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Let G be a graph with chromatic numbg(G). A vertex colouring ofG is acyclicif each bichromatic subgraph is a
forest. Astar colouringof G is an acyclic colouring in which each bichromatic subgraph is a star foreskal(&})
andxs(G) denote the acyclic and star chromatic numberG.of his paper investigates acyclic and star colourings of
subdivisions. Le6’ be the graph obtained fro@by subdividing each edge once. We prove that acyclic (respectively,
star) colourings of5’ correspond to vertex partitions & in which each subgraph has small arboricity (chromatic
index). It follows thatxa(G'), Xs(G') andX(G) are tied, in the sense that each is bounded by a function of the
other. Moreover the binding functions that we establish are all tight. oFfemted chromatic numbeg (G) of an
(undirected) graplt is the maximum, taken over all orientatioBsof G, of the minimum number of colours in a
vertex colouring oD such that between any two colour classes, all edges have the same direction. We prove that
X (G') = x(G) whenever(G) > 9.

Keywords: graph, graph colouring, star colouring, star chromatic number, acyclic colouring, acyclic chromatic
number, oriented colouring, oriented chromatic number, subdivision

AMS classificatiort 05C15 (coloring of graphs and hypergraphs)

1 Introduction

Let G be a (finite, simple, undirected) graph with vertex\6é6) and edge seéE(G). Letd(G) andA(G)
denote the minimum and maximum degree&of

A vertex partitionof Gis a set{ Gy, Gy, ..., G} of induced subgraphs & such thaV (G) = X, V(Gi)
andV (Gj)NV(G;j) = 0for all distincti andj. A vertex k-colouringf G is a vertex partitio{ G, Gy, ..., Gk}
in whichE(G;) =0 for all i. A vertex inV(G;) is said to becoloured | and a verteXk-colouring can be
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viewed as a function that assigns oneékablours to every vertex db such that adjacent vertices receive
distinct colours. Thehromatic numbeg (G) is the minimumk such thatG has a vertekx-colouring.

An edge partitionof G is a set{G1, G, ..., Gy} of subgraphs 06 such thate (G) = U, E(G;) and
E(Gi)NE(G;) = 0for all distincti andj. An edge k-colouringf G is an edge partitiod Gy, G, ..., Gk}
of G in which eachG; is a matching. An edge iB(G;) is said to becoloured | and an edgé&-colouring
can be viewed as a function that assigns onleadlours to every edge @ such that pairs of edges with
a common endpoint receive distinct colours. Theomatic index(’ (G) is the minimurmk such thaG has
an edgek-colouring.

We will mainly be concerned with vertex colourings. Hencefortouringwill mean a vertex colour-
ing.

A colouring of G is acyclicif every cycle receives at least three colours; that is, every bichromatic
subgraph is a forest. Thecyclic chromatic numbeg,(G) is the minimum number of colours in an
acyclic colouring ofG. An acyclic colouring is atar colouringif every 4-vertex path receives at least
three colours; that is, every bichromatic subgraph is a union of disjoint starsstdihehromatic number
Xs(G) is the minimum number of colours in a star colouring®fBy definition every grapks satisfies

Xa(G) < Xs(G) . (1)

It is folklore thatXs(G) < Xa(G) - 2X2(®)~1 (see [27/31]). Albertsomt al. [3] recently improved this
bound toxs(G) < Xa(G)(2xa(G) —1). A general result by Neefil and Ossona de Mendez [44] states
that Xs(G) (and hence(a(G)) is at most a quadratic function of the maximum chromatic number of a
minor of G. Other references on acyclic and star colourings include [1,2/4]5, 11,113,]116] 17] 18, 21, 25,
26,[27] 29| 33, 34, 35, 40].

A directed graph obtained from a gra@hby giving each edge one of the two possible orientations is
called arorientationof G. The arc set of an orientatidhis denoted byA(D). A colouring ofD is oriented
if between every pair of colour classes, all edges have the same directioari@ged chromatic number
X (D) is the minimum number of colours in an oriented colouringofA tournamenis an orientation of
a complete graph. Observe that(D) < k if and only if there is a homomorphismfrom D to ak-vertex
tournamenti; that is, for every arew € A(D), the imagep(v)p(w) € A(H).

The oriented chromatic numbesf an (undirected) grapts, denoted byx (G), is the maximum of
Y(D), taken over all orientation® of G. Oriented chromatic number is bounded by acyclic chromatic
number. In particular, Raspaud and Sopéna [48] proved}XH&@) < xa(G) - 2%(®)~1, Other reference
on oriented chromatic number include [12] 14,15 [28[ 32, 34, 45, 46, 47,148,/150]/ 51, 52].

A subdivisionof a graphG is a graph obtained froi® by replacing each edge by an internally disjoint
path of at least one edge. The vertices of a subdivisidd oérresponding to vertices & are said to be
original vertices. The remaining vertices are caltidision vertices. The subdivision @& obtained by
replacing each edgew by a 3-vertex patffv, x, w) is denoted bya'. Clearlyx(G') < 2 for every graplG.

1.1 Results

The star / acyclic / oriented chromatic numberg@fare the main topics of this paper. Our results on
these topics are respectively presented in Secfippp 3, 4,]and 5. We show that star (respectively, acyclic)
colourings ofG’ correspond to vertex partitions &f in which each subgraph has small chromatic index
(arboricity). It follows thatxs(G'), xa(G') andx(G) are tied, in the sense that each is bounded by a
function of the other. Moreover the binding functions that we establish are all tight. We start in $éction 2
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with a general discussion of ‘partitionable’ parameters that may be of independent interest. In[Section 5
we prove thafy (G') is strongly tied to((G). In particular,X (G') = X(G) whenever(G) > 9. Finally in
Sectior] §, we study the acyclic and star chromatic numbers of subdivisions in which each edge is replaced
by a path of at least four vertices. We prove that such subdivisions have bounded star / acyclic / oriented
chromatic numbers. A theme of this paper is that questions about graph colourings and partitions can be
expressed in terms of colourings of subdivisions. Another example is that the total chromatic number of
G equals the chromatic number of the squar&of

2 Partitionable Parameters

The following result by Lo&sz [38], which will be used in Secti¢ph 3, says that the maximum degree is a
‘partitionable’ parameter; seel[8,/9./19) 22| 30,136, 42] for related work.

Lemma 1([38]). Let G be a graph. Letdd,,...,dx be non-negative integers such tlﬁ‘gl d =A(G)—
k+ 1. Then G has a vertex partitiofG1,Gg, ..., Gk} in whichA(G;) < d; for all i.

A graph ischordalif it contains no induced cycle on at least four vertices. Thewidthtw(G) is the
minimumk such that the grapB is a subgraph of a chordal graph with flo+ 2)-clique. The following
result by Dinget al. [23] says that treewidth is partitionable.

Lemma 2 ([23]). Let dy,do,...,dy be non—negati\@integers such thaFX , d = d —k+1. Then every
graph G with treewidthw(G) < d has a vertex partitio G1, Gy, ..., Gk} in which each Ghas treewidth
tw(Gj) < d;.

Thedegeneracyf G is defined to be

d(G) = ngéé(H) .
A graph with degeneracy at modtis d-degenerate The following result due to Mibk [39] says that
degeneracy is partitionable. We include the proof (which was discovered independently) for completeness.

Theorem 1([39]). Let di,dy,...,dx be non-negative integers such tI‘E{lei =d—k-+1. Then every
d-degenerate graph G has a vertex partitig@;, G, ..., G¢} in which each Gis d-degenerate.

Proof. We proceed by induction ofV (G)|. The result is trivial ifV(G)| = 1. By definition,G has a
vertexv of degree at mosd, andG\ v is alsod-degenerate. By inductioli; \ v has a vertex partition
{G1,Gy,...,Ck} in which eachG; is di-degenerate. There is someuch thatG; contains at most};
neighbours ofv, as otherwiser has degree at Ieagik:l(di +1)=d+1. LetH be the subgraph of
G induced byV(G;) U{v}. It follows thatH is alsod;-degenerate (see [37,]41] for example). Thus
{G1,...,Gi_1,H,Gi11,...,Gk} is the desired vertex partition @. O

It is easily seen that Theore@ 1 is best possible for the complete #apith n=0 (modk(k+1)),
andd =d;forall1<i<j<k

For planar graphs, which are 5-degenerate, stronger results than THegorem 1 are possible. The 4-
colour theorem [49] states that every planar graph has a vertex partition into four 0-degenerate subgraphs.
Strengthening the 5-colour theorem, Thomassen [53] proved that every planar graph has a vertex partition

* Ding et al. [23] state Lemmg]z for positive integeds, dy, ..., dx. It is easily seen that the proof is still valid if sorde=0. A
graph has treewidth 0 if and only if it has no edges.
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into a 2-degenerate subgraph and a 1-degenerate subgraph (a forest), and Thamassen [54] proved that

every planar graph has a vertex partition into a 3-degenerate subgraph and a 0-degenerate subgraph.
Thearboricity a(G) is the minimumk such that the grap® has an edge partitiofG, Gg,..., Gk} in

which eachG; is a forest. Nash-Williams [43] proved that

0 - gt @
It is well known that (se€ [56] for example)

a(G) < d(G) < 2a(G)-1 , €)
and

X(G) < d(G)+1 < 2a(G) . (4)

To what extent arboricity is a partitionable parameter will be important in Section 4. Théprem 1 and
@ imply:
Corollary 1. Let G be a graph with degeneradyG) < d (which is implied if G has arboricitg(G) <

%(d +1)). Let dy,dy,...,dx be non-negative integers such tlﬁlei =d—-k+1. Then G has a vertex
partition {G1,Gg,...,Gk} in which each Ghas arboricitya(G;) < d;. O

Corollary 2. Let G be a graph with arboricity(G) <d. Letd,dy,...,dx be non-negative integers such
that Tk ; di = 2d — k. Then G has a vertex partitiofGy, Gy, ..., G} in which each Ghas arboricity
a(Gi) < d;. O

3 Star Colourings of G’

In this section we study the star chromatic numbe&bfFirst we give a simple upper bound ga(G)
in terms ofy(G).

Lemma 3. For every graph Gxs(G') < max{x(G),3}.

Proof. Consider a colouring o6 with x(G) colours. Define a colouring d& in which each original
vertex inherits its colour fron®. If x(G) < 2 then let all the division vertices receive one new colour.
Otherwise (ifx(G) > 3), for each division vertex, choose one of (&) colours different from the two
colours assigned to its two neighbours. A 4-vertex pat@’inontains a trichromatic patlv, x, w), where
xis the division vertex of the edgev. ThusG' has a star colouring with méx(G), 3} colours. O

In Lemmd 3, the original vertices & inherit their colour from a colouring d&. At the other extreme,
the original vertices o6’ are monochromatic.

Lemma 4. For every graph G, the minimum number of colours in a star colouring ‘ahGvhich the
original vertices are monochromatic j¢(G) + 1.

Proof. Given an edge colouring @b, transfer the colour from each edge to the corresponding division
vertex, and colour all of the original vertices with a new colour. Ret (v,x, w,y) be a 4-vertex path @&
Without loss of generality is the division vertex of the edgav, andy is the division vertex of some edge
wu. In the edge colouringiw andwu receive distinct colours. Henseandy receive distinct colours, and
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P is not bichromatic. Thu§' has a star colouring witly'(G) + 1 colours in which the original vertices
are monochromatic.

Consider a star colouring & with k colours in which the original vertices are monochromatic. No
division vertex can receive this colour, otherwise it is not a colouring. For all pairs of eddggsvih
an endpoint in common, the corresponding division vertices receive distinct colours, as otherwise there
is a bichromatic 5-vertex path i&’. Transferring the colour from each division vertex @f to the
corresponding edge @&, we obtain an edgé — 1)-colouring ofG. O

Theorem 2. For every graph G, the star chromatic number dfsatisfies:

VX(G) < xs(G) < max{x(G),3} .

Proof. The upper bound is Lemnjg 3. Letbe a stakk-colouring of G/, wherek = xs(G'). LetH be
the spanning subgraph & with edge seE(H) = {vwe E(G) : ¢(v) = @(w)}. Then every connected
component o is monochromatic undeg. By Lemmg 4x’'(H) < k— 1. HenceA(H) < k— 1, and thus
X(H) <kby Brooks’ Theorem [20]. Lep be a vertexk-colouring ofH. Now colour each vertexe V(G)
by the pair(g(v),¢(v)). Consider an edgew € E(G). If vwe E(H) thend(v) # ¢(w). If vw¢ E(H)
theng(v) # @(w). Thus we have &-colouring ofG, andy(G) < xs(G)?. O

We now take an approach that is somewhere between the extremes of Lérmalta 3 and 4.

Lemma 5. Let G be a graph, and letk 1 and d> 0 be integers. Suppose that G has a vertex partition
{G1,Gy,...,G¢} inwhichx'(Gj) <d forall 1 <i < k. Thenxs(G') < max{k+1,d+2}.

Proof. Let m= max{k,d 4+ 1} and[m] = {0,1,...,m—1}. For each vertex € V(G;), letg(v) =i— 1.
Thus@(v) € [m]. For 1<i <Kk, letA; be an edgel-colouring of G;, where 1< A;j(vw) < d. Consider
an edgevw of G whose division vertex it is x. First suppose thap(v) = gw) =i. Let@(X) = (i +
Ai(vw)) modm. Sincei € [m] andm>d > Aj(vw) > 1, @(x) € [m]\ {i}. If @(v) # @(w), then letp(x) = m.
In both casesxis coloured differently from both of its neighbours. Hemgis a colouring ofG’. Suppose
that@is not a star colouring. That is, there is a pBth: (v,x,w,y) in G/, andg(v) = @(w) # @(x) = @(y).
Without loss of generalityx is the division vertex of the edgew, andy is the division vertex of some
edgewu. First suppose thag(v) = ¢(w) = @(u). Thenvwandwuare in somés;. Hence the edge colours
of vw andwu are distinct, andp(x) # @(y), a contradiction. Ifp(v) = @(w) # @(u) then@(x) < m—1
and@(y) = m, a contradiction. Therefore is a star colouring of5’ with m+ 1 = max{k+1,d + 2}
colours. O

Converse to Lemnfg 5, we have the following.

Lemma 6. For every graph G, ifs(G') < k then G has a vertex partitiofG1, Gy, . .., Gk} in which each
Gi has chromatic index’(G;) < k—1.

Proof. Let @be a stak-colouring ofG'. Let{G1,Gy,...,Gk} be the vertex partition db, whereV (G;) =
{veV(G):gv)=i}. By Lemmg 4X'(Gi) < k—1foralli. O

Theorem 3. For every graph Gxs(G') < /A(G) + 3.
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Proof. Let A = A(G) andk = [V/A]. Letds,dp,...,dk € {|(A—k+1)/K],[(A—k+1)/K]} such that
vk, d =A—-k+1. By LemmeDl,G has a vertex partitiofG1, G, ...,Gk} in which A(G)) < d; <
[(A—k+1)/k] <A/k < /A for all i. By Vizing's Theorem[[55]x'(Gi) < VA+1. By Lemmq b,
Xs(G') < max{[vA]+1,vA+3} < VA+3. O

The following example shows that, up to the additive constant, the lower bound in THgorem 2 and the
upper bound in Theoref 3 are tight.

Example 1. Foralln > 1, \/n< xs(K}) <+v/n—1+3. O

We now prove that the upper bound in Theo@m 2 is tight. Kigty, ny, ..., ny) denote the complete
k-partite graph withn; vertices in tha-th colour class.

Example 2. For all k > 3and n> k— 1, the complete k-partite graph €K (n,n, ..., n) satisfiexs(G') =
k(=X(G)).

Proof. That xs(G') < k follows from LemmaDS. Suppose on the contrary, thatG') < k—1. By
Lemma[qs,G has a vertex partitiofiGy, Gy, ..., Gk_1} in whichx'(Gj) < k— 2 for alli, which implies that
A(Gi) <k—2. Forsome Ki<k-—1,|V(G)| > |V(G)|/(k—1) =kn/(k—1). For some K j <k, the
number of vertices iV (G;) that are in thg-th colour class o6 is at mostV (G;)|/k. Letv be such a ver-
tex. Vertices in distinct colour classes®fare adjacent. Thusis adjacent to at leag¥ (G;)| — [V (Gj)|/k
vertices inG;. That is,A(G;j) > (k—1)|V(G;i)|/k > n. Thus we obtain the desired contradiction for

n>k—1. O

4 Acyclic Colourings of G/

In this section we study the acyclic chromatic numbeaf The results are analogous to those for the
star chromatic number in Sectiph 3, with arboricity playing the same role as chromatic index. We start
with an analogue of Lemnjg 4.

Lemma 7. For every graph G, the minimum number of colours in an acyclic colouring @ @hich the
original vertices are monochromatic i§G) + 1.

Proof. Suppose we have an acyclic+ 1)-colouring of G’ in which the original vertices are monochro-
matic. Then no division vertex receives the same colour as the original vertices. The edge partition of
defined with respect to the colour of the corresponding division vertex conslsggtlic subgraphs, and
a(G) < k. Conversely, given an edge partitip61, Gy, ..., Gy} of Ginto forests, let be the colour of each
division vertex of an edge i6;, and colour each original vertex 0. We obtain an acy@i¢ 1)-colouring

of G’ in which the original vertices are monochromatic. O

Lemma 8. Letd> 0and k> 1 be integers. If a graph G has a vertex partiti¢@1,Go, . .., G} in which
each G has arboricitya(G;) < d, then G has acyclic chromatic numbegg (G') < maxk,d+1,3}.

Proof. For each vertex € V(G;), let@(v) =i —1. Letm=max{k,d+ 1,3} and[m| = {0,1,...,m— 1}.
Thus@(v) € [m]. For 1<i <Kk, let{G;1,Gi2,...,Giq} be an edge partition d&; into forests. Consider
an edgevw of G whose division vertex irG' is x. First suppose thap(v) = @(w) =i. Let @(x) =

(i+j) modm, wherevwe E(G; j). Sincei € [ml andm>d > j > 1, @(x) € [m]\ {i}. Now suppose that
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@(v) # @(w). Choosep(x) € [m\ {@(v),(w)}. Sincem > 3 there is such a colour. In both casess
coloured differently from both of its neighbours. Hengis a colouring ofG'.

Suppose on the contrary that undgrthere is a bichromatic cycl€ in G'. Then for somd, C =
(Vo, X0, V1, X1, .-, i—1,%—1), Where eaclvy is an original vertex, eacky is the division vertex oV Vg+1
(modulot), and@(vq) = @(vg) and@(xq) = @(xg) for all a andB. Thus by the definition o, for some
1 <i <k, every vertexy € V(G;j), which implies that for some & j < d, every edg&yVy+1 € E; Hence
Gi,j contains a cycle, a contradiction. Thpss an acyclian-colouring ofG'. O

Theorem 4. Let G be a graph and k 2 be an integer. Theg,(G') <k if and only if G has a vertex
partition {G1, Gy, ...,Gk} in which each Ghas arboricitya(G;) < k— 1.

Proof. («<) This is LemmgB withd = k— 1.
(=) Consider the vertex partition @& defined by an acyclik-colouring of G’ (restricted toG). By
LemmdT, each subgraph has arboricity at nkostL. O

Theorem 5. For every graph G with degeneradyG) < d (which is implied if G has arboricity(G) <
%(d + 1))1 Xa(G/) S maX{\/a+ 1a 3}

Proof. Letk = [v/d]. Letdy,dp,...,dk € {|(d—k+1)/k|,[(d—k+1)/k]} suchthat K ; di =d —k+1.
By Corollary[1,G has a vertex partitiofGy, Gy, ..., G} in whicha(Gj) < di < [(d—k+1)/k] <d/k<
Vd for alli. By Lemmg 8xa(G') < max{[v/d],vd+1,3} = max{v/d + 1,3}. O

Theorem 6. For every graph G, if{a(G') < k thenx(G) < 2k(k—1).

Proof. Let @be an acyclik-colouring ofG'. LetH be the spanning subgraph®fwith edge seE(H) =

{vw e E(G) : @(v) = ¢(w)}. Then every connected componenttbfis monochromatic undep. By

Lemmd 7 H has arboricity at mos— 1. By (4),H has a vertex k — 1)-colouring¢. Now colour each

vertexv € V(G) by the pair(¢(v),$(v)). Consider an edgew € E(G). If vwe E(H) thend(v) # d(w).

If vw¢ E(H) theng(v) # @(w). Thus we have akZk — 1)-colouring ofG. O
Lemmd 3 and Theoreft} 6 ar{d (1) imply that(G') is tied tox(G).

Corollary 3. For every graph G, the acyclic chromatic number dfdatisfies:

1X(G) < Xa(G) < max{x(G),3} .

O
The following example shows that the lower bound in Corol[gry 3 is tight up to an additive constant.

Example 3. Foralln, \/n/2 < Xa(Kp) < /n/2+3

Proof. The lower bound follows from Corolla@ 3. Now we prove the upper bound. Observe(at=
[n/2] by (3). Letk=[+/n/2]. Let{G1,Gy,...,Gx} be a vertex partition oK, in which [V (G;)| €
{In/K|,[n/K]} for all i. By the above observation,

a(G) < [3/K]] < |3/ Viy2)| = [3[vanl| < [3(van+ D] = [Viv2+ 3] .
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By Lemm@,K,/] has acyclic chromatic number

Xa(Kp) < max{[Vi/2], [Vi/2+ 4] +1.3) < v/n/2+3 .

We now prove that the above upper bound in Corollary 3 is tight.

Example 4. For all k > 3 and n> n(k), the complete k-partite graph &K (n,n, ..., n) satisfie(a(G') =
k (=x(G)).

Proof. Thatxa(G') < k follows from Corollary[3. Suppose on the contrary, thatG') < k—1. By
Theoren[]4,G has a vertex partitiofG1,Go,...,Gk-1} in which eachG; has arboricitya(G;j) < k— 2.
For some 1I<i <k-1, |V(G)| > V(G)|/(k—1) = kn/(k—1). Itis easily seen that any complete
k-partite graphH on m vertices has arboricity at least the arboricity of the complepartite graph
K(1,1,...,1,m— (k—1)). This graph hask— 1)(m— (k— 1)) edges. By[(R),

(k-1m-(k-1) | , K-1k-2)
m-—1 m-1 '

a(H) >

Applying this observation wittd = G; andm > kn/(k— 1), we have

a(G) > kflfw

kn/(k—1)—

Sincea(Gj) < k— 2, it follows that we obtain a contradiction for> n(k) = ((k— 1)?(k — 2) 4 (k—
1))/k. O

5 Oriented Colourings of G/

We now relate the oriented chromatic numbebto the chromatic number @3.
Theorem 7. For every graph G, the oriented chromatic number 6&&tisfies

7 7
X(G) <X (@G)<{9  ifx(G)=8
X(G) ifx(G)=>9

Proof. First we prove the lower bound (which is well known). L2tbe an orientation o6’ in which
each division vertex has one incoming arc and one outgoing arc. Consider amvedde(G) whose
division vertex inG’ is x. In any oriented colouring db’, v andw receive distinct colours, as otherwise
the arcsrx andxw (or xvandwx) are in opposite directions between the same pair of colour classes. Thus
an oriented colouring dd’ contains a colouring oB. HenceX (D) > x(G), which implies thatG’ has
oriented chromatic numbeéx (G') > x(G).

Now for the upper bound. A tournamettis k-existentially closed for everyk-element set of vertices
SCV(H) and for every (possibly emptif) C S there is a vertexe V(H)\ (SUT) such thavze A(H) for
every vertew € S\ T, andzwe A(H) for every vertexw € T. Almost every sufficiently large tournament
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is n-existentially closed (seé&l[[7, 10,124]). Note that a tournarkeis 2-existentially closed if and only if
for every pair of vertices,w € V(H), there exists four other verticesb,c,d € V(H) such that

va,wa, bv,.bw, vc,cw, dvywd € A(H) . (5)

Bonato and Cameron [1L0] proved that there is a 2-existentially closed tournamentestices if and
only if n > 7 andn # 8. Moreover, they provided explicit examples for all suchThese examples are
based on the so-calléhleytournament, which for prima =3 (mod 4), has vertex sef0,1,...,n— 1},
andij is an arc whenevey—i is a quadratic residue moduf@ Note that Ananchuemn [6] also proved
that a sufficiently large Paley tournamentkigxistentially closed, and Ochein_[47] recently used Paley
tournaments in results about oriented colourings.

Let n be the claimed upper bound ga(G'). Thenn > 7 andn # 8. Thus there is a 2-existentially
closed tournameritl on n vertices. LetD’ be an orientation o6’. Note thatn > x(G). Fix a vertex
n-colouring ofG. Let @ be a function from the original vertices & toV (H), such thatp(v) = @(w) if
and only ifv andw receive the same colour in the colouring@fConsider a division vertexof an edge
vwe E(G). By (5), there are four other verticasb, c,d € V(H) such that

®(v)a, p(w)a, ba(v), be(w), p(v)c, cp(w), da(v), (w)d € A(H) .

Define
a if vxwxe A(D')
b if xyxwe A(D
®x) = ! ( ,)
c if vxxwe A(D’)
d if xywxe A(D')
Clearly@is a homomorphism fror®’ to H. ThusX (G') < n. O

6 Large Subdivisions

In this section we consider colourings of subdivisions other tHarfrirst we consider acyclic colourings.

Lemma 9. Let X be a subdivision of a graph G in which every edge of G is replaced in X by a path with
at least four vertices; that is, every edge is subdivided at least twice. &) < 3.

Proof. Let ¢(v) = 2 for every original vertex of X. LetD be an arbitrary orientation @. Consider an
arcvw € A(D) that is replaced by a patlv,xg, X1, ..., X, W) in X (for somek > 1). Let@(x;) =i mod 2.
Every cycle ofX contains a 3-vertex patfv,xp,x1), which is coloured(2,0,1). Thus@ is an acyclic
3-colouring ofX. O

Now we consider star colourings of subdivisions other tBan
Lemma 10. Let X be a subdivision of a graph G such that for every edge vw of G, for sgméwith
k # 6, vw is replaced by a k-vertex path in X. TheytX) < 3.

Proof. Colour each original verteg(v) = 2. Consider an edgew of G that is replaced by thk-vertex
pathP = (V,xg, X1, ..., X3, W) in X.
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Case 1. k=0 (mod 3 andk # 6: Let@(x) =imod 3 for alli, 0 <i <k—6. Let@(x-_s5) =2,
@(X—4) = 1, and@(xc_3) = 0. HenceP is coloured(2,012 012 ...,012 0,210, 2).

Case 2k=1 (mod 3: Let@(x;) =i mod 3 for alli, 0 <i <k—5. Let@(x—_4) = 1 and@(Xc_3) = 0.
HenceP is coloured(2,012 012 ...,01210,2).

Case 3.k=2 (mod 3: Let ¢(x;) =i mod 3 for alli, 0<i <k—4. Let@(x_3) =0. HenceP is
coloured(2,012 012 ...,01201,0,2).

If Qis a 4-vertex path X with at least two original vertices theD = (v, Xg, X1, W), whereQ replaced
an edgevw of G, and by Case 2 witk =4, Qs coloured(2,1,0,2), and is thus not bichromatic.

If the edgevw of G is replaced by the pattv,xp,X,...,X-3,W), then the subpathg/,xo,x1) and
(W, Xc—3,X_2) are trichromatic. (This is not the casekif= 6.) Thus a 4-vertex path containing exactly
one original vertex is not bichromatic.

The case-analysis above shows that there is no bichromatic 4-vertex path with no original vertex. Thus
there is no bichromatic 4-vertex pathXn Thereforexs(X) < 3. O

Lemma 11. Let X be a subdivision of a graph G in which every edge of G is replaced in X by a path with
at least four vertices; that is, every edge is subdivided at least twice. {dt&h < 4.

Proof. In the proof of Lemm& 10, the only obstructionXohaving a star colouring with three colours is
an edgesw of G that is replaced itX by a 6-vertex patf® = (v, Xp, X1, X2,X3,W). In this case we introduce
a fourth colour, andP can be coloured2,0,1,3,0,2). O

Let G’ be the subdivision of a grap@ with every edgevw of G replaced by a 4-vertex path with
endpointss andw; that is, every edge is subdivided twice kAycle inG becomes akgcycle inG”. Thus
Gis bipartite if and only ifG” is bipartite. IfG contains an odd cycle, theiG”) = Xs(G") = Xa(G") = 3.
This provides an infinite family of graphs for which the chromatic number, star chromatic number and
acyclic chromatic number coincide.

Finally we consider oriented colourings of subdivisions other ®&an

Lemma 12. Let X be a subdivision of a graph G in which every edge of G is replaced in X by a path with
at least four vertices; that is, every edge is subdivided at least twice. et < 5.

Proof. Let H be the tournament withf (H) = {0,1,2,3,4}, whereij € A(H) if and only if (j —i) mod
5¢€ {1,2}. LetD be an orientation oK. We will construct a homomorphismp from D to H. First
define@(v) = 0 for every original vertew of X. Consider the patliv = do,d1,d2,...,dk_1,w=dk) in
X corresponding to an edgeve E(G). Thent > 3. For 1<i <t, definex = 1 if di_1d; € A(D), and
definex; = —1 if didi_; € A(D). By Lemm4 1B below, there exigt,y», ...,y such thaty; € {1,2} and
1%y =0 (mod 5. For 1<i <t—1, setg(d;) = (¥_; Xjyj) mod 5.
Consider 1< i <t. We haveg(d;) — @(di_1) € {1,2} whenever = 1; that is, wherd;_1d; € A(D).

Similarly @(d;) — ¢(di_1) € {—1,—2} whenever; = —1; thatis, whertlid;_1 € A(D). By the definition of
H, @(di_1)@(di) € A(H) for all 1 <i <t. Hencegpis a homomorphism fror® to H, andY(X) <5. O

Lemma 13. For all integerst> 3and %, X, ..., % € {1, —1}, there existy, y», ...,y such thatye {1, 2}
andyi_;xyi =0 (mod 5.
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Proof. Initially set everyy, = 1. If z}zlxiyi =0 (mod 5, then we are done.
Now suppose thaz}zlxiyi =1 (mod 5. If there existsg = —1, then set; = 2, and we are done.
Otherwise every; = 1. Thust =1 (mod 5 andt > 6. Sety; =y> = Y3 =y4 =2, and we are done.
Now suppose that!_, xyi =2 (mod 5. If there existsq = Xj =—1forsomd # j, thensey; =y; =2,
and we are done. If there existsuch that; = —1 andx; = 1 for all j # i, thent —2=2 (mod 5 and
t > 4; sety; = yk =y, = 2 for some distinctj,k,¢ # i, and we are done. Otherwise every= 1. Thus
t=2 (mod 5 andt > 7. Sety; = y» =y3 =2, and we are done.
The cases whefil_; xyi =3 (mod 5 andy!_, Xy =4 (mod 5 are symmetric. O
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