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We prove that the incidence chromatic number of ededegenerated graph is at mostA(G) + 4. It is known that
the incidence chromatic number of every gr&plvith maximum average degreead(G) < 3 is at mostA(G) + 3.
We show that wher\ (G) > 5, this bound may be decreasedAdG) + 2. Moreover, we show that for every graph
G with mad(G) < 22/9 (resp. withmad(G) < 16/7 andA(G) > 4), this bound may be decreasedA¢G) + 2
(resp. toA(G) + 1).
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1 Introduction

The concept of incidence coloring was introduced by Brualdi and Massey (3) in 1993.

LetG = (V(G), E(G)) be a graph. Arncidencein G is a pair(v, e) with v € V(G), e € E(G), such
thatv ande are incident. We denote by(G) the set of all incidences i&. For every vertex, we denote
by I, the set of incidences of the forfw, vw) and by A, the set of incidences of the forfw, wv). Two
incidenceqv, ) and(w, f) areadjacentf one of the following holds:(i) v = w, (ii) e = f or (ii7) the
edgevw equalse or f.

A k-incidence coloringof a graphG is a mappings of I(G) to a setC' of k colors such that adjacent
incidences are assigned distinct colors. Ti@dence chromatic numbey;(G) of G is the smallesk
such thatz admits ak-incidence coloring.

For a graph, let A(G), 6(G) denote the maximum and minimum degre&bfespectively. It is easy
to observe that for every grafgh we havey;(G) > A(G) + 1 (for a vertexv of degreeA(G) we must
useA(G) colors for coloringl, and at least one additional color for coloridg). Brualdi and Massey
proved the following upper bound:

Theorem 1 (3) For every graphG, x;(G) < 2A(G).

Guiduli (4) showed that the concept of incidence coloring is a particular case of directed star arboricity,
introduced by Algor and Alori(1). Following an example frdm (1), Guiduli proved that there exist graphs
G with x;(G) > A(G) + Q(log A(G)). He also proved that For every graph x;(G) < A(G) +
O(log A(G)).

Concerning the incidence chromatic number of special classes of graphs, the following is known:
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e Foreveryn > 2, x;(K,) =n=A(K,) +1(3).
o Foreverym >n > 2, x;(Kpn) =m+2=A(Kpn,) +2(3).
o For every tred’ of ordern > 2, x;(T) = A(T) + 1 (3).
e For every Halin grapltz with A(G) > 5, x:(G) = A(G) + 1 (8).
e For everyk-degenerated grapgh, x;(G) < A(G) + 2k — 1 (5).
e For everyK -minor free graplG, x;(G) < A(G) + 2 and this bound is tight{5).
e For every cubic grapl, x;(G) < 5 and this bound is tight (6).
e For every planar grap@, x;(G) < A(G) + 7 (5).

The maximum average degred a graphG, denoted bymad(G), is defined as the maximum of the
average degreesl(H) = 2 - |[E(H)|/|V(H)| taken over all the subgraplig of G.

In this paper we consider the class »flegenerated graphs (recall that a gréplis k-degenerated
if 6(H) < k for every subgrapti of ), which includes for instance the class of triangle-free planar
graphs and the class of graphs with maximum average degree at most 3. More precisely, we shall prove
the following:

1. If G is a3-degenerated graph, then(G) < A(G) + 4 (Theorenj ).

2. If G is a graph withnad(G) < 3, theny;(G) < A(G) + 3 (Corollary[5).

If G a graph withmad(G) < 3 andA(G) > 5, theny;(G) < A(G) + 2 (Theoren] B).
If G is a graph withmad(G) < 22/9, theny;(G) < A(G) + 2 (Theorenj 111).

o > w

If G is a graph withmad(G) < 16/7 andA(G) > 4, theny;(G) = A(G) + 1 (Theorenj 1B).

In fact we shall prove something stronger, namely that one can construct for these classes of graphs
incidence colorings such that for every vertexhe number of colors that are used on the incidences of
the form(w, wv) is bounded by some fixed constant not depending on the maximum degree of the graph.

More precisely, we define g, ¢)-incidence coloringof a graphG as ak-incidence colorings of G
such that for every vertex € V(G), |o(4,)| < £.

We end this section by introducing some notation that we shall use in the rest of the paper.

LetG be agraph. I is a vertex inG andvw is an edge iz, we denote byN(v) the set of neighbors
of v, by dg(v) = |Ng(v)| the degree ob, by G \ v the graph obtained fror@ by deleting the vertex
and byG \ vw the graph obtained fro& by deleting the edgew.

Let G be a graph and’ a partial incidence coloring of7, that is an incidence coloring only defined on
some subsef of 1(G). For every uncolored incidende, vw) € I(G) \ I, we denote byg (v, vw) the
set offorbidden colorsof (v, vw), that is:

Fg (v,ow) = o'(A,) Ud'(L,) Ud'(I).
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Fig. 1: Configurations for the proof of Theordr 2

We shall often say that we extend such a partial incidence colefig some incidence coloring of
G. Inthat case, it should be understood that weretvw) = o’ (v, vw) for every incidencév, vw) € 1.

We shall make extensive use of the fact that eyéry)-incidence coloring may be viewed as/d, ¢)-
incidence coloring for any’ > k.
Drawing convention. In a figure representing a forbidden configuration, all the neighbors of “black” or
“grey” vertices are drawn, whereas “white” vertices may have other neighbors in the graph.

2 3-degenerated graphs
In this section, we prove the following:

Theorem 2 Every 3-degenerated graghadmits a(A(G)+4, 3)-incidence coloring. Thereforg, (G) <
A(G) +4.

Proof: Let G be a 3-degenerated graph. Observe first that(iff) < 3 then, by Theorern|1y;(G) <
2A(G) < A(G) + 4 < 7 and every(A(G) + 4)-incidence coloring of is obviously a(A(G) + 4, 3)-
incidence coloring.

Therefore, we assum&(G) > 4 and we prove the theorem by induction on the number of vertices
of G. If G has at most 5 vertices the#l C K;. Since for everyk > 0, x;(K,) = n, we obtain
Xi(G) < xi(Ks) = A(K5) + 1 = 5, and eveng-incidence coloring o7 is obviously a(A(G) + 4, 3)-
incidence coloring. We assume now tldiahasn + 1 vertices,n > 5, and that the theorem is true for all
3-degenerated graphs with at mastertices.

Let v be a vertex ofG with minimum degree. Sincé& is 3-degenerated, we hade;(v) < 3. We
consider three cases accordinglto(v).

dg(v) =1:
Let w denote the unique neighboroin G (see FigurE]ll)). Due to the induction hypothesis, the
graphG’ = G \ v admits a(A(G) + 4, 3)-incidence coloring’. We extend’ to a(A(G) + 4, 3)-
incidence coloring of7. Since|Fg (w, wv)| = |0/ (I,,) Uo’(Ay)| < A(G) — 143 = A(G) +2,
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there is a color: such thatz ¢ Fg' (w, wv). We then set(w, wv) = a ando (v, vw) = b, for any
colorbin o’(Ay).

dG(’U) =2
Let u, w be the two neighbors af in G (see Figur{]lz)). Due to the induction hypothesis, the
graphG’ = G \ v admits a(A(G) + 4, 3)-incidence coloring’. We extends’ to a(A(G) + 4, 3)-
incidence coloring of G as follows. We first set (v, vu) = a for a colora € o(A,,) (if dg(u) =
1, we have the casg. Now, if |0/(4,,)| > 2, thereisacolob € o' (A,)\{a} andif|c’(A,)| =1,
since|Fg(v,vw)| = |o'(I,) U{a}| < A(G) — 1+ 1 = A(G), there is a colob distinct froma
such thab ¢ FZ(v,vw). We setr (v, vw) = b.

We still have to color the two incidencds, uv) and (w,wv). Sincea € o'(4,), we have
|F&(u,uv)| = |0’ (I,)Uo’(A,) U{a, b} < A(G)—1+3+2—1= A(G)+3. Therefore, there is
a colorc such that ¢ Fg(u, uv). Similarly, sinceb € o(A,,), we have FZ(w, wv)| < A(G) + 3
and there exists a coladrsuch thatl ¢ FZ(w,wv). We can extend’ to a(A(G) + 4, 3)-incidence
coloringo of G by settingo (u, uv) = ¢ ando(w, wv) = d.

dG(U) =3
Letws, us andug be the three neighbors ofin G (see FigurE]:(B)). Due to the induction hypoth-
esis, the grapl’’ = G \ v admits a(A(G) + 4, 3)-incidence coloring:’.
Observe first that for every; 1 < i < 3, since|Fg (v,vu;)| < A(G) — 1 and since we have
A(G) + 4 colors, we have at least five colors which are nokj (v, vu;). Moreover, if|A,,| < 3
then any of these five colors may be assigned to the incidgnee;) whereas we have only three

possible choices (among these five)4f,,| = 3. In the following, we shall see that having only
three available colors is enough, and therefore assumétifatt,,, )| = 3 for everyi, 1 <i < 3.

We define the setB andB; ; as follows:
-Vi4,5,1<4,j<3,i%#j,B;; = (0/(1y,) Ud'(Ay,)) N o’(A“,j)

-B .= Ulgi,jSB Bi,jr ) 7é ]

We consider now four subcases according to the degrees of andus:

1. Vi, 1<i<3,de(u;) < A(G).
In this case, since we have 3 colors for the incidefigeu;) for everyi, 1 < i < 3, we can
find 3 distinct colorsay, as, a3 such thau,; ¢ Fg' (v,vu;). We seto (v, vu;) = a; for everysi,
1< <3.
We still have to color the three incidenc@s, u;v), 1 < i < 3. Sincea; € o(A,,), we have
|F&(ui, wv)| = |o(1y,)Uo(Ay,)U{ar, a2, as}| < A(G)—2+3+3—1 = A(G)+3 for every
i, 1 <1i < 3. So, there exist three colobs, b2, b3 such that; ¢ Fg(u;,u;v), 1 < i < 3.
We can extend’ to a(A(G) + 4, 3)-incidence coloring of G by settingo (u;, u;v) = b; for
everys, 1 <1 < 3.

2. Only one of the vertices; is of degreeA(G).

We can suppose without loss of generality thg{(u,), dg(uz2) < A(G) anddg(us) =
A(G).
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Sincelo’ (I, )Uo' (Au,)| = A(G)—1+3 = A(G)+2and|o’(A,,)| = 3, we haveBs 1 # 0.
Leta;, € Bs ;. Since|o’(A,,)| = 3 for everyi, 1 < i < 3, there exist two distinct colors,
andas distinct froma, such thats € 0/(A,,) andas € o’(A,,). We seto (v, vu;) = a; for
everys, 1 <1 < 3.
We still have to color the three incidences of fofm, u,v). Sincea; € Bz andas €
o' (Ay,) We have:

|FE (uz, uzv)| = |0' (Iuy) U o(Ay,) U {ar, az, as}|
SAG)-1+3+3-1-1=A+3

and sincei; € o'(A,,) for everyi = 1,2 we have:
|FE (wiywiv)] = |0’ (I,) U’ (Au,) U{ar, az, ag}|
<A(G)-2+3+3-1=A+3.

Therefore, there exist three cola¥s b, bs such thab; ¢ F&(u;, u;v)U{a1,a2,a3},1 < i<
3. We can extend’ to a(A(G) + 4, 3)-incidence coloringr of G by settingo (u;, u;v) = b;
foreveryi, 1 <i < 3.

3. Only one vertex among the's is of degree less thatr\(G).
We can suppose without loss of generality thatu,) < A(G) anddg(uz) = dg(uz) =
A(Q).
Similarly to the previous case, we hafgg ; # () and B3 > # (. We consider two cases:

By 1 # B
Leta; € B 1, a2 € B3o\{a1} andas € 0’'(Ay,) \ {a1, az}. We seto (v, vu;) = a; for
every:, 1 <1 < 3.
We still have to color the three incidences, u;v), 1 < i < 3. Sincea; € o'(4,,) we
have:
[FE (ur,u1v)| = |0 (1uy) U (Au, ) U{ar, az, as}|

<AG) -2+3+3-1=A(G)+3

and sincey; € By, fori =1,2anda; € 0'(Ay,) for j = 2,3, we have:
|FE(ui, uw)| = |0' (I,) U o(Ay,) U{ar, az, a3}

<AG) -143+3-1-1=A(G)+3.

Therefore, there exist three coldrs by, bs such thab; ¢ FZ(u;,u;v), 1 < i < 3. We
can extendr’ to a (A(G) + 4, 3)-incidence colorings of G by settingo (u;, u;v) = b;
foreveryi, 1 <i <3.

By1 = B3
Leta; € 3271 = Bg,g, as € U/(Aug) \ {(11} anda3 S O'/(Au:;) \ {al,ag}. We set
o(v,vu;) = a; for everyi, 1 <i < 3.
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We still have to color the three incidencgs, u;v), 1 < ¢ < 3. Sincea; € o/(A,,) we
have:
|FG (ur, urv)| = |o” (I, ) U o (Au, ) U {a1, az, as}|

<A(G)—243+3-1=A(G)+3
and sinceu; € By 1 = B3 anda; € 0'(Ay,) for j = 2,3, we have:
|FE(ui, uw)| = |0' (Iu,) Uo(Ay,) U{ar, az, a3}
<AG)-143+3-1-1=A(G)+3.
Therefore, there exist three coldrs by, bs such thab; ¢ FZ(u;,u;v), 1 < i < 3. We
can extendr’ to a (A(G) + 4, 3)-incidence colorings of G by settingo (u;, u;v) = b;
foreveryi, 1 <i < 3.
4. dg(ur) = dg(uz) = dg(uz) = A(G).
Similarly to the cas¢b) we haveB; ; # () for everyi andj, 1 < i,j < 3 and thugB| > 1.

We prove first that in this casé3| > 2. Suppose thatB| = |{z}| = 1; in other words,
((0'(Lu;) UA,,) N A,)) = {«} foreveryi andj, 1 <4, j < 3. Thus we have:

lo' (A, ) U o' (Iy,) U’ (Au,) Ud" (Ay,)| = A(G) —1+3+3+3—-1-1

= A(G) + 6. 1)

But the relation[(lL) is in contradiction with the fact that is a (A(G) + 4, 3)-incidence
coloring and we then géB| > 2.
Let a; anday be two distinct colors inB. We can suppose without loss of generality that
ay € BQJ andas € B312.
We consider the two following subcases:
Bis\{a1,a2} # 0

Letag be a color inB; 5\ {a1, az}. We seto (v, vu;) = a; for everyi, 1 <4 < 3.

Sincea; € Bj; = (0'(Iy,) Uo'(Ay,)) No'(Ay,), j =i+ 1mod3, anda; € o'(Ay,)

for everyi, 1 <i < 3, we have:

|FE (us, uv)| = |0 (Lu,) U o' (Au,) U{ar, az, as}|

<AG) -1+434+3-1-1=A(G)+3.

Therefore, there exist three coldrs b, b3 such thab, ¢ FZ(u;,u;v), 1 <i < 3. We
can extendr’ to a(A(G) + 4, 3)-incidence colorings of G by settingo (u;, u;v) = b;
foreveryi, 1 <i < 3.
Bl73 \ {al, CLQ} = @

Since B 3 # 0 we can suppose without loss of generality thate B; ;. Letas €
o'(Ay,) \ {a1,a2}. We seto(v,vu;) = a, for everyi, 1 < < 3.

Sincea; € Bj; = (0'(Iy;) Uo'(Ay,)) No'(Ay,), j = i+ 1mod3, anda; € o'(Ay,)
fori =1, 2, we have:

|[FE (i, uiv)| = [0’ (I,) U o’ (Au,) U {ar, az, as}
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<AG) -14+43+3-1-1=A(G)+3

and sinceiy € o'(1,,) Uo'(Ay,) anda; € o’'(A — up) we have:
|FG (ur,urv)| = |0’ (I, ) U o’ (A, ) U {01, a2, as}|

<AG) -1+434+3-1-1=A(G) +3.

Therefore, there exist three coldrg b, bs such thab, ¢ Fg(u;,uv), 1 < i< 3. We
can extendr’ to a (A(G) + 4, 3)-incidence colorings of G by settingo (u;, u;v) = b;
foreveryi, 1 <i < 3.

It is easy to check that in all cases we obtai®G) + 4, 3)-incidence coloring ofs and the theorem is
proved. |

Since every triangle free planar graptBislegenerated, we have:

Corollary 3 For every triangle free planar grapty, x;(G) < A(G) + 4.

3 Graphs with bounded maximum average degree

In this section we study the incidence chromatic number of graphs with bounded maximum average
degree. The following result has been provedin (5).

Theorem 4 Everyk-degenerated grapty admits a(A(G) + 2k — 1, k)-incidence coloring.
Since every graplr with mad(G) < 3 is 2-degenerated, we get the following:

Corollary 5 Every graphG with mad(G) < 3 admits a(A(G) + 3, 2)-incidence coloring. Therefore,
xi(G) < A(G) + 3.

Concerning planar graphs, we have the following:
Observation 6 (2) For every planar graptG with girth at leasty, mad(G) < 2g/(g — 2).

Hence, we obtain:
Corollary 7 Every planar graph= with girth g > 6 admits a(A(G) + 3, 2)-incidence coloring. There-
fore, x:(G) < A(G) + 3.
Proof: By Observatiofi 6 we havewad(G) < 2g/(g — 2) < (2 x 6)/(6 — 2) = 3 and we get the result
from Corollary[5. O

If the graph has maximum degree at least 5, the previous result can be improved:

Theorem 8 Every graphG withmad(G) < 3andA(G) > 5 admits a(A(G)+2, 2)-incidence coloring.
Therefore; (G) < A(G) + 2.

Proof: Suppose that the theorem is false anddebe a minimal counter-example (with respect to the
number of vertices). We first show th@tmust avoid all the configurations depicted in Fip. 2.
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Fig. 2: Forbidden configurations for the proof of Theorgn 8

Letw denote the unique neighborofn G. Due to the minimality of7, the graphG’ = G \ v admits
a(A(G) + 2,2)-incidence colorings’. We extendr’ to a(A(G) + 2, 2)-incidence coloringr of G.
Since|Fg(w,wv)| = |0’ (Iy) Uo'(Aw)] < A(G) =142 = A(G) + 1, there is a color such that
a ¢ FZ(w,wv). We seto(w, wv) = a ando (v, vw) = b, for any colorb in ¢’ (A,).

Let wy, wo denote the two neighbors ofin G. Due to the minimality of7, the graphG’ = G \ v
admits a(A(G) + 2, 2)-incidence colorings’. We extends’ to a(A(G) + 2, 2)-incidence coloring
o of G.

Since |Fg (w1, w1v)| = |0'(Iy,) U o' (Aw,)| < A(G) — 142 = A(G) + 1 and since we have
A(G) + 2 possible colors, there is a colarsuch thatw ¢ Fg(wq,wiv). We seto(wq,w1v) = a.

If [0/(Aw,) \ {a}| > 1 then there is a colob € ¢'(A,,) \ {a} and ifo’(4,,) = {a}, since
|F&(v,vw2)| = |0 (L, )U{a}| < 3+1 =4 < A(G)—1, thereis acolob such thab ¢ FZ(v,vw,).
We seto (v, vwsy) = b.

Now, if |[o/(Aw,) \ {b}| > 1 then there is a colot € ¢'(A,,) \ {b} and ifo’(A,,) = {b}, since
|F&(v,vwr)| = |o(Lw,) U {b}| < A(G) + 1, there is a coloe such thate ¢ FZ(v,vw;). We set
o(v,vwy) = c.

Since|Fg(ws, wav)| = |0/ (Iyy,) Uo(Aw,) U{c}t <3+2+1=6 <A(G) + 1, there is a colot!
such that! ¢ FZ(ws, wov) and we setr(ws, wev) = d.

Letu;, 1 < i < 5, denote the five neighbors ofandw; denote the other neighbor af in G (see
Figure[2(3)). Due to the minimality o7, the graphG’ = G \ v admits a(A(G) + 2, 2)-incidence
coloringo’. We extends’ to a(A(G) + 2, 2)-incidence coloringr of G.

Leta; = o' (w;, wiu;), 1 < i < 5. Since we havé\(G) + 2 > 7 colors, there is a colar distinct
from a; for everyi, 1 <i < 5.

Since|Fg (ui, usw;)| = |0’ (I,;)| < A(G) we have two possible colors for the incider{eg, uw;)

for everyi, 1 < i < 5. So, we can suppose that(u,, u;w;) # x for everyi, 1 < i < 5. We set
o(us,uw) = x for everyi, 1 <i <5.
SinceFg (v, vu;) = {z, o' (u;,u;w;)} for everyi, 1 < i < 5, and since we have at legstolors,
there is5 distinct colorsey, ¢o ..., ¢5 such thate; ¢ {x,0'(u;, u;w;)}, 1 < i < 5, and we set
o(v,vu;) = ¢; foreveryi, 1 <i <5.
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It is easy to check that in every case we have obtained(@) + 2, 2)-incidence coloring of7, which
contradicts our assumption.

We now associate with each verte>of G an initial charged(v) = dg(v), and we use the following
discharging procedure: each vertex of degree at fegistes1/2 to each of it2-neighbors.

We shall prove that the modernized degrEeof each vertex ofG is at least3 which contradicts
the assumptiomad(G) < 3 (since) ., d*(u) = >, . d(u)). Letv be a vertex ofG; we con-
sider the possible cases for old degiegv) of v (sinceG does not contain the configuratipfi12, we
havedg(v) > 2):

dg(v) = 2.
SinceG does not contain the configurat@(]?z the two neighbors ofr are of degree at least
Thereforep receivesl /2 from each of its neighbors so théit(v) =2+ 1/2+41/2 = 3.

3<dg(v) <4.
In this case we havé* (v) = dg(v) > 3.

d(;(v) = 5.
SinceG does not contain the configuratip{i32 at least one of the neighbors ofis of degree at
least3 andv gives at mostt x 1/2 = 2. We obtaind*(v) > 5 —2 = 3.

d(;(v) =k > 6.
In this casev gives at mosk x (1/2) so thatd*(v) > k — k/2=k/2 > 6/2 = 3.

Therefore, every vertex i@ gets a modernized degree of at l€asnd the theorem is proved. O

Remark 9 The previous result also holds for graphs with maximum degree 2 and for graphs with maxi-
mum degree 3 (by the result froim (6)) but the question remains open for graphs with maximal degree 4.

As previously, for planar graphs we obtain:

Corollary 10 Every planar graph of girth g > 6 with A(G) > 5 admits a(A(G) + 2, 2)-incidence
coloring. Thereforex;(G) < A(G) + 2.

For graphs with maximum average degree less than 22/9, we have:

Theorem 11 Every graphG withmad(G) < 22/9 admits a(A(G)+2, 2)-incidence coloring. Therefore,
xi(G) < A(G) + 2.

Proof: It is enough to consider the case of graphs with maximum degree atirsiste for graphs with
maximum degree at leaStthe theorem follows from Theorefm 8. Suppose that the theorem is false and
let G be a minimal counter-example (with respect to the number of vertices and edges). Observe first that
we haveA(G) > 3 since otherwise we obtain by Theorpn 1 thatG) < 2A(G) < A(G) +2 and every
(A(G) + 2)-incidence coloring of+ is obviously a(A(G) + 2, 2)-incidence coloring.

We first show thaty cannot contain any of the configurations depicted in Figlire 3.

(1) This case is similar to case 1 of Theorgm 8.
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v v
U U
1 2 Us
ay a2 as
wq w2 ws

(3)

Fig. 3: Forbidden configurations for the proof of Theorenp 11

(2) Letz (resp.y) denote the other neighbor af(resp.v) in G. Due to the minimality of7, the graph
G’ = G\uv admits 8 A(G)+2, 2)-incidence coloring’. We extend:’ to a(A(G)+2, 2)-incidence
coloringo of G.

Supposer’ (u, ux) = a, o’ (v,vy) = b, o’ (z, zu) = cando’(y, yv) = d.
Suppose first thdfa, b, ¢, d}| = 4. In that case, we set(u, uv) = d ando (v, vu) = c.
Now, if [{a, b, ¢, d}| < 3, we seto(u, uv) = e ando(v,vu) = f foranye, f ¢ {a,b,c,d}.

(3) Letus, us andus denote the three neighborswéndw; denotes the other neighborof, 1 <i < 3,
in G. Due to the minimality of7, the graph’ = G \ v admits a(A(G) + 2, 2)-incidence coloring
o’. We extendr’ to a(A(G) + 2, 2)-incidence coloringr of G.

Suppose that; = o' (w;, w;u;), 1 <14 < 3. Since we havé\(G) + 2 > 5 colors, there is a colat
distinct froma; for everyi, 1 < < 3.

Since|Fg' (g, wyw;)| = |0’ (1w, )] < A(G) we have at least two colors for the incider{eg, u;w;)

for everyi, 1 < i < 3. Thus, we can suppose(u,, u;w;) # x for everyi, 1 < i < 3. We then set
o(us,uw) = x foreveryi, 1 <i < 3.

SinceFg (v, vu;) = {z, o' (u;, u;w;)} for everyi, 1 < i < 3, and since we have at legstolors,
there are3 distinct colorscy, ¢y et cs such thate; ¢ {x, o' (u;, u;w;)}, 1 < i < 3. We then set
o(v,vu;) = ¢; foreveryi, 1 <i < 3.

Therefore, in all cases we obtain(a(G) + 2, 2)-incidence coloring ofG, which contradicts our
assumption.

We now associate with each vertexof G an initial charged(v) = dg(v), and we use the following
discharging procedure: each vertex of degree at Begiates2/9 to each of it22-neighbors.

We shall prove that the modernized degdéef each vertex o7 is at leas22/9 which contradicts the
assumptionnad(G) < 22/9. Letv be a vertex of7; we consider the possible cases for old degkee)
of v (sinceG does not contain the configuratipfil3, we haved(v) > 2):

da(v) = 2.
SinceG does not contain the configuratiE](ﬁ.’,% the two neighbors o are of degree at least
Thereforep receives the2/9 from each of its neighbors so thdt(v) = 2 +2/9 + 2/9 = 22/9.
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U1./ \\. U2
b d
(1) de(v) = 1 (2) de(w1) < A(G) (3) de (w2) = de (ws) = 3

Fig. 4: Forbidden configurations for the proof of Theoren 13

dc;(v) = 3.
SinceG does not contain the configuratiEkB;%, v is adjacent to at most twvertices and gives
at most2 x 2/9 = 4/9. We obtaind*(v) > 3 —4/9 = 23/9 > 22/9.

dG(’U) =4.
In this casep gives at mostt x 2/9 = 8/9 so thatd*(v) > 4 —8/9 = 28/9 > 22/9.

Therefore, every vertex i@ gets a modernized degree of at Ieasind the theorem is proved. O

By considering cycles of length£ 0 (mod 3), we get that the upper bound of Theo@ 11 is tight.
As previously, for planar graphs we obtain:

Corollary 12 Every planar graph= of girth g > 11 admits a(A(G) + 2, 2)-incidence coloring. There-
fore, x:(G) < A(G) + 2.

Finally, for graphs with maximum average degree less than 16/7, we have:

Theorem 13 Every graphG with mad(G) < 16/7 and A(G) > 4 admits a(A(G) + 1, 1)-incidence
coloring. Thereforeyx,;(G) = A(G) + 1.

Proof: Since for every grapt¥, x;(G) > A(G) + 1, itis enough to prove thaf¥ admits a(A(G) + 1, 1)-
incidence coloring. Suppose that the theorem is false an@' leé a minimal counter-example (with
respect to the number of vertices). We first show thaannot contain any of the configurations depicted
in Figure[4.

(1) This case is similar to case 1 of Theorejm 8.

(2) Letwy;, i = 1,2, be the two neighbors af andw; denote the other neighbor af in G. Due to the
minimality of G, the graphG’ = G \ v admits a(A(G) + 1, 1)-incidence coloring:’. We extends’
to a(A(G) + 1, 1)-incidence coloringr of G.
Suppose that' (wq, wiur) = a, o' (ur, urwy) = b, o’ (wa, weus) = c ando’(ug, ugwy) = d. Since
|EG (w1, wiu1) U {c}| = |0’ (In,) \ {a} U0’ (Ayw,) U{c}] < A(G) =24+ 1+1 = A(G), we can
suppose that # ¢. We then set (v, vu;) = a ando (v, vug) = c.

Now, sinceF&(uq,u1v) U F&(ug,usv) = {a,b, c,d} and since we have at leadi(G) +1 > 5
colors, there is a color such thate ¢ {a, b, c,d}. We then set (u1, uiv) = o(ug, usv) = .
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(3) Letwu;, 1 < i < 3 be the three neighbors of x; denote the other neighbor af andw; denote the
other neighbor of;; in G. Due to the minimality of7, the graphG’ = G \ {v, u1, ua,u3} admits a
(A(G) + 1, 1)-incidence colorings’. We extends’ to a(A(G) + 1, 1)-incidence coloringr of G.
Suppose that’ (w;, w;x;) = a; ando’ (x;, z;w;) = b; for everyi, 1 < i < 3. Since|Fg' (wi, wiz;)U
{01} =o' (Tw;) \{ai }U{b;,b1}| <2+2 = 4fori = 2,3, and since we havA(G) +1 > 5 colors,
we can suppose that # by # a3. We then set(u;, u;z;) = a; ando(u;, u;v) = by for everyi,
1< <3.

SinceFg (v,vu;) U F&(x;,z5uj) = {b1,b;,a;} for j = 2,3, there are two distinct coloks andcs
such thabj ¢ {bl, bj, a]-},j =2,3. We SetU(’U,’U’LL]') = O'(.’L'j,iCjUj) = Cj,j =2,3.

Now, sincng/(v, vup) U Fg/(xl, x1u1) = {a1, b1, ca, c3} @and since we have at ledstolors, there
is a colorey such that; ¢ {aq,b1, c2,c3}. We then set (v, vuy) = o(z1, x1u1) = ¢1.

Therefore, in all cases we obtain(a(G) + 1, 1)-incidence coloring of&, which contradicts our
assumption.

We now associate with each vertexof G an initial charged(v) = dg(v), and we use the following
discharging procedure:

(R1) each vertex of degregives2/7 to each of it2-neighbors which has a 2-neighbor adjacent to a
3-vertex and gives 1/7 to its other 2-neighbors.

(R2) each vertex of degree at least 4 gives 2/7 to each of its 2-neighbors and gives 1/7 to each 2-vertex
which is adjacent to one of its 2-neighbors.

We shall prove that the modernized degdé®f each vertex of7 is at leasti6/7 which contradicts the
assumptionnad(G) < 16/7. Letv be a vertex of7, we consider the possible cases for old degie@)
of v (sinceG does not contain the configuratipil4, we havedc (v) > 2):

de(v) = 2. In this case we consider five subcases:

1. v has two 2-neighbors, say andz,. Lety; be the other neighbor af, i = 1,2, in G. Since
G does not contain the configuratipfi24, y; is of degreeA(G) > 4 for i = 1,2. Eachy;,
i=1,2,givesl/7Ttovsothatd*(v) =2+ 1/7+1/7 =16/7.

2. v is adjacent to &-vertexz; and a2-vertex which is itself adjacent todvertex. In this case
v receive2/7 from z; and we havel*(v) = 2+ 2/7 = 16/7.

3. vis adjacent to 8-vertexz; and a2-vertex which is itself adjacent to a vertex of degree at
least4. In this case receivesl /7 from z; and1/7 from z, so thatd*(v) =2+ 1/7+1/7 =
16/7.

4. v is adjacent to tw@-vertices that both givek/7 to v so thatd* (v) = 2+1/7+1/7 = 16/7.
5. One of the two neighbors ofis of degree at leadt In this case receives at leagt/7 so that
d*(v) >2+2/7=16/7.

dG(U) = 3.
Let u,, up andug be the three neighbors of We consider two subcases according to the degrees
of u;’s.
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1. One of theu,’s is of degree at least, sayu;. In this case gives at mos2/7 to u, and2/7
to us so thatd*(v) > 3 —2/7—2/7=17/7 > 16/7.

2. Allthew;'s are of degre@. Let z; be the other neighbor af; in G, 1 <1 < 3.

(a) One of ther;’s is of degree at least, sayz;. In this case gives1/7 to u;, at most2/7
to uy and at mose/7 to us. We then havel*(v) >3 —-1/7—-2/7—2/7 =16/7.

(b) All the x;’s are of degre®. Letw; be the other neighbor of; in G, 1 < i < 3. Since
G does not contain the configuratiEkQA} we havedq(w;) > 3 for everyi, 1 < i < 3,
and sinces does not contain the configurati@kﬁé}, at most one of thay;’s, 1 < i < 3,
can be of degre8. Thus, we can suppose without loss of generality thatw,) and
de(w2) > 4. In this caseyp gives1/7 to wy, 1/7 to wy and at mosg/7 to ws. We then
haved*(v) >3 —-1/7—-1/7—-2/7=17/7 > 16/7.

dg(v) =k > 4.
In this casey gives at most x (2/7+ 1/7) = 3k/7 so thatd*(v) > k — 3k/7 = 4k/7 > 16/7.

Therefore, every vertex i@ gets a modernized degree of at lebt7 and the theorem is proved.O

Considering the lower bound discussed in Section 1, we get that the upper bound of Theprem 13 is
tight.

Remark 14 For every graplt:, thesquareof GG, denoted by=?, is the graph obtained froid by linking

any two vertices at distance at most 2. Itis easy to observe that providing gincidence coloring of~

is the same as providing a propewertex-colouring of52, for everyk (by identifying for every vertex

the color ofA4, in G with the color ofv in G2). By considering the cycl€', on 4 four vertices (note that

C? = K,) we get that the previous result cannot be extended to the/xase. Consider now the graph

H obtained from the cycl€’; on five vertices by adding one pending edge with a new vertex. Siftce
contains a subgraph isomorphickg, we similarly get that the previous result cannot be extended to the
caseA = 3.

As previously, for planar graphs we obtain:

Corollary 15 Every planar graphG of girth ¢ > 16 and with A(G) > 4 admits a(A(G) + 1,1)-
incidence coloring. Thereforg,; (G) = A(G) + 1.
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