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A graph is unfrozen with respect toindependent set if it has an independent set of kiaéter the addition of any

edge. The problem of recognizing such graphs is known to be NP-complete. A graph is maximal if the addition
of one edge means it is no longer unfrozen. We designate the problem of recognizing maximal unfrozen graphs as
MAX(U(k-SET)) and show that this problem is CO-NP-complete. This partially fills a gap in known complexity
cases of maximal NP-complete problems, and raises some interesting open conjectures discussed in the conclusion.
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1 Introduction

In this paper we present a construction that entwines both extremal graph theory and computational com-
plexity, with original motivations stemming from the physical notions of statistical mechanics as applied
to the typical case complexity associated with random graph thresholds.

Any subsetP of the set of all grapl@;Q is said to be gropertyof graphs, and a grapti € P is said
to have the property. A property is said to &@nonotone propertgwith respect to deletion of edges) if
wheneveliG C G’ are two graphs on the same vertex set @hthas the property, then so do@s

Given a monotone properfy, we say that a grap@ is unfrozenwith respect tdP, written G € U(P),
if G € P and remains irP under the addition of any edge. Note th&tP) is also a monotone property
of graphs. Recognizing unfrozen graphs with respect to NP-complete properties is frequently, but not
always, NP-completé [3] 4].

Given a non-triviﬂ monotone property?, a graphG is maximalwith respect toP, written G €
MAX(P), if G € P but with the addition of any new edge G + ¢ ¢ P. MAX(P) is a property, but
is not monotone. For most NP-complete properfRegecognizing graphs iMAX(P) can be done in
polynomial time [4]. In[[4] only two potential exceptions were found, one of which was isomorphism

T Detailed definitions pertaining to graphs are given in Seon 2.
I P =g@andP = Q are trivial properties.
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complete and the other NP-hard. This is in distinct contrast to the results for extremal versions of proper-
ties in CO-NP where recognizing critical graphs for many properties (e.g. critical colorability and critical
Hamiltonian pa@ are DP-complete problems[25]. At this time we know of no proof that the maximal
version of any NP-complete property is DP-complete. This paper provides another maximal property
that is unlikely to be in P because in this case it is CO-NP-complete, and it is the first such result on the
complexity of MAX (U/(P)) for any propertyP known to be NP-complete.

Here? = k-SET, the set of graphs containing an independent set ofksifgom [4] we know that
U(k-SET) is NP-complete. We recall that the reductirSET ,,, U (k-SET) was particularly simple,
being the complete join of two copies of the initial grah Also, we recall thaMAX (k-SET) is easily
seen to be in the complexity class P because such graphs must consissef eompletely joined to a
clique.

Nevertheless, in this paper we show th&AX U/ (k-SET)) is CO-NP-complete. This result is also
interesting in that showing NOMAX (U (k-SET)) is in NP requires similar theoretical machinery as
does showing it is NP-hard.

Studying unfrozen and maximal properties is related to other extremal graph research where the em-
phasis is on obtaining bounds on the number of vertices or edges in a graph with certain properties. We
briefly review those results that seem most closely related to our results.

The intersection of all maximum independent sets has been dubbedrtia the literature. Various
lower bounds on the core size as it relates to the size of the maximum independent set, the number of
vertices, and the size of the maximum matching have been obtained or strengthened by Hammer et al.
[18], Levit and Mandrescu [23], and Boros et all [9]. Gunther etlall [17] and Zito [30] have shown that
the core of a tree cannot have only one vertex. Zito [30] has shown that not all vertices of a tree are in a
maximum independent set unless the tree is an even path.

For a graph to be unfrozen with respect to the maximum independent set, no more than one vertex can
be in the core, as noted by Haynes et al.| [21].[1d [23] Levit and Mandrescu have noted that the size of
the maximum independent set cannot exceed half the number of the vertices for the graph to be unfrozen.
Gunther et al.[[17] have constructively characterized unfrozen trees.

From a more practical viewpoint, if a graph is unfrozen it means that the property is immune to small
changes in the graph structure. It might conceivably be of interest to know how far we can push such
resiliency.

The original motivation for the line of enquiry in this paper began with the observed easy-hard-easy
pattern in various NP-complete problems near the threshold (or phase transition in géneral)[[1D, 14, 27].
Briefly, Friedgut[14] characterized when such properties have sharp thresholds; that is, for random graphs
as we vary the edge probability the probability of propertyP exhibits a sharp drop at a critical value
of p = p.. It has been observed that for many such problems, instances randomly generated with edge
probability p near the threshold are exponentially more difficult to solve for all known solvers than those
generated withp either less than or greater than the critical value. However, this does not hold for every
monotone NP-complete properiy [12]. Investigation of maximal properties is motivated by the desire to
understand from a complexity theoretic basis when the easy-hard-easy pattern holds and when it might
not. Frozen and unfrozen properties are also thought to be related to issues of complexity near the thresh-
old [11], and the study of maximal unfrozen properties follows naturally.

In the next section we present the formal definitions required for the particular results of this paper,

8 Note that for Hamiltonian path and certain other properties, the direction of monotonicity is reversed.
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and follow that in Sectiop|3 by a partial characterizatiodVb& X (1 (k-SET)) which can be computed in
polynomial time. In Sectioh]4 we use those results to obtain our main theorem. In the final section we
observe that in some ways this result creates more questions than it answers, and pose a few of what we
consider to be the most interesting open questions.

2 Definitions

A graphG = (V,E) consists of a set of verticds = {v1, ..., v, } and a seE of undirected edges, where
an edge is a 2-subset ®. Any paire = {u,v} C V,e ¢ E is called a non-edge i, and the set of
all non-edges is referred to &8. Given a grapl, we useVg, Eq andEg to refer to the vertex, edge
and non-edge sets 6f. For any subsetl C V, we use the notatiofi[A] = (A, E[A]) for the subgraph
induced byA.

If G =(V,E)andG’ = (V',E’) are two graphs such th&t C V' andE C E’ then we say thaf is a
subgraphof G’, and writeG C G’. We use the notatiofk + ¢ = (V,E|J{e}), e € E° and similarly for
addition of vertices. We replace by — for deletion of vertices and edges. Deletion of a vertex implies
that all edges of which the vertex is a member are also deleted.

Given a graphG, anindependent seé$ a subsefA C V such that for alk, v € A, {u, v} ¢ E. We refer
to an independent set of sizeby the shorthand&-set and the set of graphs withkaset ask-SET. It is
easy to see that-SET is a monotone property of graphs, and thus 84(isSET). We letX be the set of
isolated vertices itiz, that is the vertices with no edges.

We use the notatioh = A(G) to represent the maximum degree(af

The independent set problem, given a grd&pland integerk is G € k-SET, is well known to be
NP-complete[[15]. In[[4] it was shown that a number of unfrozen versions of monotone NP-complete
problems, includindg{(k-SET), are also NP-complete, while others are in P.

We defineZ;, = 7,(G) = {I : I is ak-sett. We say that{ C Z;, is ak-setcover (or cover) ofG if
Uren I = V. A coverH is minimalif no proper subset of{ coversG.

3 Some structural properties of MAX (U (k-SET))

In this section we shall show that except for some special cases and vertices ofrdegtethe vertices
of any graph inMAX (U (k-SET)) can be partitioned into three classes which we designate as the sole
verticessS, core vertice® and others(. Each sole vertex occurs in exactly one maximiiset and has
degreen — k, the cores are closely associated with the soles, and the structure of the graph induced by
S U C is such that these can be identified in polynomial time. On the other hand given a graph with the
appropriate sole and core structure, we can embed an arbitrary grépbnd whether or not the result
will be in MAX (U (k-SET)) depends on the properties of this graph. In Seon 4 this is the key idea used
in showing our complexity result.

First, we eliminate the special cases and vertices of too high degree, so that we can focus on the
interesting properties mentioned above.

Observation 3.1 MAX(U/(1-SET)) consists only of complete graphs (vacuously since there are no non-
edges).

Observation 3.2 If k£ > 1 then no vertex of degree — 1 can be in anyk-set thus the removal of such
vertices will not alter the membership @fin MAX (U (k-SET)).
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Observation 3.3 If there are no vertices of degree— 1 then the only graphs iMAX(U/(2-SET)) are
those of 3 vertices and one edge, and the square.

Observation 3.4 If G is ak + 1-setthenG is in MAX (U (k-SET)) and these are the only graphs in
MAX(U(k-SET)) withn < k + 1.

Observation 3.5 If G is the complete bipartite grapKk’;, ,, or G consists of an isolated vertex and the
complete bipartite subgrapR;_1 ;—1 thenG is in MAX (U (k-SET)).

These observations justify restricting our attention to those gréphs (V,E) € MAX(U(k-SET))
satisfying the following assumptions.

Assumption 3.6 k > 2.
Assumption 3.7 G has no vertices of degree— 1.
Assumption 3.8 [V| > k + 1. This eliminates the trivial case in Observat[on|3.4.

Assumption 3.9 ** G is not one of the graphs indicated in Observation 3.5. This assumption only be-
comes effective after Lemifna 3.17. We list it here for easy reference.

Notice that by definition, ifG is in MAX (U (k-SET)) then for every non-edge pair of vertices there
must be another pair such that adding both edges eliminates every independent set. We refer to such pairs
asdestroying edgesr destroying pairs

Lemma 3.10 The setd € Z;,(G) are maximum independent sets.

Proof: Let I be a maximum independent set(n Clearly|I| < k + 1, otherwise not alk-independent
sets can be destroyed with two edges. Now suppbse- k£ + 1 and note thaV \ I is not empty by
Assumptior 3B. Let € V' \ I such that{u, v} € E° (such av exists by Assumptiop 3/6). Them, v} is
not part of any destroying pair, sinc&+ {u, v} has ak + 1-set, namelyl. This contradicts the hypothesis
thatG € MAX(U(k-SET)). 0

Let X C V be the set of isolated vertices.
Lemma 3.11 |X| < land, foralll € Z;,(G),X C I.

Proof: As observed in[[21], the intersection of @lindependent sets ik, N;c7, I, contains at most

one vertex, otherwise there is anc E° such thatG + e has nok-independent set, violating thét is
unfrozen. Trivially, every isolated vertex must appear in every maximum set, and so by llemfna 3.10 in
everyk-set. O

Lemma 3.12 For every pair of verticegu, v} € E¢, there is somd € 7, that contains both, and v,
and there is somé& ¢ Z,. that contains at most one afandwv.

Proof: Suppose there is na-set that contains botthandv, thenZ (G + e¢) = Zx(G), wheree = {u, v}.
But this is contradicted by the fact that the intersection &ygiG) has at most one vertex, while the
intersection oveZ, (G + e) has at least two vertices (otherwise, there is no destroying edgd3br
There must be somg-set not containing both, and v, or as observed in_[21(z would not be
unfrozen. O
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Lemma 3.13 A coverH C 7 exists and for any such coverycx I = X.

Proof: By Assumptiorj 3.7 every vertex is part of at least one non-edge and so by Llemra 3.12 is in some
I € 7. By Lemmd 3. ILX C Nyen .
Consider anyw € V \ X and{v,w} € E. Since’H is a cover ofV, letI € H be such thav € I
andI’ € H be such thatv € I’, and note that ¢ I'. Since this holds for any € V \ X, this implies
NrenI C X. O

Lemma 3.14 For any coverH C Iy, for everye = {u,v} € E¢, there isI € H such that C I.

Proof: Suppose € E° is not contained in any € H. ThenH C Z,(G + ¢) which, by Lemm4 3.13 and
Lemmd 3.1l implie$N;cz, (c+e) 1| < 1, leaving no destroying edge fer O

We are now in a position to discuss the sole vertiSgaentioned at the beginning of this section. We
define the sole vertices iy = {v € V : deg(v) = n — k}. We call thesesolevertices since trivially such
vertices belong to exactly orleset. Lemma 3.15 below shows th&is not empty, and that these are the
vertices of maximum degree under our assumptions.

Lemma 3.15 A = n — k, and for any minimal covet{ C Zy, for all I € H there exists a vertex € I
with deg(v) = n — k.

Proof: By Assumptiod 3JTA < n — 1. Any vertexv of degreen — k < deg(v) < n — 1 would not be
in any k-set, and thus the non-edgeswowould violate Lemm@ 3.12. Thu&y < n — k. Let’H C 7}, be
aminimal k-set cover ofG. SinceH is minimal, eachl € H contains a vertex that does not appear in
any other element df{. Then by Lemm4 for each suclthere must exist an edde, u}, for every
uégl. a

Since each vertex i occurs in exactly oné € T, there exists g-subsetZ = {I;,1 <i < ¢} C T,
which partitionsS into S;, 1 < i < ¢q. We call thel € Z sole sets

Lemma 3.16 Z is the unique minimat-setcover ofG.

Proof: Let H be a minimal cover o6. Then by Lemm& 3.15, evellye H contains a vertex af. Thus,
S induces a minimal cover @k, namelyZ, which is unique since eaehe S occurs in exactly oné. O

The above lemmas are used to define the graph prop&ity in Sectior 4.]L.
We now note thag > 1, otherwise since is a cover we only have one set ands@& MAX (U (k-SET)).
The following takes care of another special case, when the minimal ébhesq = 2 k-sets.

Lemma 3.17 If ¢ = 2 thenG is either the bipartite complete graphi; ;, or the graph consisting of an
isolated vertex and the subgrapty,_; ;1.

Proof: If there is no isolated vertex, then every vertex is in eitheor I, by Lemmg 3.1p, and not in
both since there is an edge on each vertex. This bipartite o2k vertices. Since a complete bipartite
graph is inMAX (U (k-SET)), it follows that G must be complete. A similar argument follows for the
case where one vertex is isolated. O
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Assumption: For the remainder of this section we assume that 3. By Lemmg 3.1 this is equiva-
lent to Assumptiof 3]9, given our other assumptionion

Recall thatX C V is the set of isolated vertices and eithelis empty or consists of a single vertex,
which we label.

We define thecore associated withh; by C; = (Ni<j<q,j=il;) \ X,1 < i < g We callC =
(U1<i<qCi) U X the set ofcore vertices We define the other vertices 8y = V \ (SUC). We de-
fineOi:Iiﬁ(’),l <1<q.

We have two key results on the core vertices. First, the cores are completely joined to the corresponding
soles.

Lemma3.18 Forall 1 <+i < g, forallu € S; and allv € C;, {u,v} € E.
Proof: SinceZ is a cover ofV by Lemmg 3.1, the only vertices that can occur in every set Z are

those inX by Lemmd 3.1B. So by definitiofi; N I; = @ because it excludés. Since every vertex iis;
is of degree: — k they must all be adjacent to every vertex nof jmnd therefore to every vertex . O

Second, there are no other edges incident to the core vertices.
Lemma3.19 Forall 1 <i < g, forallu € C; andv € V\ S;, {u,v} € E.
Proof: First we note that the lemma is trivially true forc X. Since we assumg> 3 then for every pair
1 <14,j < gthereexistgh,1 < h < q,i,j # hsuchthaC; U C; C I, and thus there can be no edge in
C. Also, since by definitiorC’; C I; for all j # ¢, there can be no edges$0 or O;.

Since Z is a cover, it follows thatl;<;<,0; = O. This means we have only to consider pairs in
O, x C;. Suppose there is an edge,t},w € O;,t € C;. Since for allj # i, C; C I;, we see that

w ¢ I;; that is,w occurs only inl;. Then by Lemmé 3.14, for all ¢ I;, {w,y} € E which implies that
w € S;, a contradiction tav € O;. m|

Under the assumptiop> 3, these lemmas lead us immediately to
Lemma 3.20

1. Cis anindependent set,

2. forallI eI\ Z,C C I,

3.CNS=0,

4. forallu e S;, forallve O\ Oy, {u,v} € E.

Lemma3.21 |C; UX| > 2,15;] > |C4],1 < i < gand|C| < k.

Proof: Suppose: = {u,v} whereu € S; andv € I;. ThenlI; is the only set irf;, containinge. Writing

Nn=(n:n(n:

I€Zr(G+e) IeZ\I; 1€ \2
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we see that the term on the right contathisy Lemmg 3.2D and thus by definition this
= (C;uUX

Since there must be a destroying edgeefahis implies|C; U X| > 2.
For the second part, |5;| < |C;| then(Z; U C;) \ S; will be an independent set of size greater than
violating Lemma 3.10. The bound @halso follows from Lemmf 3.70. 0

Note however that this analysis leaves open which pai® imre edges. In fact, it turns out that an
arbitrary graph can be embeddeddhand this is key to showing the NP-complete results in the next
section.

4 NOT-MAX(U(k-SET)) is NP-complete

In this section we consider the complexity of NOTAX (¢ (k-SET)): given a graphG and integet, is
G ¢ MAX(U(k-SET))?

Theorem 4.1 NOT-MAX (U (k-SET)) is NP-complete
The proof of this theorem is in two parts, presented in Secfions 4.l and 4.2.
4.1 NOT-MAX(U(k-SET)) isin NP

Analogous to the definition in Sectiph 3, we defifie= {v | deg(v) = n — k}. We defineX to be the set
of isolated vertices as in Sectibh 3.
We define the graph proper¥y(k) by G € V(k) if and only if

IL.n>k+1,k>2
2. A=n—k.

3. X< 1.

4, for allv € S, there exists &-setl, ¢ Vwithv € I,,.
5. Upesl, = V.

6. foralle € E€, there exist® € S such that C I,,.

7. Nvesl, = X.

By this definition, forG € V (k) we have{I, | v € S} coversV, eachv € S occurs only inf,,, and
we may defines;, 1 < i < ¢ as the partition of the elements8fas in Sectioh[3. Fo& € V(k), we may
then defineC; = (N1<j<q.jil;) \ X,1 < i < gandC = (Ui<i<C;) U X. Finally as in Sectioh|3 we
define® =V \ (SUC).

The following graph property refines the definiti@k) to only include graphs also satisfying the
conditions of Lemmas 3.17 throufh 3119 énd B.21. We define the graph prapgityby G € V¢ (k) if

and only if

1. G e V(k).
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2. G is not one of the graphs in Observat[on|3.5.

3. foreveryu € S; and everyw € C;, {u,v} € E.

4. for everyu ¢ S; and everyw € C;, {u,v} € E.

5. foralll <i <gq,|C; UX]| > 2and|S;| > |C;], and|C| < k.

Lemma 4.2 Under the assumptions that> k£ + 1, £ > 2, A < n — 1 andG is not one of the graphs in
Observatiof 36 ¢ V¢ (k) impliesG ¢ MAX (U(k-SET)).

Proof: The definition ofV¢(k) (including V (k)) is just a list of properties proven to hold for afy €
MAX (U(k-SET)) meeting the same assumptions in Sedtjon 3. O

Lemma 4.3 G € V¢(k) impliesG € U (k-SET).

Proof: By the definition ofV(k) items 3 and 7, for every edde:, v} € E° for at least onev € {u,v}
there existd,,y € S such thatw ¢ I,. Thus,I, is ak-setinG + {u,v}. O

Lemma 4.4 If G € V¢(k) then for alle € E¢, there existe’ € E¢[C] such thatG + e + ¢’ contains no
k-setI withI NS # @.

Proof: By the definition ofS, each vertex ir§ is in exactly onek-set since the degreeis— k. By the
definition of V¢(k), for everye € E€ there is somd;, 1 < i < g such thak C I;. Thus,; is not ak-set
in G + e. Also by definition, for allj # ¢,1 < j < ¢, C; UX C I; and contains at least two vertices.
Thus, since these are the only sets intersecinchoosing any edgé from C; U X completes the proof.
|

Lemma4.51f G € V°(k) thenG € NOT-MAX(U(k-SET)) if and only if there exists & + 1-set
ICCUO.

Proof: If there exists such a set{hJu O, then for any edge such that at least one end isSnthek + 1-set
will remain independent i + e, and so no other edge can destroy all the subsets of it.

Otherwise we first note that by the definitiondf (k), for every maximum independent de€ CU O,
C C I. Thus, sincel| < k then for everye’ € E€[C], G[C U O] + ¢’ contains ndk-set. It then follows by
Lemmag 4B and 4.4 that € MAX (U (k-SET)). O

Lemma 4.6 G € V¢(k) can be determined in polynomial time.

Proof: (Outline) It is easy to identify the vertices &fif they exist by degree criteria, and then theare
uniquely forced. Once these are identified, the partitioning into soleSsetsd identification of cores is
a matter of computing a polynomial number of set intersections and unions over subgetgarifying

the remaining conditions is merely a matter of testing for appropriate edges and requires no search.

Theorem 4.7 NOT-MAX(U(k-SET)) € NP.
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Proof: The proof wherk = 1 is trivial. Fork > 1 recursively delete all vertices of degree- 1. Check
the special cases eliminated by the assumptions, and if none apply determine whethéf (k). This
is all polynomial, the last step by Lemrha 4.6. Gf ¢ V¢(k) we are done by Lemn{a 4.2. Otherwise
by Lemmg 4.5 ifG € NOT-MAX(U(k-SET)) then there is & + 1-set contained it U O. We non-
deterministically choose a setbf-1 vertices fromC U O and verify itis an independent set in polynomial
time. O

4.2 NOT-MAX(U(k-SET)) is NP-hard

We will show that NOTMAX (U4 (k-SET)) is NP-hard by a reduction from independent set.

Let (G, k) be an instance of the independent set problem. We will construct an insi@hde of
NOT-MAX(U(h-SET)). We assume without loss of generality thet;| > k£ > 4. The outline of the
idea is that we construct a new graph that has all the properties required by the lemmas inf$ection 3 and
embedG in O.

First, define a grapt® = (Vg U{vn+1,vn+2}, Ec) which will be a subgraph o’ and consists ofx
plus two independent vertices. Next for each non-edge:f, we create two independent sets of vertices,
S. andC.. EachC has two vertices. Eacll hask + 1 vertices.

We create additional edges fBy; as follows. For each non-edge= {u,v} € E,), we add the edges
iNSe x Ce, Se X (Vo — {u,v}) andS, x S/, foralle’ # e, e’ € ES,.

Letm = |Ey|. Then definéy = 2m + k + 1.

This completes the construction &', h). The following lemmas all pertain to this construction and
the terms defined above.

Lemma 4.8 For all e € EY,), S, is contained in a uniqgue maximatsetwhich isI, = S, |J eUE,7,ée Cor.
Proof: We see by the construction that the only vertices not adjacent to any veifgxane those irf.,

those ine and those irC.., for eache’ # e. The(C's are all independent of each other, and/ef, so this
is an independent set. The size of this sétis1 + 2+ 2(m — 1) = h. O

Definel. to be the unique maximal-set containings. for eache € Ef, as in Lemma 4]8.
Lemma 4.9 G’ € U(h-SET).
Proof: We need to show that, for eache Ef,, G' +e € h-SET. Ife € Ef, then it follows from
Lemma[ 4.8 that there exist$ € Ef, such thate Z I... If e = {u,v} andu € S./, then by Lemma 4|8
choose” # €', ¢” € Ef, andI.~ is a suitable set. Finally, if. € C./ thenI.. is a suitable set, again by
Lemmd4.8. O
Lemma 4.10 For all v € Vp, there exisk, ¢’ € Ef, such thate # ¢’ andv € I. () L.

Proof: SinceO contains two independent vertices gNd;| > 4, there are at least two non-edges incident
on every vertex irQ. O

Lemma 4.11 For all ¢’ € Eg, there existg € Eg, such that’ C I..

Proof: We provide a case analysis on the possibjgiving ane for each case.
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casee’ € Ef,: Lete =¢'.

casee’ C Sov: Lete=¢".

casec’ = Cor: Any e # €”, e € ES,. There is always such a non-edgeirby Lemmd 4.1D.

casee’ = {u,v},u € Ser,v € Vo: Lete =¢".

casee’ = {u,v},u € Ser,v € Cer: Necessarily by constructiort” # ¢”. Then by Lemmé 4|8 we can
lete = ¢€”.

casec’ = {u,v},u € Cor,v € Ce: By Lemma 4.1D and our construction, there are more than 3 non-
edges irEg,. By Lemmd 4.8 we can choose anguch that # ¢” ande # ¢’

casec’ = {u,v},u € Cer,v € Vo: By Lemmg 4.8 choose any= {v, w},e # ¢”.

By construction there are no other non-edge&in |
Lemma 4.12 G’ ¢ MAX (U (h-SET)) if and only if G € k-SET.

Proof: By Lemm we already know thé&¥ € U/ (h-SET). Thus, we only need to determine whether
or not for everye € E¢,, there existg’ € Ef, such thalG’ + e + ¢’ ¢ h-SET.

Let j be the size of a maximum independent se&inWe consider two cases:
Claim 1: j < kimpliesG’ € MAX (U (h-SET)).
Let C* = UeeE?9 C. and letA C Vp be any maximal independent set@ Note that sinced is
maximal, it corresponds to a maximal setGn plus the two independent vertices addedtoThus, if
j < k—1then|C*|JA| < h, and it follows that the only:-sets inG’ are thel,.. If j = k — 1 then when
Ais a maximum seiC* | J A is anh-set. Thus, we have such a set for every maximum set ofsizé in
G. However, all of these no#; h-sets contain all vertices ifi*, and thus adding any edge@t destroys
them all.

Lete € E¢, be any non-edge. Then by Lemina 4.11 there is’asuch thate C I... Then choose
a second edge”’ € C... By Lemma[4.B this edge is in all remainidgand together with the above
observation this implie&’ 4 e + ¢” has noh-set.
Claim 2: j > kimpliesG’ € MAX (U (h-SET)).
Defining C* and A as in the previous claim, we see thHét*| J A| > h when A is maximum, since
|A] > k + 2. If we lete € S, for somee’, then|C* | J 4] is still an independent set of size greater than
h, and so no other edge can destroyhaliets in it.

This completes the proof of the lemma. O

Theorem 4.13 NOT-MAX(U(k-SET)) is NP-hard.

Proof: The reduction is correct by Lemnja 4/12. We see fhas at most quadratic ifiV| by our
assumptions of andk. The number of vertices i’ is at most cubic ifV¢| and the construction is

a straight-forward plug in of components plus additional edges. Thus, we have a polynomial reduction
from an NP-complete problem. O
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5 Conclusions and Open Problems

We have shown that NOMAX (U (k-SET)) is NP-complete, or equivalently thAfAX (U (k-SET)) is
CO-NP-complete. It seems a slightly curious twist that we start with an NP-complete property and on con-
sidering the maximal version we obtain a problem in CO-NP-complete. We ask, is there an NP-complete
propertyP such thatMAX(P) is NP-complete?

From [4] the reason that most maximal properties are in P seems to relate to the idea that features of the
graph that prevent a graph being in the class are in some sense complete, for exaipk(inSET) all
pairs not in the independent set are edges, and in the maximal verdgiecodring the graph ig-partite
complete. This completeness is usually polynomial time checkable. On the other hand the problem
MAX(3-coloring and maximum degree 4) is seen to be NP-hard, and the reduction’in [4] indicates
this is because the maximum degree restriction limits the completeness structure. Note that the degree
restriction is an easy condition to check in polynomial time.

In the current result we again get a restriction on the completeness in that there is a polynomial time
checkable super structure, but then the remainder of the géjainthe constructions, does not need to
be complete. In this case the polynomial structure is induced by the unfrozen condition on the property,
rather than being an explicit condition of the property. Note that unfrozen can be seen as a polynomial
composition of the property; that is, it means there maypke?) possible independent sets, one for each
possible addition of an edge. A careful examination of the isomorphism complete result in [4] also seems
to exhibit a type of limit on completeness. On the other hand, combining two NP-complete properties did
not sufficiently limit completeness to move the resulting maximal properties out of P.

So, the question is can we somehow generalize and make precise these observations and thus predict
into which complexity classes different modified properties will fall?
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