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A graph is unfrozen with respect tok independent set if it has an independent set of sizek after the addition of any
edge. The problem of recognizing such graphs is known to be NP-complete. A graph is maximal if the addition
of one edge means it is no longer unfrozen. We designate the problem of recognizing maximal unfrozen graphs as
MAX(U(k-SET)) and show that this problem is CO-NP-complete. This partially fills a gap in known complexity
cases of maximal NP-complete problems, and raises some interesting open conjectures discussed in the conclusion.
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1 Introduction
In this paper we present a construction that entwines both extremal graph theory and computational com-
plexity, with original motivations stemming from the physical notions of statistical mechanics as applied
to the typical case complexity associated with random graph thresholds.

Any subsetP of the set of all graphs† Ω is said to be apropertyof graphs, and a graphG ∈ P is said
to have the property. A property is said to bea monotone property(with respect to deletion of edges) if
wheneverG ⊆ G′ are two graphs on the same vertex set andG′ has the property, then so doesG.

Given a monotone propertyP, we say that a graphG is unfrozenwith respect toP, writtenG ∈ U(P),
if G ∈ P and remains inP under the addition of any edge. Note thatU(P) is also a monotone property
of graphs. Recognizing unfrozen graphs with respect to NP-complete properties is frequently, but not
always, NP-complete [3, 4].

Given a non-trivial‡ monotone propertyP, a graphG is maximalwith respect toP, written G ∈
MAX(P), if G ∈ P but with the addition of any new edgee, G + e 6∈ P. MAX(P) is a property, but
is not monotone. For most NP-complete propertiesP, recognizing graphs inMAX(P) can be done in
polynomial time [4]. In [4] only two potential exceptions were found, one of which was isomorphism

† Detailed definitions pertaining to graphs are given in Section 2.
‡ P = Ø andP = Ω are trivial properties.
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complete and the other NP-hard. This is in distinct contrast to the results for extremal versions of proper-
ties in CO-NP where recognizing critical graphs for many properties (e.g. critical colorability and critical
Hamiltonian path§) are DP-complete problems[25]. At this time we know of no proof that the maximal
version of any NP-complete property is DP-complete. This paper provides another maximal property
that is unlikely to be in P because in this case it is CO-NP-complete, and it is the first such result on the
complexity ofMAX(U(P)) for any propertyP known to be NP-complete.

HereP = k-SET, the set of graphs containing an independent set of sizek. From [4] we know that
U(k-SET) is NP-complete. We recall that the reductionk-SET∝m U(k-SET) was particularly simple,
being the complete join of two copies of the initial graphG. Also, we recall thatMAX(k-SET) is easily
seen to be in the complexity class P because such graphs must consist of ak-set completely joined to a
clique.

Nevertheless, in this paper we show thatMAX(U(k-SET)) is CO-NP-complete. This result is also
interesting in that showing NOT-MAX(U(k-SET)) is in NP requires similar theoretical machinery as
does showing it is NP-hard.

Studying unfrozen and maximal properties is related to other extremal graph research where the em-
phasis is on obtaining bounds on the number of vertices or edges in a graph with certain properties. We
briefly review those results that seem most closely related to our results.

The intersection of all maximum independent sets has been dubbed thecore in the literature. Various
lower bounds on the core size as it relates to the size of the maximum independent set, the number of
vertices, and the size of the maximum matching have been obtained or strengthened by Hammer et al.
[18], Levit and Mandrescu [23], and Boros et al. [9]. Gunther et al. [17] and Zito [30] have shown that
the core of a tree cannot have only one vertex. Zito [30] has shown that not all vertices of a tree are in a
maximum independent set unless the tree is an even path.

For a graph to be unfrozen with respect to the maximum independent set, no more than one vertex can
be in the core, as noted by Haynes et al. [21]. In [23] Levit and Mandrescu have noted that the size of
the maximum independent set cannot exceed half the number of the vertices for the graph to be unfrozen.
Gunther et al. [17] have constructively characterized unfrozen trees.

From a more practical viewpoint, if a graph is unfrozen it means that the property is immune to small
changes in the graph structure. It might conceivably be of interest to know how far we can push such
resiliency.

The original motivation for the line of enquiry in this paper began with the observed easy-hard-easy
pattern in various NP-complete problems near the threshold (or phase transition in general) [10, 14, 27].
Briefly, Friedgut [14] characterized when such properties have sharp thresholds; that is, for random graphs
as we vary the edge probabilityp, the probability of propertyP exhibits a sharp drop at a critical value
of p = pc. It has been observed that for many such problems, instances randomly generated with edge
probabilityp near the threshold are exponentially more difficult to solve for all known solvers than those
generated withp either less than or greater than the critical value. However, this does not hold for every
monotone NP-complete property [12]. Investigation of maximal properties is motivated by the desire to
understand from a complexity theoretic basis when the easy-hard-easy pattern holds and when it might
not. Frozen and unfrozen properties are also thought to be related to issues of complexity near the thresh-
old [11], and the study of maximal unfrozen properties follows naturally.

In the next section we present the formal definitions required for the particular results of this paper,

§ Note that for Hamiltonian path and certain other properties, the direction of monotonicity is reversed.
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and follow that in Section 3 by a partial characterization ofMAX(U(k-SET)) which can be computed in
polynomial time. In Section 4 we use those results to obtain our main theorem. In the final section we
observe that in some ways this result creates more questions than it answers, and pose a few of what we
consider to be the most interesting open questions.

2 Definitions
A graphG = (V,E) consists of a set of verticesV = {v1, . . . , vn} and a setE of undirected edges, where
an edge is a 2-subset ofV. Any pair e = {u, v} ⊆ V, e 6∈ E is called a non-edge inG, and the set of
all non-edges is referred to asEc. Given a graphG, we useVG,EG andEc

G to refer to the vertex, edge
and non-edge sets ofG. For any subsetA ⊆ V, we use the notationG[A] = (A,E[A]) for the subgraph
induced byA.

If G = (V,E) andG′ = (V′,E′) are two graphs such thatV ⊆ V′ andE ⊆ E′ then we say thatG is a
subgraphof G′, and writeG ⊆ G′. We use the notationG + e = (V,E

⋃
{e}), e ∈ Ec and similarly for

addition of vertices. We replace+ by− for deletion of vertices and edges. Deletion of a vertex implies
that all edges of which the vertex is a member are also deleted.

Given a graphG, anindependent setis a subsetA ⊆ V such that for allu, v ∈ A, {u, v} 6∈ E. We refer
to an independent set of sizek by the shorthandk-set and the set of graphs with ak-set ask-SET. It is
easy to see thatk-SET is a monotone property of graphs, and thus so isU(k-SET). We letX be the set of
isolated vertices inG, that is the vertices with no edges.

We use the notation∆ = ∆(G) to represent the maximum degree ofG.
The independent set problem, given a graphG and integerk is G ∈ k-SET, is well known to be

NP-complete [15]. In [4] it was shown that a number of unfrozen versions of monotone NP-complete
problems, includingU(k-SET), are also NP-complete, while others are in P.

We defineIk = Ik(G) = {I : I is ak-set}. We say thatH ⊆ Ik is ak-setcover (or cover) ofG if
∪I∈HI = V. A coverH is minimal if no proper subset ofH coversG.

3 Some structural properties of MAX(U(k-SET))
In this section we shall show that except for some special cases and vertices of degreen− 1, the vertices
of any graph inMAX(U(k-SET)) can be partitioned into three classes which we designate as the sole
verticesS, core verticesC and others,O. Each sole vertex occurs in exactly one maximumk-set and has
degreen − k, the cores are closely associated with the soles, and the structure of the graph induced by
S ∪ C is such that these can be identified in polynomial time. On the other hand given a graph with the
appropriate sole and core structure, we can embed an arbitrary graph inO and whether or not the result
will be in MAX(U(k-SET)) depends on the properties of this graph. In Section 4 this is the key idea used
in showing our complexity result.

First, we eliminate the special cases and vertices of too high degree, so that we can focus on the
interesting properties mentioned above.

Observation 3.1 MAX(U(1-SET)) consists only of complete graphs (vacuously since there are no non-
edges).

Observation 3.2 If k > 1 then no vertex of degreen − 1 can be in anyk-set, thus the removal of such
vertices will not alter the membership ofG in MAX(U(k-SET)).
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Observation 3.3 If there are no vertices of degreen − 1 then the only graphs inMAX(U(2-SET)) are
those of 3 vertices and one edge, and the square.

Observation 3.4 If G is a k + 1-set thenG is in MAX(U(k-SET)) and these are the only graphs in
MAX(U(k-SET)) with n ≤ k + 1.

Observation 3.5 If G is the complete bipartite graphKk,k or G consists of an isolated vertex and the
complete bipartite subgraphKk−1,k−1 thenG is in MAX(U(k-SET)).

These observations justify restricting our attention to those graphsG = (V,E) ∈ MAX(U(k-SET))
satisfying the following assumptions.

Assumption 3.6 k > 2.

Assumption 3.7 G has no vertices of degreen− 1.

Assumption 3.8 |V| > k + 1. This eliminates the trivial case in Observation 3.4.

Assumption 3.9 ** G is not one of the graphs indicated in Observation 3.5. This assumption only be-
comes effective after Lemma 3.17. We list it here for easy reference.

Notice that by definition, ifG is in MAX(U(k-SET)) then for every non-edge pair of vertices there
must be another pair such that adding both edges eliminates every independent set. We refer to such pairs
asdestroying edgesor destroying pairs.

Lemma 3.10 The setsI ∈ Ik(G) are maximum independent sets.

Proof: Let I be a maximum independent set inG. Clearly|I| ≤ k + 1, otherwise not allk-independent
sets can be destroyed with two edges. Now suppose|I| = k + 1 and note thatV \ I is not empty by
Assumption 3.8. Letu ∈ V \ I such that{u, v} ∈ Ec (such av exists by Assumption 3.6). Then{u, v} is
not part of any destroying pair, sinceG+{u, v} has ak+1-set, namelyI. This contradicts the hypothesis
thatG ∈ MAX(U(k-SET)). 2

Let X ⊆ V be the set of isolated vertices.

Lemma 3.11 |X| ≤ 1 and, for allI ∈ Ik(G),X ⊆ I.

Proof: As observed in [21], the intersection of allk-independent sets inG, ∩I∈Ik
I, contains at most

one vertex, otherwise there is ane ∈ Ec such thatG + e has nok-independent set, violating thatG is
unfrozen. Trivially, every isolated vertex must appear in every maximum set, and so by Lemma 3.10 in
everyk-set. 2

Lemma 3.12 For every pair of vertices{u, v} ∈ Ec, there is someI ∈ Ik that contains bothu andv,
and there is someI ′ ∈ Ik that contains at most one ofu andv.

Proof: Suppose there is nok-set that contains bothu andv, thenIk(G + e) = Ik(G), wheree = {u, v}.
But this is contradicted by the fact that the intersection overIk(G) has at most one vertex, while the
intersection overIk(G + e) has at least two vertices (otherwise, there is no destroying edge fore [3]).

There must be somek-set not containing bothu and v, or as observed in [21]G would not be
unfrozen. 2
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Lemma 3.13 A coverH ⊆ Ik exists and for any such cover,∩I∈HI = X.

Proof: By Assumption 3.7 every vertex is part of at least one non-edge and so by Lemma 3.12 is in some
I ∈ Ik. By Lemma 3.11,X ⊆ ∩I∈HI.

Consider anyv ∈ V \ X and{v, w} ∈ E. SinceH is a cover ofV, let I ∈ H be such thatv ∈ I
andI ′ ∈ H be such thatw ∈ I ′, and note thatv 6∈ I ′. Since this holds for anyv ∈ V \ X, this implies
∩I∈HI ⊆ X. 2

Lemma 3.14 For any coverH ⊆ Ik, for everye = {u, v} ∈ Ec, there isI ∈ H such thate ⊆ I.

Proof: Supposee ∈ Ec is not contained in anyI ∈ H. ThenH ⊆ Ik(G + e) which, by Lemma 3.13 and
Lemma 3.11 implies| ∩I∈Ik(G+e) I| ≤ 1, leaving no destroying edge fore. 2

We are now in a position to discuss the sole verticesS mentioned at the beginning of this section. We
define the sole vertices byS = {v ∈ V : deg(v) = n− k}. We call thesesolevertices since trivially such
vertices belong to exactly onek-set. Lemma 3.15 below shows thatS is not empty, and that these are the
vertices of maximum degree under our assumptions.

Lemma 3.15 ∆ = n − k, and for any minimal coverH ⊆ Ik, for all I ∈ H there exists a vertexv ∈ I
with deg(v) = n− k.

Proof: By Assumption 3.7,∆ < n − 1. Any vertexv of degreen − k < deg(v) < n − 1 would not be
in anyk-set, and thus the non-edges onv would violate Lemma 3.12. Thus,∆ ≤ n− k. LetH ⊆ Ik be
a minimalk-set cover ofG. SinceH is minimal, eachI ∈ H contains a vertexv that does not appear in
any other element ofH. Then by Lemma 3.14 for each suchv there must exist an edge{v, u}, for every
u 6∈ I. 2

Since each vertex inS occurs in exactly oneI ∈ Ik, there exists aq-subsetZ = {Ii, 1 ≤ i ≤ q} ⊆ Ik

which partitionsS into Si, 1 ≤ i ≤ q. We call theI ∈ Z sole sets.

Lemma 3.16 Z is the unique minimalk-setcover ofG.

Proof: LetH be a minimal cover ofG. Then by Lemma 3.15, everyI ∈ H contains a vertex ofS. Thus,
S induces a minimal cover ofG, namelyZ, which is unique since eachv ∈ S occurs in exactly oneI. 2

The above lemmas are used to define the graph property∇(k) in Section 4.1.
We now note thatq > 1, otherwise sinceZ is a cover we only have one set and soG 6∈ MAX(U(k-SET)).

The following takes care of another special case, when the minimal coverZ hasq = 2 k-sets.

Lemma 3.17 If q = 2 thenG is either the bipartite complete graphKk,k or the graph consisting of an
isolated vertex and the subgraphKk−1,k−1.

Proof: If there is no isolated vertex, then every vertex is in eitherI1 or I2 by Lemma 3.16, and not in
both since there is an edge on each vertex. ThusG is bipartite on2k vertices. Since a complete bipartite
graph is inMAX(U(k-SET)), it follows thatG must be complete. A similar argument follows for the
case where one vertex is isolated. 2
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Assumption: For the remainder of this section we assume thatq ≥ 3. By Lemma 3.17 this is equiva-
lent to Assumption 3.9, given our other assumptions onG.

Recall thatX ⊆ V is the set of isolated vertices and eitherX is empty or consists of a single vertex,
which we labelx.

We define thecore associated withSi by Ci = (∩1≤j≤q,j 6=iIj) \ X, 1 ≤ i ≤ q. We call C =
(∪1≤i≤qCi) ∪ X the set ofcore vertices. We define the other vertices byO = V \ (S ∪ C). We de-
fineOi = Ii ∩ O, 1 ≤ i ≤ q.

We have two key results on the core vertices. First, the cores are completely joined to the corresponding
soles.

Lemma 3.18 For all 1 ≤ i ≤ q, for all u ∈ Si and allv ∈ Ci, {u, v} ∈ E.

Proof: SinceZ is a cover ofV by Lemma 3.16, the only vertices that can occur in every setIj ∈ Z are
those inX by Lemma 3.13. So by definitionCi ∩ Ii = Ø because it excludesX. Since every vertex inSi

is of degreen−k they must all be adjacent to every vertex not inIi and therefore to every vertex inCi. 2

Second, there are no other edges incident to the core vertices.

Lemma 3.19 For all 1 ≤ i ≤ q, for all u ∈ Ci andv ∈ V \ Si, {u, v} 6∈ E.

Proof: First we note that the lemma is trivially true forv ∈ X. Since we assumeq ≥ 3 then for every pair
1 ≤ i, j ≤ q there existsh, 1 ≤ h ≤ q, i, j 6= h such thatCi ∪ Cj ⊆ Ih, and thus there can be no edge in
C. Also, since by definitionCi ⊂ Ij for all j 6= i, there can be no edges toSj or Oj .

SinceZ is a cover, it follows that∪1≤i≤qOi = O. This means we have only to consider pairs in
Oi × Ci. Suppose there is an edge{w, t} , w ∈ Oi, t ∈ Ci. Since for allj 6= i, Ci ⊆ Ij , we see that
w 6∈ Ij ; that is,w occurs only inIi. Then by Lemma 3.14, for ally 6∈ Ii, {w, y} ∈ E which implies that
w ∈ Si, a contradiction tow ∈ Oi. 2

Under the assumptionq ≥ 3, these lemmas lead us immediately to

Lemma 3.20

1. C is an independent set,

2. for all I ∈ Ik \ Z, C ⊆ I,

3. C ∩ S = Ø,

4. for all u ∈ Si, for all v ∈ O \Oi, {u, v} ∈ E.

Lemma 3.21 |Ci ∪X| ≥ 2, |Si| ≥ |Ci|, 1 ≤ i ≤ q and|C| ≤ k.

Proof: Supposee = {u, v} whereu ∈ Si andv ∈ Ii. ThenIi is the only set inIk containinge. Writing

⋂
I∈Ik(G+e)

I =

 ⋂
I∈Z\Ii

I

 ⋂  ⋂
I∈Ik\Z

I


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we see that the term on the right containsC by Lemma 3.20 and thus by definition this

= Ci ∪X

Since there must be a destroying edge fore, this implies|Ci ∪X| ≥ 2.
For the second part, if|Si| < |Ci| then(Ii ∪ Ci) \ Si will be an independent set of size greater thank,

violating Lemma 3.10. The bound onC also follows from Lemma 3.10. 2

Note however that this analysis leaves open which pairs inO are edges. In fact, it turns out that an
arbitrary graph can be embedded inO and this is key to showing the NP-complete results in the next
section.

4 NOT-MAX(U(k-SET)) is NP-complete
In this section we consider the complexity of NOT-MAX(U(k-SET)): given a graphG and integerk, is
G 6∈ MAX(U(k-SET))?

Theorem 4.1 NOT-MAX(U(k-SET)) is NP-complete.

The proof of this theorem is in two parts, presented in Sections 4.1 and 4.2.

4.1 NOT-MAX(U(k-SET)) is in NP

Analogous to the definition in Section 3, we defineS = {v | deg(v) = n− k}. We defineX to be the set
of isolated vertices as in Section 3.

We define the graph property∇(k) by G ∈ ∇(k) if and only if

1. n > k + 1, k > 2.

2. ∆ = n− k.

3. |X| ≤ 1.

4. for all v ∈ S, there exists ak-setIv ⊂ V with v ∈ Iv.

5. ∪v∈SIv = V.

6. for all e ∈ Ec, there existsv ∈ S such thate ⊆ Iv.

7. ∩v∈SIv = X.

By this definition, forG ∈ ∇(k) we have{Iv | v ∈ S} coversV, eachv ∈ S occurs only inIv, and
we may defineSi, 1 ≤ i ≤ q as the partition of the elements ofS as in Section 3. ForG ∈ ∇(k), we may
then defineCi = (∩1≤j≤q,j 6=iIj) \ X, 1 ≤ i ≤ q andC = (∪1≤i≤qCi) ∪ X. Finally as in Section 3 we
defineO = V \ (S ∪ C).

The following graph property refines the definition∇(k) to only include graphs also satisfying the
conditions of Lemmas 3.17 through 3.19 and 3.21. We define the graph property∇c(k) by G ∈ ∇c(k) if
and only if

1. G ∈ ∇(k).
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2. G is not one of the graphs in Observation 3.5.

3. for everyu ∈ Si and everyv ∈ Ci, {u, v} ∈ E.

4. for everyu 6∈ Si and everyv ∈ Ci, {u, v} 6∈ E.

5. for all 1 ≤ i ≤ q, |Ci ∪X| ≥ 2 and|Si| ≥ |Ci|, and|C| ≤ k.

Lemma 4.2 Under the assumptions thatn > k + 1, k > 2, ∆ < n− 1 andG is not one of the graphs in
Observation 3.5,G 6∈ ∇c(k) impliesG 6∈ MAX(U(k-SET)).

Proof: The definition of∇c(k) (including∇(k)) is just a list of properties proven to hold for anyG ∈
MAX(U(k-SET)) meeting the same assumptions in Section 3. 2

Lemma 4.3 G ∈ ∇c(k) impliesG ∈ U(k-SET).

Proof: By the definition of∇(k) items 3 and 7, for every edge{u, v} ∈ Ec for at least onew ∈ {u, v}
there existsIy, y ∈ S such thatw 6∈ Iy. Thus,Iy is ak-set inG + {u, v}. 2

Lemma 4.4 If G ∈ ∇c(k) then for alle ∈ Ec, there existse′ ∈ Ec[C] such thatG + e + e′ contains no
k-setI with I ∩ S 6= Ø.

Proof: By the definition ofS, each vertex inS is in exactly onek-set since the degree isn − k. By the
definition of∇c(k), for everye ∈ Ec there is someIi, 1 ≤ i ≤ q such thate ⊂ Ii. Thus,Ii is not ak-set
in G + e. Also by definition, for allj 6= i, 1 ≤ j ≤ q, Ci ∪ X ⊆ Ij and contains at least two vertices.
Thus, since these are the only sets intersectingS, choosing any edgee′ from Ci ∪X completes the proof.
2

Lemma 4.5 If G ∈ ∇c(k) thenG ∈ NOT-MAX(U(k-SET)) if and only if there exists ak + 1-set,
I ⊆ C ∪ O.

Proof: If there exists such a set inC∪O, then for any edgee such that at least one end is inS, thek+1-set
will remain independent inG + e, and so no other edge can destroy all the subsets of it.

Otherwise we first note that by the definition of∇c(k), for every maximum independent setI ⊆ C∪O,
C ⊆ I. Thus, since|I| ≤ k then for everye′ ∈ Ec[C],G[C ∪ O] + e′ contains nok-set. It then follows by
Lemmas 4.3 and 4.4 thatG ∈ MAX(U(k-SET)). 2

Lemma 4.6 G ∈ ∇c(k) can be determined in polynomial time.

Proof: (Outline) It is easy to identify the vertices ofS if they exist by degree criteria, and then theIv are
uniquely forced. Once these are identified, the partitioning into sole setsSi and identification of cores is
a matter of computing a polynomial number of set intersections and unions over subsets ofV. Verifying
the remaining conditions is merely a matter of testing for appropriate edges and requires no search.2

Theorem 4.7 NOT-MAX(U(k-SET)) ∈ NP.
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Proof: The proof whenk = 1 is trivial. Fork > 1 recursively delete all vertices of degreen− 1. Check
the special cases eliminated by the assumptions, and if none apply determine whetherG ∈ ∇c(k). This
is all polynomial, the last step by Lemma 4.6. IfG 6∈ ∇c(k) we are done by Lemma 4.2. Otherwise
by Lemma 4.5 ifG ∈ NOT-MAX(U(k-SET)) then there is ak + 1-set contained inC ∪ O. We non-
deterministically choose a set ofk+1 vertices fromC∪O and verify it is an independent set in polynomial
time. 2

4.2 NOT-MAX(U(k-SET)) is NP-hard
We will show that NOT-MAX(U(k-SET)) is NP-hard by a reduction from independent set.

Let 〈G, k〉 be an instance of the independent set problem. We will construct an instance〈G′, h〉 of
NOT-MAX(U(h-SET)). We assume without loss of generality that|VG| ≥ k ≥ 4. The outline of the
idea is that we construct a new graph that has all the properties required by the lemmas in Section 3 and
embedG in O.

First, define a graphO = (VG

⋃
{vn+1, vn+2},EG) which will be a subgraph ofG′ and consists ofG

plus two independent vertices. Next for each non-edgee ∈ Ec
O we create two independent sets of vertices,

Se andCe. EachC has two vertices. EachS hask + 1 vertices.
We create additional edges forEG′ as follows. For each non-edgee = {u, v} ∈ Ec

O, we add the edges
in Se × Ce, Se × (VO − {u, v}) andSe × Se′ , for all e′ 6= e, e′ ∈ Ec

O.
Let m = |Ec

O|. Then defineh = 2m + k + 1.
This completes the construction of〈G′, h〉. The following lemmas all pertain to this construction and

the terms defined above.

Lemma 4.8 For all e ∈ Ec
O, Se is contained in a unique maximalh-setwhich isIe = Se

⋃
e
⋃

e′ 6=e Ce′ .

Proof: We see by the construction that the only vertices not adjacent to any vertex inSe, are those inSe,
those ine and those inCe′ , for eache′ 6= e. TheC ’s are all independent of each other, and ofVO, so this
is an independent set. The size of this set isk + 1 + 2 + 2(m− 1) = h. 2

DefineIe to be the unique maximalh-set containingSe for eache ∈ Ec
O as in Lemma 4.8.

Lemma 4.9 G′ ∈ U(h-SET).

Proof: We need to show that, for eache ∈ Ec
G′ , G′ + e ∈ h-SET. If e ∈ Ec

O then it follows from
Lemma 4.8 that there existse′ ∈ Ec

O such thate 6⊆ Ie′ . If e = {u, v} andu ∈ Se′ , then by Lemma 4.8
choosee′′ 6= e′, e′′ ∈ Ec

O andIe′′ is a suitable set. Finally, ifu ∈ Ce′ thenIe′ is a suitable set, again by
Lemma 4.8. 2

Lemma 4.10 For all v ∈ VO, there existe, e′ ∈ Ec
O such thate 6= e′ andv ∈ Ie

⋂
Ie′ .

Proof: SinceO contains two independent vertices and|VG| ≥ 4, there are at least two non-edges incident
on every vertex inO. 2

Lemma 4.11 For all e′ ∈ Ec
G′ there existse ∈ Ec

O such thate′ ⊂ Ie.

Proof: We provide a case analysis on the possiblee′, giving ane for each case.
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casee′ ∈ Ec
O: Let e = e′.

casee′ ⊂ Se′′ : Let e = e′′.

casee′ = Ce′′ : Any e 6= e′′, e ∈ Ec
O. There is always such a non-edge inO by Lemma 4.10.

casee′ = {u, v} , u ∈ Se′′ , v ∈ VO: Let e = e′′.

casee′ = {u, v} , u ∈ Se′′ , v ∈ Ce′′′ : Necessarily by constructione′′′ 6= e′′. Then by Lemma 4.8 we can
let e = e′′.

casee′ = {u, v} , u ∈ Ce′′ , v ∈ Ce′′′ : By Lemma 4.10 and our construction, there are more than 3 non-
edges inEc

O. By Lemma 4.8 we can choose anye such thate 6= e′′ ande 6= e′′′.

casee′ = {u, v} , u ∈ Ce′′ , v ∈ VO: By Lemma 4.8 choose anye = {v, w} , e 6= e′′.

By construction there are no other non-edges inG′. 2

Lemma 4.12 G′ 6∈ MAX(U(h-SET)) if and only ifG ∈ k-SET.

Proof: By Lemma 4.9 we already know thatG′ ∈ U(h-SET). Thus, we only need to determine whether
or not for everye ∈ Ec

G′ there existse′ ∈ Ec
G′ such thatG′ + e + e′ 6∈ h-SET.

Let j be the size of a maximum independent set inG. We consider two cases:
Claim 1: j < k impliesG′ ∈ MAX(U(h-SET)).
Let C∗ =

⋃
e∈Ec

O
Ce and letA ⊆ VO be any maximal independent set inO. Note that sinceA is

maximal, it corresponds to a maximal set inG, plus the two independent vertices added toO. Thus, if
j < k − 1 then|C∗ ⋃

A| < h, and it follows that the onlyh-sets inG′ are theIe. If j = k − 1 then when
A is a maximum set,C∗ ⋃

A is anh-set. Thus, we have such a set for every maximum set of sizek− 1 in
G. However, all of these non-Ie h-sets contain all vertices inC∗, and thus adding any edge toC∗ destroys
them all.

Let e ∈ Ec
G′ be any non-edge. Then by Lemma 4.11 there is ane′ such thate ⊂ Ie′ . Then choose

a second edgee′′ ∈ Ce′ . By Lemma 4.8 this edge is in all remainingI and together with the above
observation this impliesG′ + e + e′′ has noh-set.
Claim 2: j ≥ k impliesG′ 6∈ MAX(U(h-SET)).
Defining C∗ andA as in the previous claim, we see that|C∗ ⋃

A| > h whenA is maximum, since
|A| ≥ k + 2. If we let e ∈ Se′ for somee′, then|C∗ ⋃

A| is still an independent set of size greater than
h, and so no other edge can destroy allh-sets in it.

This completes the proof of the lemma. 2

Theorem 4.13 NOT-MAX(U(k-SET)) is NP-hard.

Proof: The reduction is correct by Lemma 4.12. We see thath is at most quadratic in|VG| by our
assumptions onG andk. The number of vertices inG′ is at most cubic in|VG| and the construction is
a straight-forward plug in of components plus additional edges. Thus, we have a polynomial reduction
from an NP-complete problem. 2
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5 Conclusions and Open Problems
We have shown that NOT-MAX(U(k-SET)) is NP-complete, or equivalently thatMAX(U(k-SET)) is
CO-NP-complete. It seems a slightly curious twist that we start with an NP-complete property and on con-
sidering the maximal version we obtain a problem in CO-NP-complete. We ask, is there an NP-complete
propertyP such thatMAX(P) is NP-complete?

From [4] the reason that most maximal properties are in P seems to relate to the idea that features of the
graph that prevent a graph being in the class are in some sense complete, for example inMAX(k-SET) all
pairs not in the independent set are edges, and in the maximal version ofk-coloring the graph isk-partite
complete. This completeness is usually polynomial time checkable. On the other hand the problem
MAX(3-coloring and maximum degree= 4) is seen to be NP-hard, and the reduction in [4] indicates
this is because the maximum degree restriction limits the completeness structure. Note that the degree
restriction is an easy condition to check in polynomial time.

In the current result we again get a restriction on the completeness in that there is a polynomial time
checkable super structure, but then the remainder of the graph,O in the constructions, does not need to
be complete. In this case the polynomial structure is induced by the unfrozen condition on the property,
rather than being an explicit condition of the property. Note that unfrozen can be seen as a polynomial
composition of the property; that is, it means there may beO(n2) possible independent sets, one for each
possible addition of an edge. A careful examination of the isomorphism complete result in [4] also seems
to exhibit a type of limit on completeness. On the other hand, combining two NP-complete properties did
not sufficiently limit completeness to move the resulting maximal properties out of P.

So, the question is can we somehow generalize and make precise these observations and thus predict
into which complexity classes different modified properties will fall?
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