 6 in G. Without loss of generality, by rotating the
unit circle around its centre, we can assume {hathere exists a vertex 0 d with bg = 0, (ii) if 1 and

x are the neighbors of 0 iB, thenb; < by. Thus, we can assume tl@t= (x,0,1,...,2k, x) wherek > 2.

Now x—0—1—...—(2k—1) is an induced path and hence, by Cl4in 2, the corresponding endpoints
should appear according tpy_1 as given below.

0,2,k _1,8x—4,b01_3,...,€2,b3,60,b1,

bX7 e2k717 eZk—aa b2k727 e2k757 b2k747 s 7e37 b47 el7 b27 %(7 2T[

Since X is a neighbor of bottx and X — 1, we should havé\(2k) N (A(x) UA(2k — 1)) = 0. But, this
implies thatA(2k) N A(1) = 0 sinceA(1) C (A(X) UA(2k— 1)) as can be seen fromp_1. This is not
possible since 1 andkare not neighbors and hen&él) andA(2k) should have non-empty intersection.
This shows that even-chordality of co-circular-arc graphs is at most 4.

This bound is tight because of the following example. Consider the set of arcs

A(0) = (0,11/2), A(1) = (31/4,51/4), A(X) = (T1,311/2), A(2) = (7T11/4,T1/4)

InducedC, is the complement of the intersection graph of these arcs.

Surprisingly, there is no bound on the odd-chordality of co-circular-arc graphs and fokevé€ryinduced
Cx. 3 is co-circular arc. To see this, note tlagt, 3 is the same as the induced pathO—1—... —2k+1
except that we want, in additiorx,and X+ 1 to be neighbors. This can be made co-circular-arc by
picking values for(bx,ex), (bp = 0,€p), ..., (ba+1,€x+1) SO that, after sorting, these values appear as in
the following sequence (which is obtained fram 1 by movingey. 1 to a position betweeh; andbsy):

07 €, b2k+1a €2k—2, bZkfla ..., 62, b37 €o, bla

€k+1, Dy, k1, Dok, €x—3,0k—2, . . ., €3,004, €1, 2, 8, 2T

One can pick values so as to appear like this. This shows that each odd hole is a co-circular-arc graph.
Note that each hole (odd or even) is also a circular-arc graph.

Co-circle graphs: These are complements of circle graphs. A circle graph is the intersection graph
of the chords of a unit circle. A chord of a circle is a straight-line segment joining two points on the
circumference of the circle. Here, we assume that any two chords either have empty intersection or
intersect at an internal point (not at the endpoints of the chords). As in the case of co-circular-arc graphs,
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co-circle graphs also have even-chordality at most 4 with no bound on their odd-chordality since for each
k> 1, the inducedCy. ; is a co-circle graph.

We use the following convention for representing the chords of a circle:

Each chord of the circle is specified by an ordered (iai) whereb ande denote the anglg < [0, 2m) that
the two endpoints of the chord make with thaxis with the convention thédt < e. The angle increases
in the clockwise direction.

Let G be a co-circle graph. Let — A(v) = (by,e,) be the mapping o¥(G) onto chords of a unit
circle such thau,v € V(G) are neighbors (i) if and only if A(u) and A(v) have empty intersection.
In other wordsu andv are neighbors if and only iither by < b, < e, < e, or by <by < e, <eg or
by < ey <by<eg orby, <e < by <e,. Equivalently,u andv arenot neighbors if and only ikither
by<by<eg <egorh <b,<e <e,.

Claim 3 For any induced pathx 0—1—... —| in G with by = 0, by < by, the endpoints of the chords
{A(x),A(0),...,A()} should appear according to the following increasing sequeiice
Ifl = 2Kk,

0, bk, bok—2, bok—1, box—4, b0k 3, ..., b2, b3, €0,

bla be €k—1, €%k, €k—3,€k—2,...,€3,64,€1,E2,8, 2n

Ifl =2k+1,
0, b, by 1, box—2,bok—1, ..., b2, b3, €0,

bl) bXa 92k+17 e2k—l7 eZk7 e2k—37 e2k—27 ey e3a e4a el7 e27 3(7 2T[

Proof: We prove this by induction ok where eithet = 2k or | = 2k + 1.

The base casds= 0,1, 2,3 corresponding t& = 0,1 can be easily verified to be true.

Assume that the claim is true for &l < k wherek > 1. We now prove it fok + 1.

First, consider the induced path-0—1—... — 2k+ 2. The endpoints 0fx,0,1,...,2k+ 1} should
appear according toy 1.

Since 0 and R+ 2 are not neighbors i®, A(0) andA(2k+ 2) have non-empty intersection. Herfeg -
should lie between & by andey.

Also, it should come beforby.

Suppose not. Then, sincé& and X + 2 are not neighborsyy,» should come afteey. Now, if by, o
comes aftebyy 1 it implies the corresponding chords have non-empty intersection violating the fact that
2k+1 and X+ 2 are neighbors if®.

If box, 2 comes befordy, 1 then the chords corresponding th-22 and X — 1 have empty intersection
violating the fact that R+ 2 and X — 1 are not neighbors i6.

Henceby . » should come beforby. This implies thakex o should lie betweery 1 andex_1. Since

the positions oby, » andey 2 are forced in this way, by placing these, we see that the endpoints appear
according torp 2. This proves Clairi|3 for = 2k + 2.

Similarly, one can prove Claifr| 3 fdr= 2k+ 3 from | = 2k+ 2 by observing thati) bz 3 should lie
betweerbyy» andby, (ii) ex,3 should lie betweeby andey 1. This proves CIairE]3. O

Now consider any induced cyc® of even lengtts > 6 in G. Without loss of generality, by rotating the
unit circle around its centre, we can assume fiathere exists a vertex 0 dBs with bp = 0, (i) if 1
andx are the neighbors of 0 i, thenb; < by. Thus, we can assume thag= (x,0,1,...,1,x) where
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| =s—2>4iseven. Let —1=2k+1 for somek> 1. Nowx—0—1—...— (I —1)is an induced path
and hence, by Claifri 3, the corresponding endpoints should appear according to

Sincel = 2k+ 2 and 0 are not neighbors we should have By 2 < ey < ex2. Now eitherey. > < by
or e < ey2, since otherwise R+ 2 andx would not be neighbors whereas they should be. But, we
cannot havey < ey 2 as this would imply 1 andk+ 2 are not neighbors. Hence, we haygg, » < by.
Again, since 1 andi+ 2 are not neighbors ar®y,» < by, we should have; < ex. 2 < by. Now, since
k.2 < exr1 and X+ 1 is a neighbor of R+ 2 in G, we must havéy 1 < by, 2. But this would imply
thatbok < boki2 < exi2 < ey violating & and X+ 1 not being neighbors it. This shows that there
can be no induce@s in G with s—3=1—1> 3 being odd. In other words, the even-chordalitycaf at
most 4.

This bound is tight because of the following example. Consider the set of chords

A(0) = (0,1/2), A(1) = (1,31/2), A(X) = (51/4,711/4), A(2) = (T1/4,311/4)

InducedC, is the complement of the intersection graph of these chords.

Like in the case of co-circular-arc graphs, there is no bound on the odd-chordality of co-circle graphs
and for everyk > 0, inducedCy 3 is co-circle. This can be seen by picking values (foy, &), (bp =
0,€0),...,(ba+1,ex+1) SO that, after sorting, these values appear as in the following sequence (which is
obtained fronm,k 1 by movingex, 1 to a position betweeh; andby):

07 b2k7 b2k+17 b2k727 b2k717 ceey b27 b37 a)?

bla €2k+1, bX» €2k—1, €2k, €2k—3,E2k—2,. .. ,€3,€4,€1, €2, &, 2n

The complement of the circle graph corresponding to this set of chords is an inGaced This shows
that each odd hole is a co-circle graph. Also, each hole (odd or even) is a circle graph.

3 Other classes

Each class of this section, as well as the two classes studied above, has the property that for evéry graph

in it, it contains all induced subgraphs®f Such classes are callbdreditary Many classes of theoretical

and practical importance are hereditary, which includes, among others, planar, bipartite, split, threshold,
perfect, interval, comparability, line graphs, forests, graphs of bounded vertex degree, etc. Many of those
classes that are not hereditary have natural hereditary extensions: for instance, for the non-hereditary
class of trees such an extension is the class of forests, and for the class of cubic graphs such an extension
consists of all graphs of vertex degree at most three. Our interest in hereditary classes is based on the fact
that these and only these classes admit a uniform description in terms of forbidden induced subgraphs.
More formally, given a set of graphd, let us denote byreeM) the class of graphs containing no
induced subgraphs isomorphic to graph#linThen the following theorem holds.

Theorem 3.1 The class of graphs X is hereditary if and only iEXFree(M) for a set M. Moreover, the
minimal set M with this property is unique.

Proof: Obviously, for any seM the class~ree(M) is hereditary. Conversely, &t be a hereditary class,
andM the set of all minimal (with respect to the relation "to be an induced subgraph”) graphs which are
not in X. ClearlyX C Free(M). On the other hand, every graph which is noXircontains an induced
subgraph fromM. Therefore Free(M) C X. To prove the second part of the theorem, we will show that
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M C N for any setN such thatX = Free(N). To this end, letG be a graph ifM. By definition ofM, G
does not belong t&X, and henceG must contain an induced subgraghe N. By the same definition,
every proper induced subgraph®fbelongs taX, from which we conclude thad =H,i.e. GEN. O

For many classes the induced subgraph characterization is known. For instance, according to the fa-
mous theorem of Knig [21], the class of bipartite graphs coincides witiee(C3,Cs,Cy,...). Therefore,
odd-chordality of bipartite graphs is 0, while even-chordality is unbounded. For the larger otassusH-

rability (or transitively orientabl@graphsthe induced subgraph characterization has been found by Gallai
[11] (see alsol[10] and [26]). From this characterization it follows that odd-chordality of comparability
graphs is at most 3 and even-chordality is unbounded. On the other hand, the same characterization shows
that chordality of the complement of a comparability graph is at most 4.

In general, the problem of finding induced subgraph characterization for a hereditary class might be very
difficult, as the example gerfect graphshows. However, for the purpose of our study, we do not need

to know the complete list of minimal forbidden induced subgraphs. Indeed, with the above notation we
can say that graphs in a cla¥shave chordality at mosgt if X C Free(Cy.1,Ck+2,Ck3,...). Consider,

for instance, the class afkteroidal triple-freg/AT-free for short) graphs, which extends co-comparability
graphs. Inagraph, an asteroidal triple is a set of three pairwise non-adjacent vertices, any two of which are
joined by a path avoiding the closed neigbhorhood of the third. Clearly any cycle with at least 6 vertices
contains an asteroidal triple. Therefore, AT-free graphs constitute a subclasse(®s,C7,Cs,...), or
equivalently, chordality of AT-free graphs is at most 5, although the complete list of minimal forbidden
graphs for this class is unknown (to our knowledge).

Below we propose a very simple sufficient condition for a class of graphs to have bounded chordality. The
condition is based on the following helpful lemma.

Lemma 3.1 Freeg(M;) C Free(M;) if and only if every graph in Mcontains a graph in Mas an induced
subgraph.

Proof: Suppose first that a grapgh € M, does not contain induced subgraphs in theMet Then
H € Free(M1) — Freg(Mz), which proves necessity. Conversely, any gré&ph Free(M1) — Free(M3)
must contain an induced subgraphMi, and this graph cannot contain induced subgraphs belonging to
M (since otherwis& ¢ Free(M;)). This proves sufficiency. O

The following corollary is straightforward.

Corollary 3.1 Let X=Free(M) be a hereditary class of graphs. If M contains a graph G every connected
component of which is a path, then chordality of graphs in X is bounded. Specifically, if k is the number
of connected components of G andisithe number of vertices in the j-th component, then graphs in X

k
have chordality at mosty n; +k—1.
=1

Now let us illustrate this simple statement with a number of examples.

1. (coKp)-free graphs. The complement of &, is the graph withn isolated vertices. Therefore, by
Corollary[3.], chordality of (cd<,)-free graphs does not exceenl-21. Moreover, in the entire class of
coK-free graphs this bound is tight, sin€g,_1 contains no complement &, as an induced subgraph.
However, for some specific subclasses ofkgefree graphs the bound can be further improved. Below
we consider several such subclasses.



32 L.S. Chandran and Vadim V. Lozin and C.R. Subramanian

1.1. Co-bipartite graphs. Co-bipartite graphs constitute a subclass of Kgpfree graphs and therefore,

from the above general formula we conclude that their chordality cannot be more than 5. Furthermore,
Cs = Cs is not a bipartite graph and hence chordality of co-bipartite graphs is at most 4. This bound
is tight, sinceC, is a co-bipartite graph. With further restriction to complements Kf-ee bipartite

graphs (also known in the literature as difference graphs [19] or chain giaphs [27]) we obtain a subclass
of co-bipartite graphs of chordality at most 3 (the bound is tight).

1.2. Complements of graphs of vertex degree at most. Clearly, a graphG with maximum vertex
degree at mostl is Kq o-free. Therefore, the chordality @ is at most &+ 3. An improvement on

this bound can be obtained by noticing that the complement of the gapht K (the disjoint union

of P41 andKj) contains a vertex of degrek+ 1 and hencé®; 1 + Kj is forbidden in the class under
consideration. Therefore, by Corolldry 3.1, chordality of complements of graphs of vertex degree at most
d is bounded above bg + 3. The bound is tight, since the complementgf 3 contains no vertices of
degree greater thah

1.3. Complements of graphs of degeneracy at mokt The degeneracy of a graghis the maximum
value (over all induced subgraphisof G) of 8(H) whered(H) is the minimum degree dfi. Obviously,
graphs of degeneracy at mdstre Ky, o-free. Let us show that their complements have chordality at
mostk+ 3. To this end, consider an induced cy€leof lengthl > k-+ 4. All vertices ofC; have degree

| -3 > k+1. Therefore, cycle§ of lengthl > k+ 4 are forbidden for the class of complements of
graphs of degeneracy at mdstThe bound is tight, since an antihole a3 vertices is a regular graph
with degree (and hence degeneracy) exactnd its complement is an induc&, 3. Some examples

of graphs of bounded degeneracy are those of bounded gemnusose degeneracy and chordality are
bounded below.

1.4. Complements of graphs of genus at most It is well-known that graphs of genus at mgdtave at
most $— 6+ 6g edges. Using this, we claim that degeneracy of such graphs is at(hagt+ 3+ ﬁ.

To show this, consider a graph of genusg and letH = G[X] be any induced subgraph achieving the
degenerack of G. That is,8(G[X]) = k.

Casel: If |X| <+/129+ 3, thenk < ,/12g+ 3.
Case2: If |X| > 1/12g+ 3, then sincéd is also a genug-graph,

_ 129 _ 9
k—6(H)§6+m <6++129 3+7\/@+3

In any case, the degeneracy®fs at most,/12g+ 3+ ﬁ.

Therefore, the chordality of is at most,/12g + 6+ ﬁ. For g > 3, the bound on chordality of
complements of genug-graphs is tight up to an additive error of 3. To see this, consider an antihole
H on m= k+ 3 vertices wherd > 1 is an integer. This is the same as a complete grapim gertices
minus a hole on thega vertices. It is well-known that a complete graphrarvertices has genus exactly

(m—3)(m—4)/12. It follows that the genug of the antiholeH is at most

(m—3)(m—4) k2—k

12 12
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Hence/12g < k— 1+ ¢ for some positives < 1. Also, usingg > 3,

9
V129+6+—— <k+5+8+— <K+6+¢.
wﬁ 3° VIZg+3 =

This shows the tightness up to 3. Fpe 1,2, the bound is tight up to an additive error of 4.

1.5. Complements of graphs of bounded arboricityThe arboricity of a grapks is the minimum number
of edge-disjoint acyclic spanning subgraphs the union of whiGh ikccording to Nash-Williams formula
[23], the arboricity ofG coincides with mak(H)/(V(H) — 1), where maximum is taken over all induced
subgraphdd of G. Therefore, graphs of bounded arboricity #gfree for some value ofi, and thus
complements of graphs of bounded arboricity have bounded chordality.

1.6. Complements of graphs in minor-closed classe&raphs in minor-closed classes (i.e. those con-
taining no graph in a certain family as a minor) have at nmorsedges([2R], where is the number

of vertices anat is a constant associated with the class. Therefore, graphs in minor-closed classes have
bounded arboricity and thus their complements are of bounded chordality. One of the most famous minor-
closed classes is the class of planar graphs. Below we provide a tight bound for chordality of co-planar
graphs.

1.7 Co-planar graphs. It is known that planar graphs have bounded degeneracy, genus, arboricity and
they areKs-free. Together with the above discussion this immediately leads to the conclusion that chordal-
ity of co-planar graphs is bounded. In order to derive a tight bound, let us first observe that co-planar
graphs are Ps-free, since the complement oP2contains &3 3 as a subgraph. Therefore, by Corol-
lary[3.1, chordality of co-planar graphs cannot be more than 7. To improve the bound, consider a cycle
C; with verticesa, b, c,d, e, f, g listed along the cycle. The complement of the cycle contains an edge sub-
graphH, which is homeomorphic t&z 3 (H can be obtained by deleting the edgedsbd, eg ce). Hence
chordality of co-planar graphs is at most 6, and this bound is tight since the complement of an iBgluced

is planar.

2. Co-line graphs. The induced subgraph characterization of line graphs can be found, for instance, in
[20]. One of the forbidden graphs for this class is the complement-taP;. Therefore, by Corollary 31,
chordality of co-line graphs is at most 6. The bound is tight, since the complem€gti®f line graph

(it does not contain forbidden graphs).

3. Co-chordal graphsare X»-free and hence, by Corollafy 3.1, their chordality is at most 5. Moreover,
sinceCs = Cs is not a chordal graph, we conclude that chordality of co-chordal graphs is at most 4. The
bound is tight, sinceR, = C, is a chordal graph. Thus, we see that chordality is bounded both for chordal
graphs and their complements, which is no wonder, since both classes are subclasses of weakly chordal
graphs. By definition, a grapB is weakly chordal ifG € FregCs,Cs,Cg,Cg,C7,C7,...). In addition

to chordal graphs and their complements, the class of weakly chordal graphs contain many interesting
subclasses, such as chordal bipartite [14], distance-hereditary [1], matroidal [24], tolerancelgraphs [18],
etc. Therefore, all these graph classes and their complements have chordality at most 4.

4 Conclusions

In this paper we studied chordality of graphs in various classes. The main result is a proof of boundedness
of even-chordality of co-circular-arc and co-circle graphs. There are many other important families of
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graphs for which the problem of determining chordality is open. In this section we discuss two of them.
Both families are defined via an intersection model, both have nhumerous applications, and both generalize
some known classes of graphs of low chordality, just as circular-arc and circle graphs. The first family
is the class of circular permutation graphs|[25]. Similarly to circle graphs, this is a generalization of per-
mutation graphs. Chordality of permutation graphs, as well as their complements, is at most 4, since this
class is the intersection of comparability and co-comparability graphs. The other family was introduced
in [17] under the nam&-EPT graphs. This is a generalization of edge intersection graphs of paths in

a tree (1-EPT graphs) [15] and vertex intersection graphs of paths in a tree (VPT graphs) [16]. Every
VPT graph is chordal, since chordal graphs are exactly the vertex intersection graphs of subtrees of a tree
[13]. Therefore, chordality is bounded both for VPT graphs and their complements. The class of 1-EPT
graphs is an extension of VPT graphs. Chordality of 1-EPT graphs is unbounded, while co-chordality (i.e.
chordality of their complements) is at most[6 [1%:EPT graphs constitute a further generalization of
both classes, and therefore, provide a new direction for future research.

References

[1] H.-J. BANDELT and H.M. MULDER, Distance-hereditary graphs). Combinatorial Theory B 41
(1986) 182-208.

[2] H. L. BODLAENDER, A tourist guide through treewidiiActa Cybernetica, 11 (1993), pp. 1-21.

[3] H. L. BODLAENDER AND D. M. THILIKOS, Treewidth for graphs with small chordaljtpiscrete
Applied Mathematics, 79 (1997), pp. 45-61.

[4] V. CHEPOland F. IRAGAN, A note on distance approximating trees in grapBaropean J. Combi-
natorics, 21 (2000) 761-766.

[5] L. S. CHANDRAN AND L. S. Ram, On the number of min—cuts in a gragh Proceedings of the 8th
International computing and combinatorics conference, LNCS 2387, 2002, pp. 220-230.

[6] L. S. CHANDRAN AND C. R. SUBRAMANIAN, A spectral lower bound for the treewidth of a graph
and its consequencgisformation Processing Letters, 87 (2003), pp. 195-200.

[7]1 M. CHUDNOVSKY, N. ROBERTSON P. SEYMOUR AND R. THOMAS, The Strong Perfect Graph
Theoremmanuscript, June 2003.

[8] K. DEYMER, A new apper bound for the length of snakésmbinatorica 5 (1985) 109-120.

[9] F.F. DRAGAN, Estimating all pairs shortest paths in restricted graph families: a unified approach
Journal of Algorithms, accepted.

[10] P. DucHET, Classical perfect graphs: an introduction with emphasis on triangulated and interval
graphs Annals of Discrete Mathematics, 21 (1984) 67-96.

[11] T. GALLAI, Transitiv orientierbare Graphemcta Math. Acad. Sci. Hung. 18 (1967) 25-66.

[12] F. GavRIL, Algorithms for maximum weight induced pathsformation processing Letters, 81
(2002) 203-208.



Graphs of low chordality 35

[13] F. GAVRIL, The intersection graphs of subtrees in trees are exactly the chordal grapGembina-
torial Theory B, 16 (1974) 47-56.

[14] M.C. GoLumBiIc and C.F. ®ss Perfect elimination and chordal bipartite graph& Graph The-
ory, 2 (1978) 155-163.

[15] M.C. GoLumBic and R.E. AMISON, The edge intersection graphs of paths in a fr&eCombina-
torial Theory B, 38 (1985) 8-22.

[16] M.C. GoLumsic and R.E. AMISON, Edge and vertex intersection of paths in a {r&dscrete
Mathematics, 55 (1985) 151-159.

[17] M.C. GoLuMBIC, M. LIPSHTEYN and M. STERN, The recognition of k-EPT graph€ongressus
Numerantium, 171 (2004) 129-139.

[18] M.C. GorLumBic and A.N. TRENK, Tolerance graph€ambridge Studies in Advanced Mathemat-
ics, 89. Cambridge University Press, Cambridge, 2004. xii+265 pp.

[19] P.L. HAMMER, U.N. PELED, and X. SUN, Difference graphsDiscrete Applied Mathematics, 28
(1990) 35-44.

[20] F. HARRARY, Graph TheoryAddison-Wesley, Reading, MA, 1969.

[21] D. KONiG, Uber Graphen und ihre Anwendungen auf Determinantentheorie und Mengenlehre
Math. Annal. 77 (1916) 435-465.

[22] A.V. KosTocHKA, Lower bound of the Hadwiger number of graphs by their average de§em-
binatorica, 4 (1984) 307-316.

[23] C. NAsH-WILLIAMS , Edge-disjoint spanning trees of finite graplisLondon Math. Soc. 36 (1961)
445-450.

[24] U.N. PeLED, Matroidal graphsDiscrete Math. 20 (1977/78) 263—286.
[25] D. RoTEM and J. UrrutiaCircular permutation graphsNetworks, 12 (1982) 429-437.

[26] W.T. TROTTER, Combinatorics and partially ordered sets. Dimension thedohns Hopkins Series
in the Mathematical Sciences. Johns Hopkins University Press, Baltimore, MD, 1992. xvi+307 pp.

[27] M .YANNAKAKIS, Node-deletion problems on bipartite grapt8IAM J. Computing 10 (1981)
310-327.



36

L.S. Chandran and Vadim V. Lozin and C.R. Subramanian



	Introduction
	Co-circular-arc graphs and co-circle graphs
	Other classes
	Conclusions

