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We here describe a method of removing the ε-transitions of a weighted automaton. The existence of a solution for
this removal depends on the existence of the star of a single matrix which, in turn, is based on the computation of the
stars of scalars in the ground semiring. We discuss two aspects of the star problem (by infinite sums and by equations)
and give an algorithm to suppress the ε-transitions and preserve the behaviour. Running complexities are computed.
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1 Introduction
Automata with multiplicities (or weighted automata) are a versatile class of transition systems which can
modelize as well classical (boolean), stochastic, transducer automata and be applied to various purposes
such as image compression, speech recognition, formal linguistic (and automatic treatment of natural
languages too) and probabilistic modelling. For generalities over automata with multiplicities see [1] and
[10], problems over identities and decidability results on these objects can be found in [11], [12] and [13].

A particular type of these automata are the automata with ε-transitions denoted by k-ε-automata which
are the result, for example, of the application of Thompson method to transform a weighted regular ex-
pression into a weighted automaton [14].

The aim of this paper is to study the equivalence between k-ε-automata and k-automata. Indeed, we
will present here an algebraic method in order to compute, for a weighted automaton with ε-transitions
(choosen in a suited class) an equivalent weighted automaton without ε-transitions which has the same
behaviour. Here, the closure of ε-transitions implies the existence of the star of transition matrix for ε. Its
running time complexity is deduced from that of the matrix multiplication in kn×n. In the case of well-
known semirings (like boolean and tropical), the closure is computed in O(n3) [15]. We fit the running
time complexity to the case when k is a ring.

The structure of the paper is the following. We first recall (in Section 2) the notions of a semiring and the
computation of the star of matrices.
1365–8050 c© 2005 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France
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After introducing (in Section 3 ) the notions of a k-automaton and k-ε-automaton, we present (in
Section 4 and 5 ) our principal result which is a method of elimination of ε-transitions and show particular
cases of series on which our result can be applied. In Section 6 , we give the equivalence between the two
types of automata and discuss its validity. A conclusion section ends the paper.
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2 Semirings
In the following, a semiring (k,⊕,⊗, 0k, 1k) is a set together with two laws and their neutrals. More
precisely (k,⊕, 0k) is a commutative monoid with 0k as neutral and (k,⊗, 1k) is a monoid with 1k as
neutral. The product is distributive with respect to the addition and zero is an annihilator (0k ⊗ x =
x⊗ 0k = 0k) [7]. For example all rings are semirings, whereas (N, +,×, 0, 1), the boolean semiring B =
({0, 1},∨,∧, 0, 1) and the tropical semiring T = (R+ ∪{∞}, min, +,∞, 0) are well-known examples of
semirings that are not rings. The star of a scalar is introduced by the following definition:

Definition 1 Let x ∈ k, the scalar y is a right (resp. left) star of x if and only if (x ⊗ y) ⊕ 1k = y (resp.
(y ⊗ x) ⊕ 1k = y).

If y ∈ k is a left and right star of x ∈ k, we say that y is a star for x and we write y = x�.
Remark 1 Left or right stars need not exist and need not coincide (see examples below).

Example(s) 1

(1) For k = C, any complex number x 6= 1 has a unique star which is y = (1−x)−1. In the case |x| < 1,
we observe easily that y = 1 + x + x2 + · · ·.

(2) Let k be the ring of all linear operators (R[x] → R[x]). Let X and Yα defined by X(x0) = 1,
X(xn) = xn−nxn−1 with n > 0 and Yα(xn) = (n+1)−1xn+1+α with α ∈ R. Then XYα+1 = Yα

and an infinite number of solutions exist for the right star (which is not a left star if α 6= 0).

(3) For k = T (tropical semiring), any number x > 0 has a unique star y = 1.

We can observe that if the opposite −x of x exists then right (resp. left) stars of x are right (resp. left)
inverses of (1 ⊕ (−x)) and conversely. Thus, if they exist, any right star x�r equals any left star x�l as
x�l = x�l ⊗ ((1 ⊕ (−x)) ⊗ x�r ) = (x�l ⊗ (1 ⊕ (−x))) ⊗ x�r = x�r . In this case, the star is unique.

If Q is a finite set, the space kQ×Q of square matrices with indices in Q and coefficients in k has a
natural semiring structure with the usual operations (sum and product). A (right) star of M ∈ kQ×Q

(when it exists) is a solution of the equation MY + 1Q×Q = Y (where 1Q×Q is the identity matrix). Let
M ∈ kQ×Q be given by

M =

(

a11 a12

a21 a22

)
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where a11 ∈ kQ1×Q1 , a12 ∈ kQ1×Q2 , a21 ∈ kQ2×Q1 and a22 ∈ kQ2×Q2 such that Q1 + Q2 = Q. Let
N ∈ kQ×Q given by

N =

(

A11 A12

A21 A22

)

with

A11 = (a11 + a12a22
∗a21)

∗ (1)
A12 = a11

∗a12A22 (2)
A21 = a22

∗a21A11 (3)
A22 = (a22 + a21a11

∗a12)
∗ (4)

Theorem 1 If the right hand sides of formulas (1), (2), (3) and (4) are defined, the matrix M admits N

as a right star.

Proof. Suppose, without loss of generality, that Q = [1, n]N; n = p + q; Q1 = [1, p]N; Q2 =
[p + 1, p + q]N. We have to show that N is a solution of the equation My + 1n×n = y. By computation,
one has

MN + 1 =

(

a11 a12

a21 a22

)(

A11 A12

A21 A22

)

+

(

1p×p 0p×q

0q×p 1q×q

)

=

(

a11A11 + a12A21 + 1p×p a11A12 + a12A22

a21A11 + a22A21 a21A12 + a22A22 + 1q×q

)

where 0p×q is the zero matrix in kp×q . We verify the relations (1), (2), (3) and (4) by:

a11A11 + a12A21 + 1p×p = a11A11 + a12a
∗
22a21A11 + 1p×p =

A11(a11 + a12a22
∗a21) + 1p×p = A11

a11A12 + a12A22 = a11a11
∗a12A22 + a12A22 =

(a11a11
∗ + 1)a12A22 = a11

∗a12A22 = A12

a21A11 + a22A21 = a21A11 + a22a22
∗a21A11 =

(1 + a22a22
∗)a21A11 = a22

∗a21A11 = A21

a21A12 + a22A22 + 1q×q = a21a11
∗a12A22 + a22A22 + 1q×q =

(a22a21a11
∗a12)A22 + 1q×q = A22

�
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Remark 2
(i) In [8] and [16], similar formulas are expressed for the computation of the inverse of matrices when

k is a division ring (this can be extended to the case of rings).
It must be emphasized that the converse of Theorem (1), of course, does not hold as shows the
example below (the coefficients are taken in a ring and here the star is unique).

M =

(

1 −1
1 −1

)

M∗ =

(

2 −1
1 0

)

(5)

However, if the formulas are defined at each step of the computation (see below for a formalization
of this), it provides a recursive way to compute a star of a matrix.

(ii) Similar formulas can be stated in the case of a left star. The matrix N is the left star of M with

A11 = (a11 + a12a22
∗a21)

∗

A12 = A11a12a22
∗

A21 = A22a21a11
∗

A22 = (a22 + a21a11
∗a12)

∗

(iii) When all their terms are defined, formulas above (as well as (1), (2), (3) and (4)) are valid with
matrices of any size with any block partitionning. Matrices of even size are often, in practice,
partitionned into square blocks but, for matrices with odd dimensions, the approach called dynamic
peeling is applied. More specifically, let M ∈ kn×n a matrix given by

M =

(

a11 a12

a21 a22

)

where n ∈ 2N + 1. The dynamic peeling [9] consists of cutting out the matrix in the following way:
a11 is a (n − 1) × (n − 1) matrix, a12 is a (n − 1) × 1 matrix, a21 is a 1 × (n − 1) matrix and a22

is a scalar.

If desired, formulation of Theorem (1) can be seen as recursive in essence. In this respect, it implies
that stars of submatrices could be already computed by the same scheme. This type of computation will
be formalized by the notion of admissible tree of computation which we describe below.
Let Q be a finite set and A[Q] be the set of binary trees with leaves in Q. It can be defined by the grammar

A[Q] = Q + (A[Q],A[Q]) (6)
or, if one prefers a graded version

{

A1[Q] = Q

An[Q] =
∑

i+j=n(Ai[Q],Aj [Q]) if n ≥ 2.

Now, the list of leaves of a tree T ∈ An[Q] is a word lv(T ) ∈ Qn defined by
{

lv(T ) = T if T ∈ A1[Q]
lv(T ) = lv(T1)lv(T2) (concatenation) if T = (T1, T2).
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The set of leaves of T is then alph(lv(T )), where alph(w) is classically the alphabet of the word w.
We will say that T ∈ A[Q] is an admissible tree of computation for M ∈ kQ×Q if

1. the word lv(T ) is standard (with no repetition) and contains all the indices (i.e. |lv(T )| = |Q| and
alph(lv(T )) = Q)

2. if |Q| = 1 (thus M ∈ kQ×Q ' k is a scalar), M admits a star in kQ×Q

3. • if |Q| ≥ 2, set T = (T1, T2) and Qi = lv(Ti) (i = 1, 2) then T1 is admissible for the
submatrix M

∣

∣

Q1×Q1
and T2 is admissible for the submatrix M

∣

∣

Q2×Q2
.

• formulas above (1), (2), (3) and (4) are defined for the partitionning Q = Q1 + Q2.

The conditions above assures that the recursive computation of Theorem (1) is defined at each step and,
in this case, we will say that the star of M is computed along the (admissible) tree of computation T .

Theorem 2 Let k be a semiring, M ∈ kQ×Q a square matrix and T a tree of computation admissble for
M . Then, the right star of a matrix of size n ∈ N can be computed in O(nω) operations with:

• ω ≤ 3 if k is not a ring,

• ω ≤ 2.808 if k is a ring,

• ω ≤ 2.376 if k is a field.

Proof. For n = 2m ∈ N, let T+
m , T×

m and T ∗
m denote the number of operations ⊕, ⊗ and � in k that

the addition, the multiplication and the star of matrix respectively perform with an input of size n. Then

T ∗
0 = 1

T ∗
m = 2T+

m−1 + 8T×
m−1 + 4T ∗

m−1
(7)

by Theorem 1. For arbitrary semiring, one has T +
m−1 = 22(m−1). If k is a ring, using Strassen’s algorithm

for the matrix multiplication [19], it is known that at most nlog2(7) operations are necessary. If k is a field,
using Coppersmith and Winograd’s algorithm [3], it is known that at most n2.376 operations are necessary.
Suppose that T×

m−1 = 2(m−1)ω. The solution of the recurrence relation (7) is

4m +
1

2
(m + 1)4m −

(6 + 2ω−1)

2ω − 4
+

8 · 2mω

2ω − 4

where the leading term is 2mω. �

Remark 3 In some situations, any tree T with |Q| leaves and standard lv(T ) is admissible. This is the
case, for example, of matrices of series without constant term (matrices of proper series [1]).
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The running time complexity for the computation of the right (resp. left) star of a matrix depends on T�,
T� and T�, but it depends also on the representation of coefficients in machine. In the case k = Z for
example, the multiplication of two integers is computed in O(m log(m) log(log(m))), using FFT if m

bits are necessary [18].

Theorem 3 With the same hypotheses as in (2) (M ∈ kQ×Q a square matrix and T a tree of computation
admissible for M ), the space complexity of the right star of a matrix of size n ∈ N is O(n2 log(n)).

Proof. For n = 2m ∈ N and k a semiring, let E∗
m denote the space complexity of operation ∗ that the

star of matrix perform with an input of size n. Then

E∗
0 = 1

E∗
m = 12 · 22m−1 + 4E∗

m−1
(8)

The solution of the recurrence relation (8) is

−5 · 4m + (6m + 6)4m

where the leading term is m · 4m. �

The running of the algorithm needs the reservation of memory spaces for the resulting matrix (the star
of the input matrix) and for intermediate results stored in temporary locations.

Let k〈〈Σ〉〉 be the set of noncommutative formal series with Σ as alphabet (i.e. functions on the free
monoid Σ∗ with values in k). It is a semiring equipped with + the sum and · the Cauchy product.

We denote by α(?) and (?)α the left and right external product respectively. The star (?)∗ of a formal
series is well-defined if and only if the star of the constant term exists [10, 1].

When Σ is finite, the set RATk(Σ) is the closure of the alphabet Σ by sums, external and Cauchy
products and the star.

3 Automata with multiplicities
Let Σ be a finite alphabet and k be a semiring. A weighted automaton (or linear representation) of
dimension n on Σ with multiplicities in k is a triplet (λ, µ, γ) where:

• λ ∈ k1×n (the input vector),

• µ : Σ → kn×n (the transition function),

• γ ∈ kn×1 (the output vector).

Such an automaton is usually drawn as a directed valued graph (see Figure 1). A transition (i, a, j) ∈
{1, . . . , n} × Σ × {1, . . . , n} connects the state i with the state j. Its weight is µ(a)ij . The weight of the
initial (final) state i is λi (respectively γi). The mapping µ induces a morphism of monoids from Σ∗ to
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1 2
a |1

a |3
b |1

a |1
b |4

3 1

Figure 1: A N-automaton

kn×n. The behaviour of the weighted automaton A belongs to k〈〈Σ〉〉. It is defined by:

behaviour(A) =
∑

u∈Σ∗

(λµ(u)γ)u.

More precisely, the weight 〈behaviour(A), u〉 of the word u in the formal series behaviour(A) is the
weight of u for the k-automatonA (this is an accordance with the scalar product denotation 〈S|u〉 := S(u)
for any function S : Σ∗ → k [2]).

Example(s) 2 The behaviour of the automaton A of Figure 1 is

behaviour(A) =
∑

u,v∈Σ∗

3|u|a+14|v|buav.

Let u = aba. Then, its weight in A is:

λµ(u)γ = λµ(a)µ(b)µ(a)γ

=
(

3 0
)

(

3 1
0 1

)

(

1 0
0 4

)(

3 1
0 1

)

(

0
1

)

= 21.

The set RECk(Σ) is known to be equal to the set of series which are the behaviour of a k-automaton. We
recall the well-known result of Schützenberger [17]:

RECk(Σ) = RATk(Σ).

A k-ε-automaton Aε is a k-automaton over the alphabet Σε = Σ ∪ ε̃ (see Figure 2). We must keep the

reader aware that ε̃ is considered here as a new letter and that there exists an empty word for Σ∗
ε = (Σ∪ε̃)∗

denoted here by ε. The transition matrix of ε̃ is denoted µε̃.

Example(s) 3 In Figure 2, the behaviour of the automaton Aε is

behaviour(Aε) = 18ε̃

(

∑

i∈N

2i(aε̃)i

)

ε̃ = 18ε̃(2aε̃)∗ε̃.
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1 2 3
ε̃ |3

3 1

ε̃ |2

a |1

Figure 2: A N-ε-automaton

4 Algebraic elimination
Let Φ be the morphism from Σ∗

ε to Σ∗ induced by
{

Φ(x) = x if x ∈ Σ,
Φ(ε̃) = ε.

It is classical that the morphism Φ can be uniquely extended to the polynomials of k〈Σε〉 as a morphism
of algebras k〈Σε〉 7→ k〈Σ〉 by, for P a polynomial,

Φ(P ) = Φ(
∑

u∈Σ∗

〈P |u〉u) =
∑

u∈Σ∗

(
∑

Φ(v)=u

〈P |v〉)u (9)

as, in this case, the sum
∑

Φ(v)=u

〈P |v〉 (10)

is finite-supported and then well defined. But, we remark that the set of preimages of
u = a1a2 . . . an by Φ is

{v | Φ(v) = u} = ε̃∗a1ε̃
∗a2 · · · ε̃

∗anε̃∗ (11)

This shows that, in this case, all preimages are infinite and we will discuss on the convergence of the sum
∑

Φ(v)=u〈P |v〉.
ßIn the sequel, we will extend formula (9) in two ways:

1. To the series for which the sum (10) remains with finite support (this set is larger than the polyno-
mials and includes also the behaviours of ε-automata with an acyclic ε-transition matrix). We will
call them Φ-finite series (FF series).

2. Having supposed the semiring endowed with a topology (or, at least, an “infinite sums” function)
we define the set of series for which the sums (10) converge (this definition covers the behaviour of
classical boolean ε-automata). We will call them Φ-convergent series (FC series).

After these extensions, we will prove that the behaviour of the automaton obtained by algebraic elimina-
tion is the image by Φ (the erasure of ε) of the behaviour (in k〈〈Σε〉〉) of the initial automaton.
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5 FF and FC series
5.1 FF (Φ-finite) series
Let S ∈ k〈〈Σε〉〉 be a formal series, we recall that the support of S is given by:

supp(S) = {v ∈ Σ∗
ε : 〈S, v〉 6= 0}.

We will call (FF) the following condition:

(FF) For any u ∈ Σ∗, the set supp(S) ∩ (Φ−1(u)) is finite.

If the formal series S satisfies (FF), we say that it is Φ-finite. The set of Φ-finite series in k〈〈Σε〉〉 is
denoted (k〈〈Σε〉〉)Φ-finite.

Theorem 4 The set (k〈〈Σε〉〉)Φ-finite is closed under +, ·, α(?) and (?)α.

Proof. As supp(S1 +S2) ⊆ supp(S1) ∪ supp(S2), supp(αS1) ⊆ supp(S1) and supp(S1α) ⊆ supp(S1)
for S1, S2 ∈ k〈〈Σε〉〉 and α ∈ k, the stability is shown for +, α(?) and (?)α.
Now, for the Cauchy product, one can check that :

supp(S1S2) ∩ Φ−1(u) ⊆
⋃

u=u1u2

(supp(S1) ∩ Φ−1(u1))(supp(S2) ∩ Φ−1(u2)) (12)

which is a finite set if S1, S2 ∈ (k〈〈Σε〉〉)Φ-finite. �

Remark 4

• Every polynomial is Φ-finite.

• The star S∗ need not be Φ-finite even if S is Φ-finite. The simplest example is provided by S = ε̃.

Next, we show that Φ : k〈Σε〉 7→ k〈Σ〉 can be extended to k〈〈Σε〉〉Φ-finite as a polymorphism.

Theorem 5 For any S, T ∈ (k〈〈Σε〉〉)Φ-finite,

Φ(S + T ) = Φ(S) + Φ(T ) , Φ(ST ) = Φ(S)Φ(T )

Φ(αS) = αΦ(S) , Φ(Sα) = Φ(S)α

If S∗ is Φ-finite, Φ(S∗) is a star of Φ(S). In particular, if Φ(S) has no constant term, one has

Φ(S∗) = (Φ(S))∗
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Proof. For sum and Cauchy product, we obtain the result by the following relations:
∑

v∈Φ−1(u)

〈S + T, v〉 =
∑

v∈Φ−1(u)

〈S, v〉 ⊕
∑

v∈Φ−1(u)

〈T, v〉

∑

v∈Φ−1(u)

〈ST, v〉 =
∑

u=u1u2

(
∑

v∈Φ−1(u1)

〈S, v〉 ⊗
∑

v∈Φ−1(u2)

〈T, v〉)

Then Φ(S∗) is a solution of the equation Y = ε + Φ(S)Y as S∗ = ε + SS∗, and then Φ(S∗) = Φ(S)
∗.

�

A Φ-finite series may be not rational.

Example(s) 4 The series in N〈〈Σ〉〉

S =
∑

|u|a=|u|ε̃

u.

is not rational and however Φ-finite.

We recall that a matrix M ∈ kn×n is nilpotent if there exists a positive integer N such that MN = 0.
Proposition 1 Let S be a rational series in k〈〈Σε〉〉 with (λ, µ, γ) a linear representation of S.

i) If µ is nilpotent then S is Φ-finite.

ii) Conversely, if S is Φ-finite, k a field and (λ, µ, γ) is of minimal dimension then µ is nilpotent.

Proof. i) With the notations of the theorem, suppose that there is an integer N such that µ(ε̃)N = 0n×n.
Then, for u = a1a2 · · · ak one has

∑

Φ(v)=u

〈S|v〉 =
∑

n0, n1, ···nk∈N

〈S|ε̃n0a1ε̃
n1a2ε̃

n2 · · · akε̃nk 〉 =

∑

n0, n1, ···nk∈N

λµ(ε̃)n0µ(a1)µ(ε̃)n1µ(a2)µ(ε̃)n2 · · ·µ(ak)µ(ε̃)nkγ =

∑

n0, n1, ···nk<N

λµ(ε̃)n0µ(a1)µ(ε̃)n1µ(a2)µ(ε̃)n2 · · ·µ(ak)µ(ε̃)nkγ

which is obviously finite.
ii) If (λ, µ, γ) is of minimal dimension n, then there exists words (ui)1≤i≤n, (vj)1≤j≤n in Σε such

that the n × n matrices

L =











λµ(u1)
λµ(u2)

...
λµ(un)











and G =
(

µ(v1)γ µ(v2)γ · · · µ(vn)γ
)

(13)
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are regular (L is a block matrix of n lines of size 1×n and G is a block matrix of n columns of size n×1;
indeed, L and G are n × n square matrices.) [1].
Now, for 1 ≤ i, j ≤ n the family

(〈S|uiε̃
nvj〉)n≥0 = (λµ(ui)µ(ε̃n)µ(vj)γ)n≥0 (14)

as a subfamily of (〈S|v〉)Φ(v)=Φ(uivj) must be with finite support. This implies that (Lµ(ε̃n)G)n≥0 is
with finite support. As L and G are invertible, µ(ε̃) must be nilpotent. �

5.2 FC (Φ-convergent) series
If we want to go further in the extension of Φ (and so doing to cover the - boolean - classical case), we
must extend the domain of computability of the sums (10) to (some) countable families.
Many approaches exist in the literature [10], mainly by topology, ordered structure or “sum” function.
Here, we adopt the last option with a minimal axiomatization adapted to our goal.
The semiring k will be supposed endowed with a sum function sum taking some (at most) countable
families (ai)i∈I (called summable) and computing an element of k denoted sumi∈I ai. This function is
subjected to the following axioms:

ßCS1. — If (ai)i∈I is finite, then it is summable and

sumi∈I ai =
∑

i∈I

ai (15)

CS2. — If (ai)i∈I and (bi)i∈I are summable, so is (ai + bi)i∈I and

sumi∈I ai + bi = (sumi∈I ai) + (sumi∈I bi) (16)

CS3. — If (ai)i∈I and (bj)j∈J are summable, so is (aibj)(i,j)∈I×J and

sum(i,j)∈I×J aibj = (sumi∈I ai)(sumj∈J bj) (17)

CS4. — If (ai)i∈I is summable and I = tλ∈ΛJλ is partitionned in finite subsets. Then (
∑

j∈Jλ
aj)λ∈Λ

is summable and
sumi∈I ai = sumλ∈Λ (

∑

j∈Jλ

aj) (18)

CS5. — If I = tλ∈ΛJλ with Λ finite and each (aj)j∈Jλ
is summable. Then so is (ai)i∈I and

sumi∈I ai =
∑

λ∈Λ

sumj∈Jλ
aj (19)

CS6. — If (ai)i∈I is summable and φ : J 7→ I is one-to-one then (aφ(j))j∈J is summable and

sumi∈I ai = sumj∈J aφ(j) (20)

Definition 2 A semiring with sum function (as above) which fulfills CS1..6 will be called a CS-semiring.
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If k is a CS-semiring, the semiring of square matrices kn×n will be equipped with the following sum

function:
A family (M (i))i∈I of square matrices will be said summable iff it is so componentwise i.e. the n2

families (M
(i)
r,s)i∈I (for 1 ≤ r, s ≤ n) are summable. In this case, the sum of the family is the matrix L

such that, for 1 ≤ r, s ≤ n, Lrs = sumi∈I M
(i)
rs (i.e. the sum is computed componentwise). It can be

easily checked that, with this sum function, kn×n is a CS-semiring.

Remark 5 Let k be a topological semiring (i.e. k is endowed with some Hausdorff topology T such that
the two binary operations - sum and product - are continuous mappings k × k 7→ k). We recall that a
family (ai)i∈I is said summable with sum s iff it satisfies the following property, where B(s) is a basis of
neighbourhoods of s.

(

∀V ∈ B(s)
)(

∃F ⊂finite I
)(

∀F ′
)(

F ⊂ F ′ ⊂finite I =⇒
∑

i∈F ′

ai ∈ V
)

. (21)

In this case the axioms CS12456 are automatically satisfied for the preceding (usual) notion of summa-
bility.

Example(s) 5 Below some examples of CS-semirings which are metric semirings (i.e. the notion of
summability and the sum function are given as in Remark (5)).

1. The fields Q, R, C with their usual metric.

2. Any semiring with the discrete topology, given by the metric d(x, y) = 1 if x 6= y and d(x, x) = 0.

3. The extended integers (N∪ {+∞}, +,×) with the Frechet topology given by the metric d(n, m) =
| 1
n
− 1

m
| and d(+∞, n) = 1

n
.

4. The (min, plus) closed half-ray ([0, +∞]R̄, min, +) with the metric transported by the rational
homomorphism x 7→ x

x+1 from [0, +∞]R̄ to [0, 1]R i.e. with d(x, y) = | x
x+1 − y

y+1 | and with
x

x+1 |x=+∞ = 1.

Let S ∈ k〈〈Σε〉〉 be a formal series, we will call (FC) the following condition:

(FC) For any u ∈ Σ∗, the (countable) family (〈S|v〉)v∈Φ−1(u) is summable.

If the formal series S satisfies (FC), we say that it is Φ-convergent. The set of Φ-convergent series in
k〈〈Σε〉〉 is denoted k〈〈Σε〉〉Φ-conv.

It is straightforward that a Φ-finite series is Φ-convergent. We have now a theorem similar to Theorem (4)
for k〈〈Σε〉〉Φ-conv.
Theorem 6 The set k〈〈Σε〉〉Φ-conv is closed under +, ·, α(?) and (?)α.

Proof. Stability by +, α(?) and (?)α is straightforward using the axioms CS123. Let us give the details
of the proof for the Cauchy product. We have to prove that, for every S, T ∈ k〈〈Σε〉〉Φ-conv and u ∈ Σ∗,
the (countable) family

(〈ST |v〉)v∈Φ−1(u) = (〈ST |v〉)Φ(v)=u (22)
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is summable.
From the definition of the Cauchy product we have the finite sums

〈ST |v〉 =
∑

v1v2=v

〈S|v1〉〈T |v2〉

and, from CS4, the summability would be a consequence of that of the family

(〈S|v1〉〈T |v2〉) Φ(v)=u

v=v1v2

= (〈S|v1〉〈T |v2〉)Φ(v1v2=u)

(with the same sum). This family can be partitionned in a finite sum of families (with the same sum)

tu1u2=u(〈S|v1〉〈T |v2〉) v1∈Φ−1(u1)

v2∈Φ−1(u2)

(23)

each of which, by CS3, is summable. Thus, by CS5, the family (23) is summable and hence summability
of (22) (with the same sum) follows. �

Next, we show that Φ : (k〈〈Σε〉〉)Φ-conv → k〈〈Σ〉〉 is a polymorphism.

Theorem 7 For any S, T ∈ (k〈〈Σε〉〉)Φ-conv,

Φ(S + T ) = Φ(S) + Φ(T ) , Φ(ST ) = Φ(S)Φ(T )

Φ(αS) = αΦ(S) , Φ(Sα) = Φ(S)α

If S∗ is Φ-conv, Φ(S∗) is a star of Φ(S). In particular, if Φ(S) has no constant term, one has

Φ(S∗) = (Φ(S))∗

Proof. The proof is similar to that of Theorem (5), using the axioms of CS-semirings. �

In the sequel, as in the classical case, the summability of (µ(ε̃)n)n∈N will play a central rôle. We will
then call closable a square matrix M ∈ kn×n such that the family (Mn)n∈N is summable. Note that, in
this case, the sum sumn∈N Mn is a two-sided (we could say “topological”) star of M .
For example, with the boolean semiring endowed with the discrete topology, every M ∈ Bn×n is closable
(i.e. the sequence SN =

∑N

k=0 Mk is stationnary).
We have the following theorem, very similar to (1).
Proposition 2 Let S be a rational series in k〈〈Σε〉〉 (k a CS semiring) with (λ, µ, γ) a linear representa-
tion of S.

(i) If µ(ε̃) is closable then S is Φ-convergent.

(ii) Conversely, if S is Φ-convergent, k = R, C and (λ, µ, γ) minimal then µ(ε̃) is closable.

.

Proof. The proof (i) is similar to that of Theorem (1). The first computation of (ii) is similar, but, to
conclude, we use the property (which holds in R and C) that a family is summable iff it is absolutely
summable (because of CS6) and then subfamilies of summable families are summable. �
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6 Equivalence

We now deal with an algebraic method to eliminate the ε-transitions from a weighted ε-automaton Aε.
The result is a weighted automaton with behaviour Φ(behaviour(Aε)).
Theorem 8 Let k be a CS semiring and Aε = (λ, µ, γ) be a weighted ε-automaton with weights in k.
We suppose that µ(ε̃) is closable. Then

i) the series behaviour(Aε) is Φ-convergent.

ii) there exists a (algorithmically constructible) weighted automaton A = (λ′, µ′, γ′) such that

behaviour(A) = Φ(behaviour(Aε)).

Proof. The point i) is a reformulation of Proposition (2). Remark that, if (µ(ε̃)n)n∈N is summable its
sum is a (two sided) star of µ(ε̃) that, for convenience, we will denote µ(ε̃)∗.
Let B be the behaviour of Aε one has

Φ(B) =
∑

u∈Σ∗

(
∑

Φ(v)=u

〈B|v〉)u =
∑

u∈Σ∗

(
∑

Φ(v)=u

λµ(v)γ)u

Let, now u = a1a2 · · · an ∈ Σ∗, one has
∑

Φ(v)=u

λµ(v)γ = λ
(

∑

k0,k1,···kn∈N

µ(ε̃)k0µ(a1)µ(ε̃)k1 · · ·µ(an)µ(ε̃)kn
)

γ =

λµ(ε̃)∗µ(a1)µ(ε̃)∗ · · ·µ(an)µ(ε̃)∗γ = λ(µ(ε̃)∗µ(a1))(µ(ε̃)∗µ(a2)) · · · (µ(ε̃)∗µ(an))(µ(ε̃)∗γ)

the conclusion follows taking, for all a ∈ Σ,

(λ′, µ′(a), γ′) = (λ, µ(ε̃)∗µ(a), µ(ε̃)∗γ).

�

Let k be a semiring and Aε = (λ, µ, γ) a k-ε-automaton with S ∈ k〈〈Σε〉〉)Φ -conv as behaviour. Theorem
(2) gives the lower bounds if the set of coefficients is the semiring k (resp. ring, field).
Proposition 3 We suppose that, in kn×n, stars are unique. Let (λ, µ, γ) a k-ε-automaton such that µ(ε̃)
admits a tree of computation and is closable, then the complexity of the elimination of ε-transitions which
produces the weighted automaton A = (λ′, µ′, γ′), is O(nω).

Proof. The unique matrix µ∗
ε̃ given by the algorithm of Theorem (1) satisfies the relation:

µ∗
ε̃ = µ∗

ε̃µ
m+1
ε̃ + µm

ε̃ + · · · + µε̃ + 1n×n.

for all m > 0. In fact, by induction,

µ∗µm+2 + µm+1 + · · · + µ + 1 = (µ∗µm+1 + µm + · · · + 1)µ + 1 = µ∗µ + 1 = µ∗.

As (µm)m∈N is summable, one has µ∗ =
∑

µm. Next set λ′ = λ, γ′ = µ∗
ε̃γ and µ′(a) = µ∗

ε̃µ(a) for
each letter a ∈ Σ. �
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1 2

3 4

1

1

1

a, ε̃

b
b, ε̃ b

ε̃

a b

a, b

Figure 3: A B-ε-automaton

Remark 6 One could also with the same result set λ′ = λµ∗
ε̃ , µ′(a) = µ(a)µ∗

ε̃ for each letter a ∈ Σ and
γ′ = γ.

In the following, we have an example of a boolean automaton with ε-transitions.
Example(s) 6 The linear representation of Figure 3 is:

λ =
(

1 0 0 0
)

, µε̃ =









0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0









, µ(a) =









1 1 0 0
0 0 0 0
0 0 0 0
0 0 0 1









, µ(b) =









0 0 1 0
0 1 1 1
0 0 0 0
0 0 0 1









and γ =









0
0
1
1









.

By computation:

µ∗
ε̃ =









1 1 1 1
0 1 1 1
0 0 1 0
0 0 0 1









, λ′ =
(

1 0 0 0
)

, µ′(a) = µ∗
ε̃µ(a) =









1 1 0 1
0 0 0 1
0 0 0 0
0 0 0 1









,

µ′(b) = µ∗
ε̃µ(b) =









0 1 1 1
0 1 1 1
0 0 0 0
0 0 0 1









and γ′ = µ∗
ε̃γ =









1
1
1
1









,

The resulting boolean automaton is presented in Figure 4 and its linear representation is (λ′, µ′, γ′).
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1 2

3

4
1

1

1

1

1

a, b

b

a, b

b

a, b

a

b

a, b

Figure 4: A B-automaton

1 2 3 4
1 11

2a

1
4b

1
2a1

2b, 1
3 ε̃

1
2 ε̃

1
3 ε̃

Figure 5: A Q-ε-automaton
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1 2 3 4
1 1

1
2a

1
4b

1
2a

b

1
2b

a

Figure 6: A Q-automaton

In the next example, our algebraic method is applied on a Q-ε-automaton.

Example(s) 7 The linear representation of Figure 5 is:

λ =
(

1 0 0 0
)

, µε̃ =









0 0 0 0
0 0 1

2 0
0 1

3
1
3 0

0 0 0 0









, µ(a) =









0 1
2 0 0

0 0 0 0
0 0 0 1

2
0 0 0 0









, µ(b) =









0 0 1
4 0

0 0 0 0
0 1

2 0 0
0 0 0 0









,

and γ =









0
0
0
1









.

By computation:

µ∗
ε̃ =









1 0 0 0
0 4

3 1 0
0 2

3 2 0
0 0 0 1









, λ′ =
(

1 0 0 0
)

, µ′(a) = µ∗
ε̃µ(a) =









0 1
2 0 0

0 0 0 1
2

0 0 0 1
0 0 0 0









,

µ′(b) = µ∗
ε̃µ(b) =









0 0 1
4 0

0 1
2 0 0

0 1 0 0
0 0 0 0









and γ′ = µ∗
ε̃γ =









0
0
0
1









.

The resulting automaton is presented in Figure 6 and its linear representation is (λ′, µ′, γ′).

7 Conclusion
Algebraic elimination for ε-automata has been presented. The problem of removing the ε-transitions
is originated from generic ε-removal algorithm for weighted automata [15] using Floyd-Warshall and
generic single-source shortest distance algorithms. Here, we have the same objective but the methods and
algorithms are different. In [15], the principal characteristics of semirings used by the algorithm as well
as the complexity of different algorithms used for each step of the elimination are detailed. The case of
acyclic and non acyclic automata are analysed differently. Our algorithm here works with any semiring
(supposing only that µ(ε̃) is closable and with unique star) and the complexity is unique for the case of
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acyclic or non acyclic automata. This algorithm is even more efficient when the considered semiring is a
ring.
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