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Connectedness of number theoretic tilings
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Let T = T (A, D) be a self-affine tile in Rn defined by an integral expanding matrix A and a digit set D. In connection
with canonical number systems, we study connectedness of T when D corresponds to the set of consecutive integers
{0, 1, . . . , | det(A)|− 1}. It is shown that in R3 and R4, for any integral expanding matrix A, T (A, D) is connected.

We also study the connectedness of Pisot dual tilings which play an important role in the study of β-expansion,
substitution and symbolic dynamical system. It is shown that each tile generated by a Pisot unit of degree 3 is
arcwise connected. This is naturally expected since the digit set consists of consecutive integers as above. However
surprisingly, we found families of disconnected Pisot dual tiles of degree 4. Also we give a simple necessary and
sufficient condition for the connectedness of the Pisot dual tiles of degree 4. As a byproduct, a complete classification
of the β-expansion of 1 for quartic Pisot units is given.
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1 Introduction
A non empty set in Rn is called a tile (i) if it coincides with the closure of its interior. If a finite set of
tiles and their translations covers the space Rn without overlapping, then we say it forms a tiling. By
‘without overlapping’ we mean that the translated tiles are mutually disjoint up to an n-dimensional set
of Lebesgue measure zero.

In this paper, we will discuss the connectedness of tiles which arise from two different kinds of number
systems. Although the systems are pretty different in nature and could be separately discussed, we decided
to put them together in a single paper since the underlying ideas are close and the reader can find the sharp
contrast between them.
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(i) In some cases, it is called a protile when the following tiling properties are not yet proved.
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1.1 Tiles associated to expanding integral matrices.
Let Mn(Z) denotes the set of n× n matrices with entries in Z. Let A be an expanding integral matrix in
Mn(Z). The word ‘expanding’ means that all its eigenvalues have modulus greater than 1. We also say
that a monic polynomial in Z[x] is expanding if all roots have modulus greater than one. By definition,
the characteristic polynomial of the expanding matrix is expanding and vice versa. Let |detA| = q and let
D = {d1, . . . dq} ⊂ Rn be a set of q distinct vectors, called a q−digit set. If we let Sj(x) = A−1(x+dj),
1 ≤ j ≤ q, then they are contractive maps under a suitable norm in Rn [28] and it is well known that
there is a unique compact set T satisfying T =

⋃q
j=1 Sj(T ) [15, 22], which is explicitly given by

T := T (A,D) =

{ ∞∑
i=1

A−idji : dji ∈ D

}
.

T is called an attractor of the system {Sj}q
j=1, and it is called a self-affine tile if its Lebesgue measure

µ(T ) is positive. Indeed this positiveness is equivalent to the fact that T and its translations form a tiling.
Basic questions and detailed studies on the tiling generated by T are found for example in J. C. Lagarias-
Y. Wang [28], R. Kenyon [25], C. Bandt [10], Y. Wang [43], A. Vince [42] and their references.

One of the important aspects of self-affine tiles is connectedness. Hata [21] has shown that if {fj}1≤j≤m

is a finite set of contractive maps (ii) of X , then the attractor K = K(f1, · · · , fm) is a locally connected
continuum if and only if, for any 1 ≤ i < j ≤ m, there exists a sequence {r0, r1, · · · , rn, rn+1} ⊂
{1, 2, · · · ,m} with r0 = i and rn+1 = j such that frk

(K) ∩ frk+1(K) 6= ∅ for k ∈ {0, 1, · · · , n}. Note
that if a tile is connected then it must be arcwise connected. This is seen in the same proof by Hata [21].
Thus after all

Arcwise connectedness and connectedness are equivalent

in our framework. We will confirm this point also in the Pisot case in the proof of Theorem 4.1 on page 287
in a slightly different context, the graph directed sets case (c.f., Luo-Akiyama-Thuswaldner [29]). Hacon-
Saldanha-Veerman [20] have shown that, if | det A| = 2 and D = {0, v} ⊂ Zn is a complete set of coset
representatives of the quotient group Zn/AZn, then T (A,D) is a connected tile. Gröchenig-Haas [19]
have proved the existence of connected self-similar lattice tilings for parabolic and elliptic dilations in
dimension two. Kirat-Lau [26], using a graph argument on D, have rediscovered Hata’s above criterion of
connectedness. Also they have shown the following sufficient criterion, which we will use in the proof of
Theorem 3.1 on page 279 and Theorem 3.2 on page 281. Afterwards we will call it a Kirat-Lau Criterion.

Let A ∈ Mn(Z) be an expanding matrix with |det A| = q and p(x) be its characteristic polynomial.
Let D = {0, v, · · · , (q − 1)v} with v ∈ Rn \ {0}. Suppose that there exists a polynomial g(x) ∈ Z[x]
(which will be called multiplying factor) such that

h(x) = g(x)p(x) = xk + ak−1x
k−1 + ak−2x

k−2 + · · ·+ a1x± q

with |ai| ≤ q − 1, for 1 ≤ i ≤ k − 1. Then T (A,D) is connected.

The idea of this criterion is to find a common point on consecutive two tiles T + kv and T + (k + 1)v
and to apply Hata’s type criterion mentioned above. As it is easy to describe in this way all expanding
(ii) Hata [21] studied ‘weak’ contractions, a slightly general concept.
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polynomials of degree 2, Kirat and Lau succeeded in proving the connectedness of a tile for a suitable
digit set in dimension 2.

In the first part of this paper, we are interested in generalizing their results to higher dimensional cases
using the digit sets corresponding to consecutive integers {0, 1, . . . , |det(A)| − 1}. We will show the
following theorem, using the Schur-Cohn criterion reviewed in Section 2 on page 275.

Theorem 1.1 Let d = 3, 4 and A ∈ Md(Z) be an expanding matrix with |detA| = q and D =
{0, v, · · · , (q − 1)v} with v ∈ Rd\{0}. Then T (A,D) is connected.

The proofs are settled separately in Theorem 3.1 on page 279 and Theorem 3.2 on page 281. They are
almost done by brute force and are quite complicated having lots of subcases. However this result gives an
evidence of a widely believed speculation that all such ‘consecutive integer digit tiles’ may be connected.
This is in good contrast to the later part of this paper.

We do not intend to consider general digit sets but only use digits which correspond to consecutive
integers. One reason of this restriction is that this case is essential and widely studied in relation to
canonical number systems. For canonical number systems and attached tilings, see Kátai-Kőrnyei [24],
Kovács-Pethő [27], Gilbert [18]. Recent progress on topological studies on this tiling are seen in Akiyama-
Thuswaldner [6, 7].

Another reason is as follows. As it is easy to find a disconnected tile when we choose ‘scattered’ digit
sets, an interesting direction is to find a connected tile for a given expanding matrix A. Thus it may be
just awkward to consider general digit sets in higher dimensional cases, since we are already able to show
the connectedness only by using consecutive integers.

1.2 Tiles associated to Pisot units.
Now we will explain the later part of this paper. Let β > 1 be a real number which is not an integer. A
greedy expansion of a positive real x in base β is an expansion of the form:

x =
P∞

i=−N0
a−iβ

−i = aN0 , aN0−1, · · · a0.a−1a−2 . . .

with a−i ∈ Aβ = [0, β) ∩ Z and a greedy condition

0 ≤ x−
PN

−N0
a−iβ

−i < β−N ∀N ≥ −N0.

The integer part of x is aN0 , aN0−1, · · · a0. =
∑0

i=−N0
a−iβ

−i and the fractional part is defined simi-
larly. This expansion for x ∈ [0, 1) is produced by iterating the beta transform (c.f. [37]):

Uβ : x → βx− bβxc

keeping track its carries bβxc ∈ Aβ . Basic properties of this expansion are summarized in [30]. To fix
our notations we briefly review them. Denote by A∗β (resp. Aω

β ) the set of finite words on Aβ (resp. the
set of right infinite words on Aβ). Let 1 = d−1β

−1+d−2β
−2+ · · · be an expansion of 1 defined by the

algorithm
c−i = βc−i+1 − bβc−i+1c, d−i = bβc−i+1c

with c0 = 1, where bxc denotes the maximal integer not exceeding x. In other words, this expansion is
achieved as the trajectory of Un

β (1) (n = 1, 2, . . . ). dβ(1) = .d−1, d−2, · · · is called β−expansion of 1.
Let uω ∈ Aω

β denote the right infinite word generated by repetition of u, that is, u, u, · · · . Parry [33] has
shown that the β-expansion of 1 can be characterized by the conditions of lexicographic order, as follows:
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Let d = (d−i)i≥1 be a sequence of nonnegative integers different from 1, 0ω, such that
∑

i≥1 d−iβ
−i = 1,

with d−1 ≥ 1 and for i ≥ 2, d−i ≤ d−1, then d is the β-expansion of 1 if and only if:

∀p ≥ 1, σp(d) <lex d, (1.1)

where σ is the shift defined by σ((xi)i≤M ) = (xi−1)i≤M . He also has shown that a sequence x =
x1, x2, · · · of nonnegative integers is realized as a β-expansion of some positive real number if and only
if it satisfies the following lexicographical condition:

∀p ≥ 0, σp(x) <lex d∗(1) (1.2)

with d∗(1) =
{

dβ(1), if dβ(1) is infinite;
(d−1, d−2, · · · , d−n+1, (d−n − 1))ω, if dβ(1) = d−1, · · · , d−n.

In this case this sequence x = x1, x2, · · · is called admissible.

Hereafter let β be a Pisot number which is an algebraic integer greater than 1 whose Galois conjugates
other than itself have modulus smaller than 1. Let Q(β)≥0 be nonnegative elements of the minimum
field containing the rational numbers Q and β. Bertrand [12] and Schmidt [36] showed that any greedy
expansion of x ∈ Q(β)≥0 is eventually periodic, which means that there exists a positive integer L such
that a−N = a−N−L for sufficiently large N . We call a Pisot unit a Pisot number which is also a unit
of the integer ring of Q(β). The symbolic dynamical system Xβ attached to β-expansion is the subshift
of the full shift AN

β whose language consists of all admissible words in A∗β . Xβ is sofic if and only
if the expansion of 1 is eventually periodic (see [13]). Especially when β is a Pisot number it gives a
sofic system. Thurston [41] introduced an idea to construct a self-affine tiling generated by a Pisot unit
β which is a geometric realization of this sofic system Xβ . Akiyama [2] and Praggastis [34] studied in
detail such self-affine tilings. G. Rauzy [35] already constructed this kind of tiling in a different approach
closely related to substitutions. This tiling has a strong connection to the explicit construction of Markov
partitions of dynamical systems, hopefully toral automorphisms. See also P. Arnoux-Sh. Ito [9].

Let us recall this tiling by Pisot units, which is called dual tiling, following the notation of [2]. Let

β = β(1), β(2), · · · , β(r1) and β(r1+1), β(r1+1), · · · , β(r1+r2), β(r1+r2)

be the real and the complex conjugates of β, respectively. We also denote by x(j) (j = 1, 2, · · · , r1+2r2)
the corresponding conjugates of x ∈ Q(β). Define a map Φ : Q(β) → R r1+2 r2−1 by:

Φ(x)=
“
x(2), · · · , x(r1),<(x(r1+1)),=(x(r1+1)), · · · ,<(x(r1+r2)),=(x(r1+r2))

”
.

Let A = a−1, a−2, · · · be a greedy expansion in base β of an element Z[β] ∩ [0, 1). Define SA to be
the set of elements of Z[β]≥0 whose greedy expansion has the suffix A. In other words we classify all
elements of Z[β]≥0 by their fractional part and map them via Φ to have a tile TA = Φ(SA). An empty
word is designated by λ and the tile Tλ is called the central tile. As already noticed in Thurston [41], the
Pisot condition guarantees that TA is compact and the restriction to units is necessary to have a tiling by
this construction. Therefore we restrict ourselves to Pisot units. Under this restriction, it is not so easy to
show that these TA give a tiling of the space Rr1+2r2−1 though we expect it is always valid. Let Fin(β)
be the set of all finite beta expansions. This is obviously a subset of Z[1/β]≥0. If β satisfies

Fin(β) = Z[1/β]≥0,
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then we say that β has finitely expansible property (F). This property (F) implies that β is a Pisot number
(see [16]). It is comparatively easy to construct a tiling defined by Pisot units with (F), in the above sense
([2]). In [5], we introduced a wider class of Pisot units with this tiling property called weakly finiteness.
It is conjectured that this property holds even for all Pisot numbers (c.f. [8], [38], [39]). In this paper, we
do not discuss further this tiling property.

The second aim of this paper is to explore the problem of connectedness of Pisot dual tiles of low
degree using again the Schur-Cohn criterion discussed in Section 2 on page 275. A general arcwise
connectedness criterion for Pisot dual tiles is established in Theorem 4.1 on page 287.

Furthermore we can prove the following theorem.

Theorem 1.2 Each tile corresponding to a Pisot unit β is arcwise connected if dβ(1) terminates with 1.

The proof is found after the one of Theorem 4.1 on page 287. Our conjecture is that for all Pisot units
with finite β-expansion of 1 , the last non zero digit of dβ(1) must be one. The conjecture is true especially
for cubic Pisot units β with finite β-expansion of 1 , (see [4], [11]) and as we prove in Theorem 4.9 on
page 307 it is also true for quartic Pisot units β with finite β-expansion of 1 .

To treat all Pisot units, Theorem 1.2 is not enough since the β-expansion of 1 is not finite in general.
Let p be the characteristic polynomial of β. If p(0) = 1 then the β-expansion of 1 cannot be finite (see
Proposition 1 of [1]). Even when p(0) = −1 there are many such cases. Including these cases, we can
generalize the above conjecture:

Conjecture 1 Let β be a Pisot unit and consider its eventually periodic β-expansion of 1 : dβ(1) =
.d−1, · · · , d−n, (d−n−1, · · · , d−n−k)ω. Then

d−n−k − d−n = ±1.

This conjecture is shown to be valid for degree less than 5 in this paper. More challenging would be the
following conjecture:

Conjecture 2 Let β > 1 be a real number and assume that its β-expansion of 1 is eventually periodic
with dβ(1) = .d−1, · · · , d−n, (d−n−1, · · · , d−n−k)ω. Then |d−n−k − d−n| coincides with the absolute
value of the norm of β.

This conjecture was first formulated in [3]. Strong numerical evidence exists for this conjecture. How-
ever, unfortunately the Pisot dual tile can be disconnected even if this conjecture is true. We summarize
our main results in the following theorem.

Theorem 1.3 Let β be a Pisot unit of degree 3 or 4 defined by the monic polynomial p(x) ∈ Z[x]. If
deg β = 3 or p(0) = 1 then each tile is connected. If deg β = 4 and p(0) = −1 then each tile is
connected if and only if

a + c− 2bβc 6= 1

for p(x) = x4 − ax3 − bx2 − cx− 1.
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These statements are a combination of Theorem 4.4 on page 291, Theorem 4.5 on page 292, Theorem 4.7
on page 301 and Theorem 4.8 on page 307. In spite of the quite simple nature of the statement, the proof
is pretty involved having lots of subcases. However we may say that this result gives us a breakthrough.

In fact, if deg β = 4, p(0) = −1 and a + c − 2[β] = 1, there exists a disconnected tile. As far as
we know, no example of disconnected Pisot dual tiles was known before. As these tiles are generated
by consecutive integers, it was even expected that Pisot dual tiles are always connected. Thus this result
gives an unfortunate surprise that there exists a concrete family of Pisot units one of whose dual tiles is
disconnected. (See a remark after Theorem 4.8 on page 307.)

-1 1 2 3 4

-7.5

-5

-2.5

2.5

5

7.5

10

Fig. 1: The projection of the central tile (disconnected) generated by the Pisot unit β with minimal equation x4 −
3x3 − 7x2 − 6x− 1 = 0

When β-expansion of 1 is eventually periodic, write it as

dβ(1) = c−1, . . . c−M (c−M−1 . . . c−M−L)ω

with c−M 6= c−M−L. We say that the period (resp. preperiod ) of β-expansion of 1 is L (resp. M ).
As a byproduct, we will give a complete classification of the β-expansion of 1 for cubic and quartic

Pisot units in Theorem 4.3 on page 290, Theorem 4.9 on page 307 and Theorem 4.6 on page 298 which are
naturally proven during our proofs. Theorem 4.3 on page 290 was proved by Bassino [11]. She computed
the β-expansion of 1 for any cubic Pisot number, including non units. In view of the prominent role of the
expansion of 1 in symbolic dynamics of beta expansion, it is worthy to state independently Theorem 4.9
on page 307 and Theorem 4.6 on page 298. It is also an unfortunate surprise that there is no uniform
bound on the length of the expansion of 1 for quartic Pisot units with finite β-expansion of 1 . Also, there
is no uniform bound on period and preperiod of the expansion of 1 for quartic Pisot units with infinite
β-expansion of 1 . The next table makes the situation clearer.

Further study of connectedness may be explored in a different setting. Pisot dual tilings under a certain
condition are formulated as a geometric realization of substitutive dynamical system. Canterini [14]
studied connectedness of such substitutive tilings and gave general criteria which works for these tiles. It
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Degree Length of finite dβ(1) Preperiod of infinite dβ(1) Period of infinite dβ(1)
2 2 1 1
3 5 2 2
4 ∞ ∞ ∞

Tab. 1: Length bounds related to the expansion of 1.

may be fruitful to extend the above conjectures to his situation and to study the connectedness of a family
of substitutive tiles.

This paper is organized as follows: In Section 2, we prepare some results related to the Schur-Cohn
criteria to count the number of roots inside/outside the unit circle. Section 3 on page 279 is devoted to the
connectedness of tiles associated to expanding integral matrices of low degree by the Kirat-Lau criterion.
Tiles associated to Pisot numbers are treated in Section 4 on page 287. The beginning of Section 4 on
page 287 is of importance. We give a proof of Theorem 1.2 on page 273 and describe a method to
prove connectedness of Pisot dual tiles. This is more complicated than the one in Section 3 on page 279
but the underlying spirit is similar. Then we show in the subsections 4.1 and 4.2 the connectedness for
quadratic and cubic Pisot units. Later subsections are for the quartic Pisot units. The idea of the proof
of disconnectedness is found in Lemma 3 on page 300 in this last section. In few words, we show
the disconnectedness of a projection of the tile along the direction of the negative real root and use the
forbidden words for beta expansions in A∗β to ‘cut’ the tile. Convenient lists are found in Figure 2 on
page 309 and Figure 3 on page 310. In the shaded box, the expansion of one is not written in a fixed
length. Readers find the explicit form in Theorem 4.9 on page 307 and Theorem 4.6 on page 298. The
four disconnected cases are also indicated in Figure 3 on page 310.

2 Expanding polynomials and Pisot polynomials
Let f(x) =

∑n
i=0 aix

n−i be a polynomial with complex coefficients ai within this section. Admitting an
abuse of terminology, we say that f(x) is an expanding polynomial if each root has modulus greater than
one. A monic real polynomial f is a Pisot polynomial if it has a real root greater than one and other roots
are inside the unit circle and additionally |an| ≥ 1. These definitions agree with the original situation
when f(x) is the irreducible polynomial over Z of an algebraic integer.

We briefly review the Schur-Cohn criterion to count the number of zeros inside/outside the unit circle.
In the literature, the Schur-Cohn criterion is often explained in the simplest case that all the determinants
are non zero (iii). In general, this restriction leads us to a difficulty to characterize polynomials with
prescribed location of zeros, in terms of a single family of polynomial inequalities. However for expanding
polynomials, such a characterization is well known. Further a characterization of Pisot polynomials will
be given (Theorem 2.2 and Corollary 2.2 on page 278), which will be used later on.

The reciprocal polynomial of f is defined by f∗(x) = xdeg ff(1/x). Let Dn = Dn(f) be the determi-
nant of following 2n× 2n matrix with coefficients:

bi,j =

8<:
aj−i, for 1 ≤ i ≤ n and i ≤ j ≤ i + n
ai−j , for n + 1 ≤ i ≤ 2n and i− n ≤ j ≤ i
0, otherwise

(iii) A clear and original description including such degenerate cases is found in [40]. An earlier version of this section was based on
this Japanese book, without noticing the standard name after Schur-Cohn.
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We will write it in the following form where the empty entries represent 0.

Dn =

˛̨̨̨
˛̨̨̨
˛̨̨̨
˛̨̨̨

a0 a1 . . . an

a0 . . . an−1 an

. . . . . . .
a0 a1 . . . an

an an−1 . . . a0

an . . . a1 a0

. . . . . . . .
an an−1 . . . a0

˛̨̨̨
˛̨̨̨
˛̨̨̨
˛̨̨̨
→ n

→ 2n

↓ ↓
n 2n

which is the resultant of f and f∗. Hence Dn = 0 if and only of there exists an inversible root β, that
is, f(β) = f(1/β) = 0. Especially if a real polynomial f has a root on the unit circle then Dn = 0. By
definition, Dn 6= 0 for expanding polynomials and Pisot polynomials with n ≥ 3, since |an| ≥ 1 does not
allow an inversible root. Delete the n-th, 2n-th rows and columns from Dn to get a 2(n− 1)× 2(n− 1)
matrix with determinant Dn−1. From Dn−1 we create Dn−2 in the same way. Continue like this till we
get

D2 =

˛̨̨̨
˛̨̨̨ a0 a1 an

a0 an−1 an

an an−1 a0

an a1 a0

˛̨̨̨
˛̨̨̨ , D1 =

˛̨̨̨
a0 an

an a0

˛̨̨̨
.

Then the famous Schur-Cohn’s criterion (c.f. [31]) is

Theorem 2.1 Assume that Di 6= 0 (i = 1, . . . , n) and let p be the number of sign changes of the sequence
1,−D1, D2, . . . , (−1)nDn. Then f(x) ∈ C[x] has p zeros inside the unit circle and no zeros on the unit
circle.

A technical problem arises from the non vanishing assumption on Di.

Example 1 We have (D0, D1, . . . , D5) = (1, 0, 0, 0, 1, 5) for x5 − 2x4 − 2x3 − x2 − 2x + 1 and
(1, 0, 0, 0, 1,−5) for x5 − 2x4 − x3 − 2x2 − 2x + 1. However the situation of zeros is the same: there
are exactly two roots in the unit circle and three outside for both polynomials. When consecutive zeros
appear in D1, D2, . . . , Dn, the number of sign changes of 1,−D1, D2, . . . , (−1)nDn does not tell how
many roots lie in the unit circle.

The classical theory of Schur-Cohn assures that there is a way to escape from such a situation by taking
different principal minors of the corresponding quadratic form (c.f. [40]), or by replacing f with other
polynomials which have as many zeros as f (c.f. Theorem 45.1 and Theorem 45.2 of [31]).

However this is not convenient in practice. As we wish to derive results on families of polynomials,
exceptional treatments should be reduced to a minimum. For this purpose, we prepare some necessary
and sufficient conditions of expanding polynomials and Pisot polynomials.

Corollary 2.1 The polynomial f(x) ∈ C[x] is expanding if and only if sgn(Di) = (−1)i for i = 1, . . . , n,
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which is also called the Schur-Cohn criterion. Here we define

sgn(x) =


1 x > 0
−1 x < 0
0 x = 0.

The origin of this Corollary dates back to Hermite and Hurwitz who connected the root distribution
problem with the invariants of Hermitian forms. The determinants Di do not vanish because they are
principal minors of a positive definite Hermitian forms. We derive this Corollary 2.1 by slightly extending
Marden’s argument in page 194–200 of [31] (c.f. [17]). Define f0(x) = f(x) and fj+1(x) = a

(j)
n−jfj(x)−

a
(j)
0 f∗j (x) for j = 0, 1, . . . , n−1 with fj(x) =

∑n−j
k=0 a

(j)
k xn−j−k. Direct determinant computation yields

fk+1(0)Dk = −f1(0) . . . fk(0)Dk+1

and hence
sgn(DkDk+1) = − sgn(f1(0) . . . fk+1(0)) (2.1)

provided f1(0) . . . fk+1(0) 6= 0, which is (43.4) in [31] (iv). A crucial fact is

If fj has pj zeros inside the unit circle and fj+1(0) 6= 0, then fj+1 has

pj+1 =

{
pj if fj+1(0) > 0
n− j − pj if fj+1(0) < 0

(2.2)

zeros inside the unit circle. The set of zeros on the unit circle of fj coincides with that of fj+1.

which is a consequence of Rouché’s theorem for circles of radius 1 + ε with small ε’s, using the equality
|f(z)| = |f∗(z)| valid on the unit circle.

Proof of Corollary 2.1. The sufficiency of the condition sgn(Di) = (−1)i is a direct consequence of
Theorem 2.1. Let us prove the necessity. We claim that that if fj+1 has a root in the closed unit disk then
fj also does. To show this, we divide the situation into three cases. If |a(j)

n−j | > |a(j)
0 | then (2.2) gives

pj = pj+1 > 0. If |a(j)
n−j | < |a(j)

0 | then pj = n − j − pj+1 > 0 since pj+1 ≤ n − j − 1. Finally

if |a(j)
n−j | = |a(j)

0 | then the leading coefficient and the constant term of fj have the same absolute value,
proving that at least one root of fj is in the closed unit disk. This shows the claim. As f is expanding, this
claim shows that fj is also expanding for j = 1, . . . , n. Therefore fj(0) can not vanish for j = 1, . . . n.
Observing (2.2) again, since pj = 0 for j = 0, . . . , n, we have fj(0) > 0 for j = 1, . . . , n. The relation
(2.1) implies that sgn(DkDk+1) = −1, which shows the assertion. 2

We give a characterization of Pisot polynomials, which does not seem to have been written down
elsewhere although it follows from the above reviewed results.

(iv) Dk = (−1)k∆k in [31].
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Theorem 2.2 Each Pisot polynomial satisfies f(1) < 0 and Di ≤ 0 (i = 2, . . . , n). Conversely a
polynomial f(x) = xn + a1x

n−1 + · · ·+ an ∈ R[x] is a Pisot polynomial if f(1) < 0 and Di < 0 (i =
2, . . . , n). If an 6= ±1 then every Pisot polynomial satisfies f(1) < 0 and Di < 0 (i = 2, . . . , n).

In other words, provided an 6= ±1, a Pisot polynomial is characterized by a system of inequalities
f(1) < 0 and Di < 0 (i = 2, . . . , n). It is likely that this characterization is also valid for an = ±1. We
prove some cases of low degree in Corollary 2.2.

Proof: Assume that a monic f ∈ R[x] is a Pisot polynomial with |an| > 1. As there is only one real
root greater than 1, we have f(1) < 0. Using f1(0) = |an|2 − 1 > 0 and (2.2), f1 and f have the same
number of roots inside the unit circle. As f1 is of degree n − 1, f∗1 must be an expanding polynomial.
Thus Corollary 2.1 reads sgn(Dj(f∗1 )) = (−1)j and thus sgn(Dj(f1)) = (−1)j sgn(Dj(f∗1 )) = 1 for
j = 1, . . . , n− 1. Employing the formula (43.3) in [31]:

f1(0)j+2Dj(f) = −Dj−1(f1)

with f1(0) = |an|2 − 1 > 0, we get Dj = Dj(f) < 0 for j = 2, . . . , n, proving the last statement. Now
we consider the case an = ±1. We replace ai by ai + εi with small εi’s, and we write the corresponding
Schur-Cohn determinants as D

(ε1,...,εn)
i . If |an + εn| > 1 then D

(ε1,...,εn)
i < 0 by the above discussion.

As D
(ε1,...,εn)
i → Di when (ε1, . . . , εn) tends to 0, we have Di ≤ 0 for i = 2, . . . , n. This proves the

first statement of the Theorem.
It remains to show that f(1) < 0 and Di < 0 (i = 2, . . . , n) is a sufficient condition to have a

Pisot polynomial. Let us start with the case |an| > 1. Since f(x) is a monic polynomial in R[x] and
Di < 0 (i = 1, . . . , n), Theorem 2.1 implies that there are exactly n − 1 zeros inside the unit circle.
f(1) < 0 shows the existence of at least one positive root greater than 1, proving that f is a Pisot
polynomial. Finally let us assume that f(x) ∈ R[x], |an| = 1, Di < 0 (i = 2, . . . , n) and f(1) < 0.
Choose a small real ε such that |an + ε|2 − 1 > 0. Substitute an by an + ε and denote by D

(ε)
i the

corresponding Schur-Cohn determinants. Then following the same discussion, D(ε)
i < 0 for i = 1, 2, . . . n

implies that f(x) + ε is a Pisot polynomial. On the other hand, Dn 6= 0 implies there are no zeros of
f on the unit circle, because, by definition, Dn is the resultant of f and f∗. As the roots are continuous
functions with respect to coefficients, this shows that f is a Pisot polynomial. 2

Corollary 2.2 If n = 3 or n = 4 then a monic polynomial f(x) = xn + a1x
n−1 + · · ·+ an ∈ R[x] is a

Pisot polynomial if and only if f(1) < 0 and Di < 0 (i = 2, . . . , n).

Proof: According to Theorem 2.2, it remains to show that if f is a Pisot polynomial with an = ±1, then
Di 6= 0 (i = 2, . . . , n). Recall that Dn 6= 0 for Pisot polynomials with n ≥ 3. Note that

D2 =

∣∣∣∣∣∣∣∣
1 a1 an

1 an−1 an

an an−1 1
an a1 1

∣∣∣∣∣∣∣∣ = (−1 + a2
n + an−1 − ana1)(−1 + a2

n − an−1 + ana1).

D2 = 0 implies an−1 = ana1. From the two equalities an = ±1 and an−1 = ana1 we deduce D3 = 0,
which shows the case for n = 3. For the quartic case, we have
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D4 = −(a1 − a2 + a3)(a1 + a2 + a3)(a2
1 − 4a2 − a2

3)
2

D3 = −(a1 + a3)2(a2
1 − 4a2 − a2

3)

D2 = −(a1 + a3)2
for a4 = −1

and
D4 = −(a1 − a3)4(−2 + a1 − a2 + a3)(2 + a1 + a2 + a3)

D3 = −(a1 − a3)3(a1 + a3)

D2 = −(a1 − a3)2
for a4 = 1.

If a4 = −1, then D2 = 0 or D3 = 0 happens only when a3 = −a1, since D4 6= 0. But this implies
D4 = 16a4

2 ≥ 0. Together with the fact that Theorem 2.2 gives D4 ≤ 0, we have D4 = 0, a contradiction.
If a4 = 1, then D2 = 0 or D3 = 0 happens only when a3 = −a1. This gives D4 = 16a4

1(2 + a2)2 ≥ 0
which leads us to the same contradiction. 2

3 Connectedness of self-affine tilings generated by an expanding
matrix

In this section we shall prove connectedness of tiles generated by an expanding matrix, up to degree 4.

3.1 Connectedness of self-affine tilings generated by an expanding cubic ma-
trix

The next lemma is an explicit form of Corollary 2.1 on page 276.

Lemma 1 The polynomial p(x) = x3 + ax2 + bx + c with integer coefficients is expanding if and only if
| b− ac | < c2 − 1,
| b + 1 | < | a + c |. (3.1)

Theorem 3.1 Let A ∈ M3(Z) be an expanding matrix with |detA| = q and D = {0, v, · · · , (q − 1)v}
with v ∈ R3\{0} . Then T (A,D) is connected.

Proof: Let p(x) = x3 + ax2 + bx + c with a, b, c ∈ Z be the characteristic polynomial of A, which is
expanding. We study the following two systems of inequalities, equivalent to (3.1):8>><>>:

b− ac− c2 ≤ −2,
b− ac + c2 ≥ 2,
a− b + c ≥ 2,
a + b + c ≥ 0,

and

8>><>>:
b− ac− c2 ≤ −2,
b− ac + c2 ≥ 2,
a− b + c ≤ 0,
a + b + c ≤ −2 .

(3.2)

From the first one, we get the following bounds for the coefficients :
c ≥ 2 − 2c + 2,≤ b ≤ 2c− 1, −c + 1 ≤ a ≤ c + 1,

while from the second we have:
c ≤ −2, 2c + 2 ≤ b ≤ −2c− 1, c− 1 ≤ a ≤ −c− 1.
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To show the connectedness of T (A,D), we use the Kirat-Lau Criterion. Since the way of finding the
multiplying factor is the same for both systems, here we solve only the first system. We can divide the
classification into the following cases:
Case 1. Suppose that −2c + 2 ≤ b ≤ −c. From the system (3.2) in this case we get −b− c ≤ a ≤ c− 1
and 0 ≤ 1 + a < c.

� If a > −b − c then −c + 1 ≤ a + b ≤ 0. We also have that −c < b + c ≤ 0. So the required
polynomial is h(x) =(1+x)p(x) = x4+(1+a)x3+(a+b)x2+(b+c)x+c.

� If a = −b− c then the required polynomial h(x) is:

x5+(1+a)x4+(1−c)x3+(b+c)x+c=(x2+x+1)p(x).

Case 2. Suppose that −c + 1 ≤ b ≤ −1. From the system (3.2) in this case we get −b − c ≤ a ≤ c − 1
which implies that −c + 1 ≤ a ≤ c− 1. So in this case the multiplying factor is g(x) ≡ 1.
Case 3. Suppose that 0 ≤ b ≤ c− 1. From the system (3.2) in this case we get 2 + b− c ≤ a ≤ c which
implies that −c + 2 ≤ a ≤ c.

� If a ≤ c− 1 the multiplying factor is g(x) ≡ 1.
� If a = c then b > 1 and 1− c < b− c < 0, so the polynomial h(x) is

x4+(c−1)x3+(b−c)x2+(c−b)x−c=(x−1)p(x).

Case 4. Suppose that c ≤ b ≤ 2c − 1 which implies that −c < c − b ≤ 0. From the system (3.2) in this
case we get −1 ≤ b− a ≤ c− 2 and 1 ≤ 1− a ≤ c.

� If a < 1 + c the required polynomial h(x) is

x4+(a−1)x3+(b−a)x2+(c−b)x−c=(x−1)p(x).

� If a = 1 + c then b ≥ c + 2, −c + 1 < b− 2c < 0, −2c + 2 ≤ 2c− 2b + 1 ≤ 0.

♦ If −c + 1 ≤ 2c− 2b + 1 ≤ 0 then the required polynomial h(x) is

x5+(c−1)x4+(b−2c−1)x3+(2c−2b+1)x2+(b−2c)x+c=(x−1)2p(x).

♦ If −2c + 2 ≤ 2c− 2b + 1 ≤ −c then −c + 1 < 3c− 2b + 1 ≤ 0 and −c ≤ 2b− 4c− 1 < −1.

� If 2b− 4c− 1 > −c then the required polynomial h(x) is

x7+(c−1)x6+(b−2c)x5+(3c−2b)x4+(2b−4c−1)x3+(3c−2b+1)x2+(b−2c)x+c=(x2+1)(x−1)2p(x).

� If 2b− 4c− 1 = −c then the required polynomial h(x) is

x6+(c−1)x5+(b−2c)x4+ (2c−b)x−c=(x3−2x2+2x−1)p(x).

2

3.2 Connectedness of self-affine tilings generated by an expanding quartic ma-
trix

From Corollary 2.1 on page 276, we deduce
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Lemma 2 The polynomial p(x) = x4 + ax3 + bx2 + cx + d with integer coefficients is expanding if and
only if 8>><>>:

d ≥ 2,
|c− ad| ≤ d2 − 2,
|a + c| < 1 + b + d,
−1+b−ac+c2+d+a2d−2bd−acd+d2+bd2−d3 < 0

or8>><>>:
d ≤ −2,
|c− ad| ≤ d2 − 2,
|a + c| < −1− b− d,
−1+b−ac+c2+d+a2d−2bd−acd+d2+bd2−d3 > 0.

(3.3)

Proof: From Corollary 2.1 on page 276 we observe that:
D1 < 0
D2 > 0

⇐⇒ |c− ad| ≤ d2 − 2,

D3 < 0 ⇐⇒


(d2 − 1)(1 + b + d) + (a + c)(c− ad) < 0
(−1 + b− ac + c2 + d + a2d− 2bd− acd + d2 + bd2 − d3) > 0

or
(d2 − 1)(1 + b + d) + (a + c)(c− ad) > 0
(−1 + b− ac + c2 + d + a2d− 2bd− acd + d2 + bd2 − d3) < 0,

D4 > 0 ⇐⇒ |a + c| < 1 + b + d or |a + c| < −1− b− d.

and that:

if

|a + c| < 1 + b + d
|c− ad| ≤ d2 − 2

then (d2 − 1)(1 + b + d) + (a + c)(c− ad) > 0,

if

|a + c| < −1−b−d
|c− ad| ≤ d2 − 2

then (d2 − 1)(1 + b + d) + (a + c)(c− ad) < 0.

Second, since for the expanding polynomial p(0), p(1) and p(−1) have the same sign,

d ≥ 2 =⇒ |a + c| < 1 + b + d
d ≤ −2 =⇒ |a + c| < −(1 + b + d).

We get the desired result (3.3). 2

Theorem 3.2 Let A ∈ M4(Z) be an expanding matrix with |detA| = d and D = {0, v, · · · , (d − 1)v}
with v ∈ R4\{0} . Then T (A,D) is connected.

Proof: Let p(x) = x4+ax3+bx2+cx+d with a, b, c, d ∈ Z be the characteristic polynomial of A, which
is expanding. From the systems of inequalities (3.3) we get the following bounds for the coefficients :

|d| ≥ 2, −|d| ≤ a ≤ |d|, −3|d|+ 8 ≤ b ≤ 3|d| − 8, −3|d|+ 6 ≤ c ≤ 3|d| − 6.
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We can divide the classification into the following cases:

Conditions 1

8>><>>:
d ≤ −2,
|a + c| < −1− b− d,
|c− ad| ≤ d2 − 2,
−1+b−ac+c2+d+a2d−2bd−acd+d2+bd2−d3 > 0.

Conditions 2

8>><>>:
d ≥ 2,
|a + c| < 1 + b + d,
|c− ad| ≤ d2 − 2,
−1+b−ac+c2+d+a2d−2bd−acd+d2+bd2−d3 < 0.

Since the matrix A is expanding if and only if−A is expanding and the characteristic polynomials of both
matrices are monic polynomials, we may choose p(x) or p(−x) appropriately in the proof, which enables
us to assume that a ≥ 0. Now we use the Kirat-Lau Criterion again.

First suppose that the coefficients of the polynomial p(x) satisfy Conditions 1 with a ≥ 0. Here we
have 2 possibilities:

Case 1

8>>><>>>:
d ≤ −2,

b + d + 1 < a + c ≤ 0,

1− d2 < c− ad < d2 − 1,

−1+b−ac+c2+d+a2d−2bd−acd+d2+bd2−d3 > 0,
or

Case 2

8>>><>>>:
d ≤ −2,

0 < a + c ≤ −b− d− 1,

1− d2 < c− ad < d2 − 1,

b−ac+c2+d+a2d−2bd−acd+d2+bd2−d3 > 0.

Let us see the range of the coefficients in Case 1. We get that8>>><>>>:
d ≤ −2,

0 ≤ a ≤ −d,

(a− d)(1 + d) < b ≤ −2− d,

1− a + b + d < c ≤ −a.

• For a = −d we get that b ≥ 0. So the required polynomial h(x) is

x6−(1+d)x5+(b+d+1)x4+(c−b−d)x3+(b+d−c)x2+(c−d)x+d,

where the multiplying factor is x2 − x + 1.

• For 0 ≤ a ≤ −d− 1 we have that 2d ≤ c ≤ −d− 1 and d− 2 ≤ b ≤ a− 2.

– If c = 2d then d ≤ −7, b = d− 2, a = 0. The required polynomial h(x) is

x9−2x8+(d+1)x7+x6−4x5+(d+5)x4−(d+4)x3+2x2−d,

where the multiplying factor is (x2 + 1)(x− 1)(x2 − x + 1).

– If 2d+1 ≤ c ≤ d we get d−2 ≤ b ≤ −d−2.

∗ If b ≥ d+1 the required polynomial h(x) is
x6+(a−1)x5+(1+b−a)x4+ (a−b+c)x3+ (b−c+d)x2+(c−d)x+d,
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where the multiplying factor is x2 − x + 1.
∗ If d− 2 ≤ b ≤ d then a = 0 or a = 1.

� For b− a = d we have that the polynomial h(x) is
x7+(a−1)x6+(d+1)x5+(c−1−d)x4+(2d−c)x3+(c−b−d)x2+(d−c)x− d,

where the multiplying factor is (x2 + 1)(x− 1).
� For b−a≤d−1 , a=0 and b=d−2 the multiplying factor is (x2−x+1)(x2+1)(x−1).

For b−a≤d−1 , a=0 and b=d−1 the multiplying factor is (x2−x+1)(x−1).
For b−a≤d−1 , a=1, and b=d the multiplying factor is (x2−x+1)(x2+1)(x−1).

– If c≥d+1 then |a|, |b|, |c| are less than |d| so the multiplying factor is g(x) ≡ 1.

Now let us see the Case 2 of the Conditions 1 which leads to:8>><>>:
d = −2,
a = 0,
b = −1,
c = 1,

or

8>><>>:
d ≤ −3,
0 ≤ a ≤ −d,
−(a + d)(1 + d) < b ≤ −3− d,
1− a ≤ c ≤ −2− a− b− d.

In this case we have two subcases:
� For a=−d we have that b≥1 and d+1≤ c≤−3. So the polynomial h(x) is

x6−(1+d)x5+(1+b+d)x4+(c−b−d)x3+ (b−c+d)x2+(c−d)x+d,

where the multiplying factor is x2 − x + 1.
� For 0≤a≤−d−1, we have that 3d+8≤b≤−d−3 and 2+d≤c≤−3d−6.

• If −2d ≤ c ≤ −3d− 6 we have that d ≤ 2 + 2a + b ≤ −d− 1

– If 2 + 2a + b ≥ d + 1 the polynomial h(x) is

x7+(2+a)x6+(2+2a+b)x5+(1+2a+2b+c)x4+(a+2b+2c+d)x3+(b+2c+2d)x2+(c+2d)x+d,

where the multiplying factor is (x2 + x + 1)(x + 1).

– If 2 + 2a + b = d then the polynomial h(x) is

x9+(2+a)x8+(1+d)x7+(a+b+c+d+1)x6+(a+2b+2c+2d)x5+(2b+3c+3d− 1)x4+(a+2b+3c+

3d)x3+(b+2c+3d)x2+(c+2d)x+d,

where the multiplying factor is (x2 + x + 1)(x2 + 1)(x + 1).

• If −d ≤ c ≤ −2d− 1 we have that 2d + 3 ≤ b ≤ −2 and a ≤ −d− 2.

– If d + 1 ≤ b ≤ −2 then the polynomial h(x) is

x5+(1+a)x4+(a+b)x3+(b+c)x2+(c+d)x+d,

where the multiplying factor is x + 1.

– If 2d + 3 ≤ b ≤ d then 2d + 3 ≤ a + b ≤ −2.

∗ If a + b ≥ d + 1 then the polynomial h(x) is
x5+(1+a)x4+(a+b)x3+(b+c)x2+(c+d)x+d,
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where the multiplying factor is x + 1.
∗ If a + b ≤ d then a ≤ −d− 3, c ≥ −d + 1 and d ≤ 2a + b + 2 ≤ −1.

� If d + 1 ≤ 2a + b + 2 then the polynomial h(x) is
x7+(2+a)x6+(2a+b+2)x5+(2a+2b+c+1)x4+(a+2b+2c+d)x3+(b+2c+2d)x2+(c+2d)x+d,

where the multiplying factor is (x2 + x + 1)(x + 1).
� If 2a + b + 2 = d then the polynomial h(x) is

x9+(a+2)x8+(d+1)x7+(1+a+b+c+d)x6+(a+2b+2c+2d)x5+(2b+3c+3d−1)x4+

(a+2b+3c+3d)x3+(b+2c+3d)x2+(c+2d)x+d,

where the multiplying factor is (x2 + x + 1)(x2 + 1)(x + 1).

• If d + 2 ≤ c ≤ −d− 1 then 2d + 6 ≤ b ≤ −3− d.

– If b ≤ d then a ≤ −d− 2, and the polynomial h(x) is

x5 + (1 + a)x4 + (a + b)x3 + (b + c)x2 + (d + c)x + d,

where the multiplying factor is x + 1.

– If b ≥ d + 1 then the multiplying factor is g(x) ≡ 1.

Second suppose that the coefficients of the polynomial p(x) satisfy Conditions 2 with a ≥ 0. Here we
have 2 possibilities:

Case 1

8>>><>>>:
d ≥ 2,

−b− d ≤ a + c ≤ 0,

2− d2 ≤ c− ad ≤ d2 − 2,

b−ac+c2+d+a2d−2bd−acd+d2+bd2−d3 ≤ 0,
or

Case 2

8>>><>>>:
d ≥ 2,

1 ≤ a + c ≤ b + d,

1− d2 < c− ad < d2 − 1,

b−ac+c2+d+a2d−2bd−acd+d2+bd2−d3 ≤ 0.

In Case 1 we get 3 subcases:

• d≥2, 0≤a≤d−2, b=−d, c=−a. Here the polynomial h(x) is

x6+ax5+(1−d)x4−ax+d,

where the multiplying factor is x2 + 1.

•

8>>><>>>:
d ≥ 2,

0 ≤ a ≤ d− 2,

−d + 1 ≤ b ≤ −3− a− d− ad + d2,

−a− b− d ≤ c ≤ −a.

In this case we get that the bounds for the coefficients are

−d + 1 ≤ b ≤ 2d− 3 and − 2d + 3 ≤ c ≤ 0.
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– If −2d + 3 ≤ c ≤ −d then d ≥ 3 , b ≥ −a, and−2d + 2 ≤ b + c ≤ 0.

∗ If b + c ≤ −d then the polynomial h(x) is
x7+(1+a)x6+(1+a+b)x5+(1+a+b+c)x4+(d+a+b+c)x3+(d+b+c)x2+(c+d)x+d,

where the multiplying factor is (x2 + 1)(x + 1).
∗ If b + c ≥ −d + 1 then the polynomial h(x) is

x5+(1+a)x4+(a+b)x3+(b+c)x2+(c+d)x+d,

where the multiplying factor is x + 1.

– If −d + 1 ≤ c ≤ 0 we have that −d + 1 ≤ b ≤ d.

∗ If b < d the multiplying factor is g(x) ≡ 1.
∗ If b = d then the polynomial h(x) is

x6 + ax5 + (d− 1)x4 + (c− a)x3 − cx− d,

where the multiplying factor is x2 − 1.

•

8>>><>>>:
d ≥ 2,

0 ≤ a ≤ d− 2,

b ≥ −2− a− d− ad + d2,

2 + ad− d2 ≤ c ≤ −a.

This case is possible only if 2 ≤ d ≤ 4 and the multiplying factor is g(x) ≡ 1 except when d = 2,
a = 0, b = 2, c = 0. In this case the multiplying factor is x2 + 1.

Now let us consider the Case 2 of the Conditions 2.
Here we get that 0 ≤ a ≤ d, −d + 1 ≤ b ≤ 3d− 3, and −d + 1 ≤ c ≤ 3d− 3.

• If c ≥ 2d then d ≥ 3, b ≥ a + d and c ≤ −a + b + d and for d = 3, 4 we have that b = a + d and
c = 2d. In this case the polynomial h(x) is

x7+(a−2)x6+(b+2−2a)x5+(2a+c−2b−1)x4+(2b+d−a−2c)x3+(2c−b−2d)x2+(2d−c)x−d,

where the multiplying factor is (x2 − x + 1)(x− 1).

• If d ≤ c ≤ 2d− 1 then b ≥ a and there are three cases to be studied:

– If b = a then c = d and the polynomial h(x) is

x5+(a−1)x4+(d−a)x2−d,

where the multiplying factor is x− 1.

– If a+1 ≤ b ≤ a+d−1 then d ≤ c ≤ −a+b+d. Here we see that b−c ≥ −d.

∗ If b−c=−d then a=0, c=b+d and b≤d−3. The polynomial h(x) is
x7 − x6 + (b + 1)x5 + (d− 1)x4 − bx− d,

where the multiplying factor is (x2 + 1)(x− 1).
∗ If b−c ≥ −d+1 then the polynomial h(x) is

x5+(a−1)x4+(b−a)x3+(c−b)x2+ (d−c)x−d,
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where the multiplying factor is x− 1.

– If b ≥ a+d then c ≥ d+1, b ≤ 2d, −2d+2 ≤ b+d−2c ≤ d−1.

∗ If b+d−2c ≥ −d+1 then a ≥ 2 and −2d+1 ≤ a+c−2b+1 ≤ 0.

� If a+c−2b ≥ −d the polynomial h(x) is
x9+(a−2)x8+(1−2a+b)x7+(a+c+1−2b)x6+(b+d−2c+a−2)x5+ (1−2a+c+b−

2d)x4+(a−2b+c+d)x3+(b+d−2c)x2+(c−2d)x+d,

where the multiplying factor is (x3 + 1)(x− 1)2.
� If a+c−2b+1 ≤ −d then the polynomial h(x) is

x11+(a−2)x10+(b+2−2a)x9+(2a+c−2b−1)x8+(2b−a−2c+d−1)x7+(2−a+2c−b−2d)x6+

(2a−b−c+2d−2)x5+(1−2a+2b−c−d)x4+(a+2c−2b−d)x3+(b+2d−2c)x2+(c−2d)x+d,

where the multiplying factor is (x3 + 1)(x2 + 1)(x− 1)2.

∗ If b+d−2c≤−d then d≥5, a≤d−1 and the polynomial h(x) is
x7+(a−2)x6+(b−2a+2)x5+(2a−2b+c−1)x4+(2b−a−2c+d)x3+(2c−b−2d)x2+(2d−c)x−, d

where the multiplying factor is (x2 − x + 1)(x− 1).

• If −d + 1 ≤ c ≤ d− 1 then −d + 1 ≤ b ≤ 2d− 1.

– If b ≥ d then a ≤ d− 1 and c ≥ 2− d.

∗ If c ≤ 1 then a ≥ 1− c and b = d. The polynomial h(x) is
x6 + ax5 + (d− 1)x4 + (c− a)x3 − cx− d,

where the multiplying factor is x2 − 1.
∗ If c ≥ 2 then d ≥ 3 and −d ≤ a− b ≤ 0.

� If a− b ≥ −d + 1 the polynomial h(x) is
x5 + (a− 1)x4 + (b− a)x3 + (c− b)x2 + (d− c)x− d,

where the multiplying factor is x− 1.
� If a− b = −d then the polynomial h(x) is

x7+(a−1)x6+(d−1)x5+(1−2a−d+c)x4−cx3+(a−c)x2+(c−d)x+d,

where the multiplying factor is (x− 1)2(x + 1).

– If b ≤ d− 1 and a ≤ d then the multiplying factor is g(x) ≡ 1.

– If b ≤ d− 1 and a = d then the polynomial h(x) is

x5 + (d− 1)x4 + (b− d)x3 + (c− b)x2 + (d− c)x− d,

where the multiplying factor is x− 1.

2

Remark 1 Here we do not restrict ourselves only in the case when the characteristic polynomial of the
matrix A is irreducible. This fact is in contrast with the following section.
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4 Connectedness of self-affine tilings generated by a Pisot unit.
We give a sufficient condition for the tiling generated by a Pisot unit to be arcwise connected. Let β be a
Pisot unit whose minimal polynomial is p(x) = xn−a1x

n−1−· · ·−an−1x−an ∈ Z[x] with an = ±1. It
follows immediately from Thurston’s construction that there are only finitely many tiles up to translation,
that the number of tiles coincides with that of different suffix of the β-expansion of 1 , i.e., the cardinality
of {Uk

β (1)}k=1,2,... ∪{0}. Recall the convention used in the introduction that the symbol A stands for the
greedy expansion of elements of Z[β]∩ [0, 1), which is identified with a right infinite (or finite) admissible
word in A∗β ∪ Aω

β . The tile TA was defined as Φ(SA). Symbolically the set TA is the collection of left
infinite admissible sequences

. . . a3a2a1a0 ⊕A = . . . a3a2a1a0.A

realized by the map Φ into Rn−1. Here we denote by a ⊕ b the concatenation of words a ∈ A∗β and
b ∈ A∗β and say that a left infinite word is admissible when all finite suffixes are admissible. The interval
[0, 1) is subdivided by {Uk

β (1)}k=1,2,... ∪ {0} into 0 = t0 < t1 < t2 < · · · < 1 and the shape of TA

depends on the interval [ti, ti+1) where A belongs (c.f. [5]). In the sense of n− 1 dimensional Lebesgue
measure, the smallest tile TA corresponds to a suffix A which satisfies maxk≥1 Uk

β (1) ≤ A < 1 by the
lexicographical ordering. The larger the suffix the stricter the restriction on the integer parts . . . a3a2a1a0

by the admissibility condition (1.2). Conversely TA becomes biggest when 0 ≤ A < minUk
β (1) 6=0 Uk

β (1),
identifying 0 with λ. Especially the central tile Tλ is the biggest tile.

Theorem 4.1 Let β > 1 be a Pisot unit. Set η = maxk≥1 Uk
β (1) which gives the smallest tile Tη. If

Tη ∩ (Tη − Φ(β−1)) 6= ∅, (4.1)

then each Pisot dual tile is arcwise connected.

To begin our proof, we recall graph directed attractors and graph directed iterated function system
(GIFS for short). Let G = G(V,E) be a strongly connected graph where V = {1, . . . , q} is the set of
vertices and E is the set of directed edges. Let Ei,j be the set of edges from i to j. Now for each e ∈ E
define a uniformly contractive map Fe : Rd → Rd. Then by [32, Theorem 1] there exists a unique family
K1, . . . ,Kq of compact non-empty sets satisfying

Ki =
q⋃

j=1

⋃
e∈Ei,j

Fe(Kj). (4.2)

The set of contractions {Fe | e ∈ E} is called a graph directed iterated function system and the sets Ki

are called graph directed attractors. Connectedness and arcwise connectedness criteria for these graph
directed attractors are found in [29] as well. We claim that Pisot dual tiles form graph directed self affine
attractors. Let Gt be the natural map defined by the following commutative diagram:

Q(β)
×βt

−−−−→ Q(β)

Φ

y yΦ

Rd−1 −−−−→
Gt

Rd−1.



288 Shigeki Akiyama and Nertila Gjini

Then Gt is contractive for t > 0 since β is a Pisot number. The set equations are given in the following
form:

TA =
⋃
i⊕A

G1(Ti⊕A), (4.3)

where the summation is taken over all possible i ∈ [0, β)∩Z such that i⊕A is admissible (see [5]). Note
that we identify i ⊕ A with the corresponding β− expansion to realize it as a nonnegative real number.
Since there are finitely many tiles up to translation, it is easy to show that they form graph directed self
affine attractors by using (1.2). This proves the claim.

Proof of Theorem 4.1. To prove that all tiles are connected, it suffices to show that two neighboring tiles
T(i−1)⊕A and Ti⊕A have nonempty intersection. Indeed, if this is true, then for any two points on a tile it
is easy to find an ε-chain connecting these by repeated applications of (4.3) (see [21]).

Since the admissibility condition (1.2) is described by the lexicographic order, for a word u ∈ A∗β , if
u ⊕ η is admissible then u ⊕ κ is admissible for any admissible word κ. Hence putting w = i ⊕ A − η,
we have

Si⊕A ⊃ Sη + w and S(i−1)⊕A ⊃ Sη + w − β−1.

This shows that
T(i−1)⊕A ∩ Ti⊕A ⊃ (Tη ∩ (Tη − Φ(β−1))) + Φ(w).

Thus, by the assumption, each tile is connected.
Finally we discuss shortly the local connectedness and arcwise connectedness. Recalling the theorem

of Hahn and Mazurkiewicz, it suffices to show that each tile is a locally connected set having at least two
points. Local connectedness is shown easily by (4.3), since each tile is reconstructed as a finite union of
sufficiently small connected compact sets. 2

From Theorem 4.1 on the previous page we immediately get a

Corollary 4.1 If for the Pisot unit β, ∃ai ∈ Z (i = 1, 2, · · · ) such that |ai|<bβc and Φ(1)+
∑∞

i=1 aiΦ(βi)=
0 then each Pisot dual tile is arcwise connected.

which is akin to the Kirat-Lau criterion. In practice, this Corollary is quite useful but not enough in some
cases.

Proof: Let xi = max(ai, 0) and yi = max(−ai, 0). Then we have

∞∑
i=1

xiΦ(βi−1) + Φ(η) =
∞∑

i=1

yiΦ(βi−1) + Φ(η)− Φ(1/β)

Since the maximal digit bβc ∈ Aβ does not appear in xi and yi, both . . . x2x1x0 ⊕ η and . . . y2y1y0 ⊕ η
are admissible by (1.2). Therefore the left hand side belongs to Tη and the right to Tη − Φ(1/β). 2

For a string of symbols $ = a1, a2, · · · , an let us write $ω for the right periodic expansion

a1, a2, · · · , an, a1, a2, · · · , an, · · · , a1, a2, · · · , an, · · ·

and ω$ for the left periodic expansion

· · · , a1, a2, · · · , an, a1, a2, · · · , an, · · · , a1, a2, · · · , an
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Here we shall prove Theorem 1.2 on page 273 that each tile is connected if dβ(1) terminates with 1.

Proof of Theorem 1.2: By the assumption, 1 =
∑d

i=1 c−iβ
−i with c−d = 1, which gives rise to a relation

P (β) = 0 with
P (x) = xd − c−1x

d−1 − c−2x
d−2 − · · · − c−d+1x− 1.

Let k be the greatest integer less than d such that c−k = bβc. Since β is also a root of P (x)(1 −
xd−k)

∑∞
i=0 xd i = 0 we get that

ω (bβc, c−k−1, · · · , c−d+1, 0, bβc, c−2, · · · , c−k+1) , bβc − 1, c−k−1, · · · , c−d+1.η =

ω (c−1, c−2, · · · , c−d+1, 0) , 0, · · · , 0| {z }
d−k−1

.η − 0.1

is a common point of Tη and Tη − Φ(β−1), where η is the biggest suffix in the β-expansion of 1 . 2

We remark here that this Theorem 1.2 is a generalization of the same result proved under the finiteness
condition (F) (see [2]).

4.1 Connectedness of self-affine tilings generated by a quadratic Pisot unit.
It is well known that Pisot dual tiles for quadratic Pisot units are nothing but intervals. For the sake of the
completeness, we describe them in this subsection. Let β be a quadratic Pisot unit. Its minimal polynomial
is either x2 − ax− 1 (a ≥ 1) or x2 − ax + 1 (a ≥ 3).

Case x2 − ax− 1 (a ≥ 1). In this case dβ(1) = a, 1 which satisfies the condition of Theorem 1.2 on
page 273. Therefore TA is a non empty compact connected set in R1, that is, a closed interval. One can
obtain their concrete shapes by computing extremal values. Take the conjugate β′ = (a−

√
a2 + 4)/2 ∈

(−1, 0). Then

Tλ =

{ ∞∑
i=0

ai(β′)i

∣∣∣∣∣ ai+1, ai <lex a, 1

}

=

[ ∞∑
k=1

a(β′)2k−1,

∞∑
k=0

a(β′)2k

]

=
[

aβ′

1− (β′)2
,

a

1− (β′)2

]
= [−1, β]

The other tile is

T1 −
1
β′

=

{ ∞∑
i=0

ai(β′)i ∈ Tλ

∣∣∣∣∣ a0 6= a

}

=
[

aβ′

1− (β′)2
,

a

1− (β′)2
− 1

]
= [−1, β − 1].

The translation −1/β′ was performed to make clearer the situation.

Case x2 − ax + 1 (a ≥ 3). We have dβ(1) = (a− 1), (a− 2)ω and η = maxk≥1 Uk
β (1) = (a− 2)ω.

Take the conjugate β′ = (a−
√

a2 − 4)/2 ∈ (0, 1). By (4.3) we have

G−1(Tλ) = β′−1Tλ = Tλ ∪ T1 ∪ · · · ∪ Ta−2 ∪ Ta−1
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and
G−1(Ta−1) = T0,a−1 ∪ T1,a−1 . . . Ta−3,a−1 ∪ Ta−2,a−1.

Up to translation, there are only two tiles Tλ and Tη. If A <lex η then TA is congruent to Tλ and if
A ≥lex η then TA is congruent to Tη. Observing the above set of equations, the smaller tile Tη appears
only at the last terms Ta−1 and Ta−2,a−1. Therefore in view of the proof of Theorem 4.1 on page 287, to
prove the connectedness of tiles, we only need to show a weaker condition:

Ta−1 ∩ Ta−2 6= ∅,

which is shown by

Ta−1 3
a− 1

β′
=

a− 2
β′

+ a− 1 +
∞∑

i=2

(a− 2)(β′)i ∈ Ta−2.

As a result, the condition of Theorem 4.1 on page 287 is sufficient but not necessary to have connectedness.
A similar computation yields:

Tλ =
[
0, 1 +

a− 2
1− β′

]
= [0, β] and Ta−1 −

a− 1
β′

=
[
0,

a− 2
1− β′

]
= [0, β − 1].

4.2 Connectedness of self-affine tilings generated by a cubic Pisot unit.
Let β be a Pisot unit of degree 3 defined by the monic polynomial p(x) ∈ Z[x]. In this subsection we
prove that the dual tiling generated by β is connected, i.e. each tile is connected. To make explicit the
cubic case of Corollary 2.2 on page 278, we have

Theorem 4.2 A monic polynomial

p(x) = x3 − ax2 − bx− c ∈ Z[x]

is a Pisot polynomial if and only if three inequalities

1 < a + b + c, |b− 1| < a + c and (c2 − b) < sgn(c)(1 + ac)

hold.

The following Theorem due to Akiyama [4] and Bassino [11] gives the β-expansion of 1 for the cubic
Pisot units. Note that [11] also dealt with non unit Pisot cases.

Theorem 4.3 Let β be a cubic Pisot unit and let

p(x) = x3 − ax2 − bx− c

with c = ±1 be its minimal polynomial. Then the β-expansion of 1 is given by the following table.
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c = 1
b dβ(1)

−a+1 ≤ b ≤ −2 a−1, a+b−1, (a+b)ω

b = −1 a−1, a−1, 0, 1
0 ≤ b ≤ a a, b, 1
b = a+1 a+1, 0, 0, a, 1

c = −1
b dβ(1)

−a+3 ≤ b ≤ 0 a− 1, a + b− 1, (a+b−2)ω

1 ≤ b ≤ a−1 a, (b−1, a−1)ω

From now on, for simplicity we denote βi = Φ(βi).

Theorem 4.4 Let β be a Pisot unit of degree 3. Then each tile is arcwise connected.

Proof:
We only need to prove this theorem for the cases when the β-expansion of 1 is infinite because the other

cases are shown by Theorem 1.2 on page 273 (c.f. [4]). We use Corollary 4.1 on page 288 to prove the
connectedness of each tile.

Case 1. c = 1 and −a + 1 ≤ b ≤ −2.
Here dβ(1) = .a−1, a+b−1, (a+b)ω, bβc = a−1 and the smallest tile in this case is Tη for η = (a+b)ω.
Since every conjugate of β is also a root of p(x)(x3−1)(1+x)(1+x6+· · ·+x6n+· · · ), we have

1+(b+1)β1+
P∞

i=0 ((a+b)β2+(a−2)β3−(b+2)β4− (a+b)β5−(a−2)β6+(b+2)β7) β6i =0

and all the coefficients have absolute value less than bβc = a− 1.
Case 2. c = −1 and −a + 3 ≤ b ≤ 0.
Here dβ(1) = .a−1, a+ b−1, (a+ b−2)ω, bβc = a − 1 and the smallest tile in this case is Tη for
η = a+b−1, (a+b−2)ω.

� Suppose that b ≤ −1.
Since every conjugate of β is a root of p(x)

∑∞
i=0 xi, we have

1+(1−b)β1+(1−a−b)β2+(2−a−b)
P∞

i=3 βi = 0

and all the coefficients have absolute value less than a− 1.
� Suppose that b = 0.

Since every conjugate of β is a root of p(x)
∑∞

i=0 x2i, we have ω(1, 1−a), 0, 1. = 0 and ω(1, 0), 0.1 =
ω(a−1, 0).1 − 0.1. Adding .(a−2)ω we get that a common point of Tη and Tη − Φ(β−1) is

ω(1, 0), 0.η = ω(a−1, 0).η − 0.1

According to (1.2), both expansions are admissible.
Case 3. c = −1 and 1 ≤ b ≤ a− 1.

Here dβ(1)= .a, (b−1, a−1)ω and the smallest tile in this case is Tη for η =(a−1, b−1)ω. Since every
conjugate of β is also a root of p(x)

∑∞
i=0 x2i, we have
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1−bβ1+
P∞

i=0 ((1−a)β2+(1−b)β3) β2i = 0.

and all the coefficients have absolute value less than bβc = a. 2

4.3 Connectedness of self-affine tilings generated by a quartic Pisot unit.
Let β be a Pisot unit of degree 4 defined by the monic polynomial p(x) = x4 − ax3 − bx2 − cx− 1 ∈ Z[x].
We prove that the dual tiling generated by β is connected, i.e. each tile is connected, if p(0) = 1. We also
prove that if p(0) = −1 then a+c−2bβc ≤ 1 and that each tile is connected if and only if a+c−2bβc 6= 1.

If p(0) = −1 and a + c − 2[β] = 1, we prove the existence of a disconnected tile. As a byproduct, we
give a complete classification of the β-expansion of 1 for quartic Pisot units. Let us start with a

Proposition 4.1 A monic polynomial

p(x) = x4 − ax3 − bx2 − cx− d

with d = ±1 is a Pisot polynomial if and only if{
|b− 2| < a + c,

a− c > 0,
for d = −1;

{
|b| < a + c,

a2 + 4b− c2 > 0,
for d = 1.

which is just an explicit form of the quartic case of Corollary 2.2 on page 278. In the Theorem 4.5 and
Theorem 4.7 on page 301, we frequently use Parry’s conditions (1.1) and (1.2) on admissible words.

Theorem 4.5 Let β be a Pisot unit of degree 4 with minimal polynomial p(x) = x4−ax3−bx2−cx+1.
Then each tile is arcwise connected.

Proof: To prove this and the following Theorem we use Theorem 4.1, Corollary 4.1 on page 288. If β
is a Pisot unit of degree 4 then, according to the Proposition 4.1, we have that the coefficients satisfy the
system of inequalities:


|b− 2| ≤ a + c− 1,
a− c ≥ 1,

=⇒

8<:
a ≥ 1,
1− a ≤ c ≤ a− 1,
3− a− c ≤ b ≤ a + c + 1.

Case 1. If 1−a ≤ c ≤ −1 then 4−a ≤ b ≤ a.

• If 2 ≤ b ≤ a, we have a ≥ 2. Here, bβc = a,

dβ(1) = .a, b−1, (a+c, b−2)ω,

and the smallest tile is Tη for

η =


(a+c, b−2)ω, if b−1 < a+c;
b−1, (b−1, b−2)ω, if b−1 = a+c.

Since every conjugate of β is also a root of p(x)
∑∞

i=0 x2i, we have
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1− cβ1 + (1− b)β2 +
P∞

i=0 (−(a + c)β3 + (2− b)β4) β2i = 0.

Here, all the coefficients have absolute value less than bβc, so according to Corollary 4.1 on
page 288, each tile is arcwise connected.

• If b = 1 then a ≥ 3, c ≥ 2−a. In this case bβc = a,

dβ(1) = .a, 0, a+c−1, a−1, a+c, (a+c−1)ω,

and the smallest tile is Tη for η = a−1, a+c, (a+c−1)ω. Since every conjugate of β is also a root
of p(x)

∑∞
i=0 x3i, we have

1−cβ1+
P∞

i=0 (−β2+(1−a)β3+(1−c)β4) β3i = 0,

and all the coefficients have absolute value less than bβc.

• If 4− a ≤ b ≤ 0 then a ≥ 4 and c ≥ 3− a. Here bβc = a−1,

dβ(1) = .a−1, a+b−1, a+b+c−1, (a+b+c−2)ω,

and the smallest tile is Tη for η=a+b−1, a+b+c−1, (a+b+c−2)ω. Since every conjugate of β is
also a root of p(x)

∑∞
i=0 x3i, we have

1−cβ1+
P∞

i=0 (−bβ2+(1−a)β3 +(1−c)β4) β3i = 0,

and all the coefficients except 1− a have absolute value less than bβc. A common point of Tη and
Tη − Φ(β−1) is

ω(1− c, 0,−b),−c.η = ω(a−1, 0, 0).η − 0.1.

Case 2. If 0 ≤ c ≤ a−1 then 4−2a ≤ b ≤ 2a.

• If 4− 2a ≤ b ≤ −a, we have a ≥ 4, c ≥ 3, 2 ≤ 2a + b− 2 ≤ a− 2 and bβc = a− 2.

∗ If b ≤ −a− 1, then c ≥ 4 and a ≥ 5.
First, let us find the β-expansion of 1 . Since 1 ≤ a+b+c−2 < a−2, there exists an integer
2 ≤ k ≤ a − 2 with a−2

k ≤ a+b+c −2 < a−2
k−1 , which implies that (k−1)(a+b+c−2) <

a−2 ≤ k(a+b+c−2).

� If (k−1)(a+b+c−2) ≥ c−2 we get k ≥ 3. Let m be the integer defined by m = inf{i :
(i + 1)(a + b + c − 2) ≥ c − 2}. Since b < −a, we have m ≥ 1. By the definition
m ≤ k − 2 and (m + 1)(a + b + c− 2) ≤ a− 3.

� If (m + 1)(a + b + c − 2) < a − 3 let us show that the β-expansion of 1 is even-
tually periodic with period 1 and preperiod m + 3, so let us write it as dβ(1) =
.d1, d2, · · · , dm+3, d

ω
m+4.

When m = 1, since
p(x)(1+x) = x5−(a−1)x4−(a+b)x3−(b+c)x2−(c−1)x+1,
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we get that
1 = .a−2, 2a+b−2, 2a+2b+c−2, 2a+2b+2c−3, (2a+2b+2c−4)ω.

Here d5 = dm+4, d4 = dm+3, d3 = dm+2.
When m = 2, since
p(x)(1+x+x2) = x6−(a−1)x5−(a+b−1)x4−(a+b+c)x3−(b+c−1)x2−(c−1)x+1,

we get that
1= .a−2, 2a+b−3, 3a+2b+c−3, 3a+3b+2c−4, 3(a+b+c)−5, 3(a+b+c− 2)ω.

Here d6 = dm+4, d5 = dm+3, d4 = dm+2, d3 = dm+1, where the formulas of di

will be given later.
When m ≥ 3, since
p(x)

Pm
i=0 xi =xm+4−(a−1)xm+3−(a+b−1)xm+2−(a+b+c−1)xm+1−

Pm
i=4(a+b+c−

2)xi−(a+b+c−1)x3−(b+c−1)x2−(c−1)x+1

(where the terms
Pm

i=4(a+b+c−2)xi do not appear for m = 3), we have that
d1 = a− 2, d2 = 2a + b− 3, d3 = 3a + 2b + c− 4,
di = di−1 + (a + b + c− 2) for i ∈ {4, 5, · · ·m},
dm+4 = (m + 1)(a + b + c− 2), dm+3 = dm+4 + 1, (∗∗)
dm+2 = dm+3 − (c− 1), dm+1 = dm+2 − (b + c− 1).
We now verify that the conditions of lexicographic order on dβ(1) are satisfied. Since
a + b + c − 1 ≥ 2, we have that d2 < d3 < · · · < dm < dm+1. Here we get that
d2 ≥ b + 2a− 3 ≥ 1 and dm+1 =≤ a− 2. Since dm+1 > dm+2 and dm+2 ≥ 0 we need
to check only the case when dm+1 = a−2, which implies that d2−dm+2 = a− c > 0.
So the conditions of lexicographic order are satisfied.

� If (m + 1)(a + b + c− 2) = a− 3 then m = k + 2. As a result we have
m(a+b+c−2)<c−2 ≤ (m+1)(a+b+c−2)=a−3<a−2 ≤ (m+2)(a+b+c−2),

which implies that b + 2c− 2 ≥ 0.
For m = 1 we get a + 2b + 2c− 1 = 0.
Since p(x)(x + 1)(x2 + x + 1) = x7 −

P5
i=1 dix

7−i − (c + 2)x + 1 is equal to
x7−(a−2)x6−(b+a−2)x5−(2a+2b+c−1)x4−(b+2c−2)x2−(c+2)x+1,

and d1 = a− 2 > d2 > d3 > d4 = 0, 0 ≤ d5 ≤ c− 3 ≤ a− 4, we get that
dβ(1) = .a−2, (b+2a−2, 2a+2b+c−1, 0 , 2c+b−2, c−3, a−3)ω .

For m ≥ 2 we will show that
H If b + 2c− 2 > 0, the β-expansion of 1 is eventually periodic with period 2m + 4
and preperiod 1. So

dβ(1) = .a−2, (d2, · · · , d2m+3, c− 3, a− 3)ω.

H If b + 2c − 2 = 0, the β-expansion of 1 is eventually periodic with period 1 and
preperiod 2m + 4. So

dβ(1) = .a−2, d2, · · · , d2m+1, d2m+2−1, a−2, a+b+c−3, (a+b+c−2)ω.

In both cases, di’s satisfy
p(x)

Pm
i=0 xi Pm+1

i=0 xi = x2m+5 −
P2m+3

i=1 di x2m+5−i − (c− 2)x + 1.

Since ma+(m+1)b+(m+1)c−2m+1 = 0, we have
d1 = a− 2, d2 = 2a + b− 3,
di = ia + (i− 1)b + (i− 2)c− 2(i− 1) for 3 ≤ i ≤ m, (these terms do not appear for
m = 2)
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dm+1 =a−b−2c, dm+2 =a−c, dm+3 =0, dm+4 =−a−b,

d2m+3−i = ia + (i + 1)b + (i + 2)c− 2(i + 1) for 1 ≤ i ≤ m− 2, (these terms do not
appear for m = 2)
d2m+3 = b + 2c− 3

Since a + b + c− 2 > 0, we have di < di+1 and dm+2+i > dm+3+i for 2 ≤ i ≤ m.
We also have that d2 > 0, 0 ≤ dm+2 < dm+1, dm+4 ≤ a − 4 and d2m+2 < a − 2.
Since dm+1 ≤ a − 3 for b + 2c − 3 ≥ 0, for 2 ≤ i ≤ 2m + 3 we have that
0 ≤ di ≤ a− 3.
For b+2c−2=0 we have that m(a+b+c−2)=c−3, dm+1 = a−2 and d3 = 3a− 3c
for m ≥ 3. Since a+b+c−3 = a−c−1, dm+2 = a−c and d2−(a−c) = a−c−1 ≥ 0,
for c = a − 1 we need to compare d3 with dm+3 = 0. Since d3 > 0, the conditions
of lexicographic order on dβ(1) are satisfied in this case also.

• If (k−1)(a+b+c−2)<c−2, let us show that the β-expansion of 1 is eventually periodic
with preperiod 1 and period 2k+2. So

dβ(1) = .a−2, (d2, · · · , d2k+1, c− 3, a− 3)ω,

where di’s are as follows:
p(x)

Pk−1
i=0 xi Pk

i=0 xi = x2k+3 −
P2k+1

i=1 di x2k+3−i − (c− 2)x + 1 . So we have
d1 = a− 2, d2 = 2a + b− 3,
di = ia + (i− 1)b + (i− 2)c− 2(i− 1) for 3 ≤ i ≤ k − 1, (these terms do not appear for
k = 3)
dk =ka+ (k−1)b+ (k−2)c−2k+3, dk+1 =ka+ kb+ (k− 1)c−2k+3,
dk+2 =(k−1)a+ kb+kc−2k+3, dk+3 =(k−2)a+(k−1)b+kc−2k+3,

d2k+1−i = ia+ (i + 1)b + (i + 2)c− 2(i + 1) for 1 ≤ i ≤ k− 3, (these terms do not appear
for k = 3)
d2k+1 = b + 2c− 3.

So we have that d1 > d2, di < di+1 for 2 ≤ i ≤ k − 1, dk > dk+1 > dk+2, dk+2 < dk+3,
dk+i > dk+1+i for 3 ≤ i ≤ k. First we notice that d2 ≥ 1, dk ≤ a − 2, dk+2 ≥ 1,
dk+3 < dk and d2k+1 ≥ dk+1 − 1. So all the di’s are nonnegative and smaller than
d1, only dk can be equal to d1. But, if (k − 1)(a + b + c − 2) = c − 3 we have that
d3 > d2 ≥ dk+1 > dk+2. So conditions of lexicographic order are satisfied.

Second we find the common point of Tη and Tη −Φ(β−1). Since every conjugate of β is also
a root of p(x)(x2+x+1)(x+1)

∑∞
i=0 x6i, we have

1+(2−c)β1+
P∞

i=0((2−2c−b)β2+(1−a−2b−2c)β3+(1−2a−2b−c)β4

+(2−2a−b)β5+(3−a)β6+(3−c)β7) β6i = 0

and all the coefficients have absolute value less than bβc.
∗ If b = −a, we have 5− a ≤ 2c− a− 1 ≤ a− 3. We get that

dβ(1) = .a−2, (a−2, c−1, 2c−a−1, 2c−a−2, c−3, a−3)ω

for 1 ≤ 2c− a− 1 ≤ a− 3, while

dβ(1) = .a−2, a−2, c−2, 2c−3, (2c−4)ω
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for 5− a ≤ 2c− a− 1 ≤ 0.

� If 3 ≤ c ≤ a − 2, since every conjugate of β is also root of p(x)(x2+x+1)
P∞

i=0 x3i, we
have

1 + (1− c)β1 + (a + 1− c)β2 + (1− c)β3 + (2− c)β4

P∞
i=0 βi = 0.

For 4 ≤ c ≤ a−2 all the coefficients have absolute value less than bβc, so according to
Corollary 4.1 on page 288, each tile is arcwise connected.
For c = 3 we get that

a−2 , 0 . 1 = ω1 , 2 , 0 , 2 . 0

which shows that a−2, 0.η = ω1, 2, 0, 2.η−0.1 is a common point of Tη and Tη−Φ(β−1)
for a ≥ 5.

� If c = a−1, since every conjugate of β is also a root of
p(x)(x3−1)(x+1)2

∑∞
i=0 x6i =0, then

1+(3−a)β1+(3−a)β2+(−2β4−β5+β6+2β7+β8−β9)
P∞

i=0 β6i = 0

and for c ≥ 4 all the coefficients have absolute value less than bβc, so, according to
Corollary 4.1 on page 288, each tile is arcwise connected.
If b = −a, c = 3 and a = 4 we have that

dβ(1) = .2, (2, 2, 1, 0, 0, 1)ω,

and for η = (2, 2, 1, 0, 0, 1)ω we get that
ω(1, 2, 1, 0, 0, 0), 0, 0.η = ω(1, 0, 0, 0, 1, 2), 0, 1, 1.η − 0.1

is a common point of Tη and Tη − Φ(β−1).

• If −a + 1 ≤ b ≤ −1, we have 3− a ≤ b + c ≤ a− 2.

� If b + c ≥ 0 and c ≥ 2, we have a ≥ 3 and

dβ(1) = .a− 1, (b + a, c + b, c− 2, a− 2)ω.

Since every conjugate of β is also a root of p(x)(x+1)
∑∞

i=0 x4i =0, we have

1+ (1−c)β1+ (−b−c)β2−(a+b)β3+(2−a)β4+(2−c)β5)
P∞

i=0 β4i = 0

and for b ≤ −2 all the coefficients have absolute value less than bβc. So, according to
Corollary 4.1 on page 288, each tile is arcwise connected.
For b = −1, since dβ(1) = .a − 1, (a − 1, c − 1, c − 2, a − 2)ω, the smallest tile is Tη for
η = (a− 1, c− 1, c− 2, a− 2)ω. Thus we get that

.η = ω(c− 2, a− 2, a− 1, c− 1), c− 1.η − 0.1

is a common point of Tη and Tη − Φ(β−1).

� If b+c ≥ 0 and c=1, we have b=−1, a ≥ 3 and

dβ(1) = .a−1, a−2, a−1, (a−2)ω.

Hence the smallest tile is Tη for η = a−1, (a−2)ω. Since every conjugate of β is also a root
of p(x)(1 + x3)

∑∞
i=0 x6i = 0, we have
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1−β1+ (β2+(1−a)β3)
P∞

i=0 β3i = 0.

So a common point of Tη and Tη − Φ(β−1) is
ω(0, 1, 0).η = ω(0, a−1, 0), 1.η − 0.1.

� If b + c ≤ −1, we have a ≥ 4 and

dβ(1) = .a−1, a+b−1, a+b+c−1, (a+b+c−2)ω.

So the smallest tile in this case is Tη for

η =


.a+b+c−1, (a+b+c−2)ω, for c ≥ 1;
.a+b−1, a+b−1, (a+b−2)ω, for c = 0.

Since every conjugate of β is also a root of p(x)(x+1)
∑∞

i=0 x4i =0, we have

1+ (1−c)β1+ (−b−c)β2−(a+b)β3+(2−a)β4+(2−c)β5)
P∞

i=0 β4i = 0

and for b ≤ −2 all the coefficients have absolute value less than bβc. So, according to
Corollary 4.1 on page 288, each tile is arcwise connected.
For b = −1 we have that c = 0 and η = a−2, a−2, (a−3)ω. So

ω(2, 0, 0, 1), 1.η = ω(a−2, a−1, 0, 0).η − 0.1

is a common point of the smallest tile Tη and Tη − Φ(β−1).

• If 0 ≤ b ≤ a, we have a ≥ 2 and

dβ(1) =

8>><>>:
.a, (b, c−1, a−1)ω, if a ≥ 2 and 1 ≤ c ≤ a−1;
.a, b−1, (a, b−2)ω, if a ≥ 2, c = 0, and 2 ≤ b ≤ a;
.a, 0, a−1, (a, 0, a−2)ω, if a ≥ 2, c = 0 and b = 1;
.a−1, a−1, a−1, (a−2)ω, if a ≥ 3, c = 0 and b = 0.

So bβc =


a− 1, if b=c=0;
a, otherwise;

and the smallest tile is Tη for

η =

8>>>><>>>>:
(a, c−1, a−1)ω, for a ≥ 2, b = a, and 1 ≤ c ≤ a−1;
(a−1, b, c−1)ω, for a ≥ 2, 0 ≤ b ≤ a−1, and 1 ≤ c ≤ a−1;
(a, b−2)ω, for a ≥ 2, c = 0, and 2 ≤ b ≤ a;
(a, 0, a−2)ω, for a ≥ 2, b = 1, and c = 0;
a−1, a−1, (a−2)ω, for a ≥ 3, b = 0, and c = 0.

Since every conjugate of β is also a root of p(x)
∑∞

i=0 x3i = 0, we have

1−cβ1 − (bβ2+(a−1)β3+(c−1)β4)

∞X
i=0

β3i = 0. (4.4)

∗ For b ≤ a−1, with the exception of the case where b = c = 0, all the coefficients have
absolute value less than bβc = a. So, according to Corollary 4.1 on page 288, each tile is
arcwise connected.
For b = c = 0, from (4.4), we get that
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ω(1, 0, 0), 0.η = ω(a− 1, 0, 0).η − 0.1

is a common point of the smallest tile Tη and Tη − Φ(β−1), where η = a−1, a−1, (a−2)ω.

∗ For b = a and c ≥ 1, from (4.4), we get that

.η = ω(c− 1, a− 1, a), c.η − 0.1

is a common point of the smallest tile Tη and Tη − Φ(β−1) where η = (a, c−1, a−1)ω.

∗ For b = a and c = 0, from (4.4), we get that
ω(1, 0, 0), 0.η = (a− 1, a, 0).η − 0.1

is a common point of the smallest tile Tη and Tη − Φ(β−1) where η = (a, a−2)ω.

• If a+1 ≤ b ≤ 2a, we have c−b+a ≥ −1.

∗ If c−b+a ≥ 0, we have bβc = a + 1 and

dβ(1) = .a+1, (b−a−1, c+a−b, b−c−1, c, a)ω.

Since every conjugate of β is also a root of p(x)(x−1)(x4−1)
P∞

i=0 x8i =0, we have

1−(c+1)β1+((c−b)β2+(b−a)β3+aβ4+cβ5) (1−x4)
P∞

i=0 β8i = 0

and all the coefficients have absolute value less than bβc.
∗ If c−b+a =−1 and b ≥ a+2, we have bβc = a + 1 and

dβ(1) = .a+1, (b−a−2, a+1, b−a−2, 0, a−1, b−a, a−1, b−a−1, a)ω.

Since every conjugate of β is also a root of p(x)(x2−x+1)
P∞

i=0 x5i =0, we have

1−(c+1)β1−(aβ2−β3+cβ4+aβ5+cβ6)
P∞

i=0 β5i = 0

and all the coefficients have absolute value less than bβc.
∗ If c−b+a =−1 and b = a+1, we have c = 0, bβc = a and

dβ(1) = .a, a, (a, a−1)ω.

Since every conjugate of β is also a root of the p(x)(x2+1)
P∞

i=0 β4i =0, we have

.η = ω(a− 1, a), a, 0.η − 0.1

is a common point of the smallest tile Tη and Tη − Φ(β−1).

2

From the proof of the Theorem 4.5 on page 292 we get also the following theorem which gives the
β-expansion of 1 for any Pisot unit of degree four with minimal polynomial x4−ax3− bx2− cx+1 = 0.

Theorem 4.6 Let β be a Pisot unit of degree four with minimal polynomial p(x) = x4 − ax3 − bx2 −
cx + 1 = 0. The β-expansion of 1 is:

- When 1− a ≤ c ≤ −1,
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? and 4− a ≤ b ≤ 0, dβ(1) = .a−1, a+b−1, a+b+c−1, (a+b+c−2)ω

? and b = 1, dβ(1) = .a, 0, a+c−1, a−1, a+c, (a+c−1)ω

? and 2 ≤ b ≤ a, dβ(1) = .a, b− 1, (a + c, b− 2)ω

- When 0 ≤ c ≤ a− 1

? and 4− 2a ≤ b ≤ −a− 1, let k be the integer of {2, 3, · · · , a−2} with (k−1)(a+b+c−2) <

a−2 ≤ k(a+b+c−2).
∗ If (k−1)(a+b+c−2) ≥ c−2 let

m = inf{i ∈ N such that (i+1)(a+b+c−2) ≥ c−2}. We have 1 ≤ m ≤ k − 2.
� If (m + 1)(a + b + c− 2) < a− 3, the β-expansion of 1 is eventually periodic with

period 1 and preperiod m + 3.
m=1 ⇒ dβ(1)= .a−2, 2a+b−2, 2a+2b+c−2, 2a+2b+2c−3, (2a+2b+2c−4)ω,

m=2 ⇒ dβ(1)= .a−2, 2a+b−3, 3a+2b+ c−3, 3a+2b+2c−4, 3(a+b+c)−5, (3a+3b+3c−6)ω,

m≥3 ⇒ dβ(1)= .a−2, 2a+b−3, 3a+2b+c−4, d4, · · · , dm+3, (dm+4)
ω,

with di = di−1+a+b+c−2 for 4 ≤ i ≤ m (these terms do not appear for m = 3)

and


dm+1 =dm+2−b−c+1,
dm+2 =dm+3−c+1,
dm+3 =dm+4+1,
dm+4 =(m+1)(a+b+c−2).

� If (m + 1)(a + b + c− 2) = a− 3 then
m=1 ⇒ dβ(1)= .a−2, (2a+b−2, 2a+2b+c−1, 0, 2c+b−2, c−3, a−3)ω

If m ≥ 2 and b + 2c ≥ 3, the β-expansion of 1 is eventually periodic with preperiod
1 and period 2m+4. So

dβ(1)= .a−2, (2a+b−3, d3, · · · , d2m+3, c−3, a−3)ω.

If m ≥ 2 and b + 2c = 2, the β-expansion of 1 is eventually periodic with period 1
and preperiod 2m + 4. So
dβ(1) = .a−2,2a+b−3,d3,· · ·,d2m+1,d2m+2−1,a−2, a+b+c−3,(a+b+c−2)ω where
di = ia + (i− 1)b + (i− 2)c− 2(i− 1) for 3 ≤ i ≤ m, (these terms do not appear for
m = 2)
dm+1 =a−b−2c, dm+2 =a−c, dm+3 =0, dm+4 =−a−b,

d2m+3−i = ia + (i + 1)b + (i + 2)c− 2(i + 1) for 1 ≤ i ≤ m− 2, (these terms do not
appear for m = 2)
d2m+3 = b + 2c− 3.

∗ If (k−1)(a+b+c−2) ≤ c−3, the β-expansion of 1 is eventually periodic with preperiod
1 and period of length 2k + 2. So

dβ(1)= .a− 2, (2a + b− 3, d3, · · · , d2k+1, c− 3, a− 3)ω

with di = ia + (i− 1)b + (i− 2)c− 2(i− 1) for 3 ≤ i ≤ k− 1, (these terms do not appear
for k = 3)
dk =ka+ (k−1)b+ (k−2)c−2k+3, dk+1 =ka+ kb+ (k− 1)c−2k+3,
dk+2 =(k−1)a+ kb+kc−2k+3, dk+3 =(k−2)a+(k−1)b+kc−2k+3,

d2k+1−i = ia+ (i + 1)b + (i + 2)c− 2(i + 1) for 1 ≤ i ≤ k− 3, (these terms do not appear
for k = 3)
d2k+1 = b + 2c− 3.
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? and b =−a, dβ(1)=


.a−2,(a−2, c−1, 2c−a−1, 2c−a−2, c−3, a−3)ω, if 2c−a≥2;
.a−2, a−2, c−2, 2c−3, (2c−4)ω, if 2c−a≤1;

? and −a + 1 ≤ b ≤ −1,

∗ for b+c≥0 we have dβ(1)=


.a−1,(b+a, c+b, c−2, a−2)ω, if (b, c) 6=(−1, 1);
.a−1, a−2, a−1, (a−2)ω, if (b, c)=(−1, 1);

∗ if b + c ≤ −1, dβ(1) = .a− 1, a + b− 1, a + b + c− 1, (a + b + c− 2)ω,

? and 0 ≤ b ≤ a,

∗ for c ≥ 1 we have dβ(1) = .a, (b, c−1, a−1)ω,

∗ for c = 0 we have dβ(1) =

8<:
.a−1, a−1, a−1, (a−2)ω if b = 0;
.a , 0 , a−1, (a, 0 , a−2)ω if b = 1;
.a , b−1, ( a , b−2)ω if b ≥ 2

? and a + 1 ≤ b ≤ 2a,

∗ for a− b + c ≥ 0 we have dβ(1) = .a+1, (b−a−1, a−b+c, b−c−1, c, a)ω

∗ for a− b + c = −1 we have

dβ(1)=


.a, a, (a, a− 1)ω, if b=a+1;
.a+1,(b−a−2, a+1, b−a−2, 0, a−1, b−a, a−1, b−a−1, a)ω, if b≥a+2.

Example 2 Here we want to show that from a class of Pisot units of degree 4 which are roots of the
polynomial x4 − ax3 − bx2 − cx + 1 = 0, we can obtain a β-expansion of 1 with an arbitrarily long
preperiod. For n ≥ 5, a = n + 2, b = 4− 2a = −2n and c = a− 1 = n + 1 we have that bβc = a− 2
and the β-expansion of 1 is

dβ(1) = .n, 1, 3, 4, 5, · · · , n−3, n−2| {z }
n−4 elements

, n, 1, 0, n−2, n−4, n− 5, · · · , 3, 2| {z }
n−5 elements

, 0, n, 0, 1ω.

Therefore the length of the preperiod is 2n.

Lemma 3 If β is a Pisot unit of degree four with minimal polynomial p(x) = x4 − ax3 − bx2 − cx− 1,
and if the negative root γ of the polynomial x2 − bβcx− 1 has the property

p(γ) > 0,

then at least one of the tiles is not connected.

Proof: Let dβ(1) = .d−1, d−2, · · · and ξ = ξ−1β
−1 + ξ−2β

−2 + · · · be a β− expansion with dβ(1) >
.ξ−1, ξ−2, · · ·≥ .d−2, d−3, · · · . Since p(−1)>0 and p(0) = −1, the polynomial p(x) has at least one root
in the interval (−1, 0). Let θ ∈ (−1, 0) be the biggest among such roots. First we want to show that

Tξ ∩
(
Tλ + Φ(ξ −mβ−1)

)
= ∅ (4.5)

for m ∈ {1, 2, · · · } such that ξ−1 ≥ m. If we suppose the contrary, then there exists an expansion
· · · , c1, c0.m with ci ∈ [−bβc, bβc] ∩ Z for i = 0, 1, · · · and c0 ≤ bβc − 1, which implies that mθ−1 +
c0 +

∑∞
i=1 ciθ

i = 0. The assumptions of the lemma show that γ < θ. So θ is between two roots of the
polynomial x2 − bβcx− 1 and we have that

1
θ

+ bβc − 1 +
bβcθ2

1− θ2
<

1
θ

+ bβc − 1− bβcθ
1 + θ

=
θ2 − bβcθ − 1
−θ(1 + θ)

< 0,
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which implies that mθ−1 + c0 +
∑∞

i=1 ciθ
i < 0. Second, we prove the existence of a disconnected tile.

Since .d−2, d−3, · · · < dβ(1), let

l = min{k ∈ N | .d−2, d−3, · · · , (d−k + 1) is admissible}.

For l = 2 we have by (4.3),

G−1(Tλ) = T0 ∪ T1 ∪ · · · ∪ Tbβc−1 ∪ Tbβc and bβc ≥ (d−2 + 1) ≥ d−2, d−3 · · ·

By using (4.5) with ξ = bβc/β and

Tbβc−m ⊂ Tλ + Φ(
bβc −m

β
),

we deduce
Tbβc ∩ Tbβc−m = ∅

for m = 1, 2, · · · , bβc. Therefore the central tile Tλ is disconnected. For l ≥ 3 let ε = d−3, · · · , (d−l+1).
Then we have

G−1(Tε) = T0,ε ∪ T1.ε ∪ · · · ∪ Td−2,ε

with
d−2, ε >lex d−2, d−3, · · · = Uβ(1).

Therefore the tile Tε is disconnected in the same way by using (4.5). 2

Theorem 4.7 Let β be a Pisot unit of degree 4 with minimal polynomial p(x) = x4−ax3−bx2−cx−1.
Each tile is arcwise connected except for the following cases:8><>:

a ≥ 5,
c = a− 3,
5−3a

2
≤ b ≤−a,

8><>:
a ≥ 3,
c = a− 1,
1−a

2
≤ b ≤−1,

8><>:
a ≥ 3,
c = a + 1,
1+a

2
≤ b ≤ a−1,

8><>:
a ≥ 1,
c = a + 3,
5+3a

2
≤ b ≤ 2a+2.

Proof: We only need to prove this theorem for the cases when the β-expansion of 1 is infinite because
the other cases are shown in Theorem 1.2 on page 273. According to Proposition 4.1 on page 292, the
coefficients satisfy the following system of inequalities:

|b| ≤ a + c− 1,
a2 + 4b− c2 ≥ 1.

Here we have the following bounds for the coefficients:8><>:
a ≥ 1,

1− a ≤ c ≤ a + 3,

2− 2a ≤ b ≤ 2a + 2.

Case 1. For −a+1≤c≤−1 we have a≥2, 1−a−c≤ b≤−1+a+c, hence 2−a≤ b≤a−2.

• For b≤0 we have bβc = a− 1 and
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dβ(1) =


.a−1, a+b−1, a+b+c−1, (a+b+c)ω, if (c, b) 6= (−1, 0);
.a−1, a−1, a−1, 0, 0, 1, if (c, b) = (−1, 0).

Therefore the smallest tile in this case is Tη for

η =

8<:
a+b−1, a+b+c−1, (a+b+c)ω, for c ≤ −2;
(a+b−1)ω, for c = −1 and b 6= 0;
a−1, a−1, 0, 0, 1, for (c, b) = (−1, 0).

∗ For c ≥ 2− a, since every conjugate of β is also a root of p(x)(x3−1)
P∞

i=0 x6i =0, we have

1+cβ1+ (bβ2+(a−1)β3−(c+1)β4−bβ5− (a−1)β6+(c+1)β7)
P∞

i=0 β6i =0

and
ω(0,−b,−c−1, a−1, 0, 0). η = ω(−c−1, a−1, 0, 0, 0,−b),−c. η − 0.1

is a common point of the smallest tile Tη and Tη − Φ(β−1).

∗ For c = 1− a we have b = 0. Since every conjugate of β is also a root of
p(x)

(
x2+x+1 + (x3−1)x5

∑∞
i=0 x6i

)
=0, then

1−(a−2)β1−(a−2)β2+β3+(a−1)β4+(a−2)β5+((a−2)β6−(a−1)β8 −(a−2)β9+(a−1)β11)
P∞

i=0 β6i =

0

and
ω(a−1, 0, 0, 0, 0, a−2), a−2, a−1, 1, 0, 0. η=
ω(a−2, a−1, 0, 0, 0, 0), 0, a−2, a−2. η −0.1

is a common point of the smallest tile Tη and Tη − Φ(β−1).

• For b ≥ 1 we have a ≥ 3, 2− a ≤ c ≤ −1 and 1 ≤ b ≤ a + c− 1. Here bβc = a and

dβ(1)= .a, b−1, (c+a, b)ω,

therefore the smallest tile in this case is Tη for η = (a+c, b)ω. Since every conjugate of β is also a
root of p(x)(x3−1)

∑∞
i=0 x6i =0, then

1+cβ1+ (bβ2+(a−1)β3−(c+1)β4−bβ5− (a−1)β6+(c+1)β7)
P∞

i=0 β6i =0

and all the coefficients have absolute value less than bβc.

Case 2. For 0 ≤ c ≤ a− 1 we have −2a + 2 ≤ b ≤ 2a− 2.

• If −2a + 2 ≤ b ≤ −a then a ≥ 5 and 1 ≤ c ≤ a− 3.

∗ If 1 ≤ c ≤ a−4 then 1−a−c ≤ b ≤ −a and bβc=a−2.
First, let us find the β-expansion of 1 . Since 1 ≤ a+b+c < a−2, there exists an integer
k ∈ {2, 3, · · · , a−2} with a−2

k ≤ a+b+c < a−2
k−1 , which implies that (k−1)(a+b+c) <

a−2 ≤ k(a+b+c).
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� If (k− 1)(a+ b+ c) ≥ c+2 we get k ≥ 3 and c < a − 4. Let m be the integer
defined by m = inf{i : (i + 1)(a + b + c) ≥ c + 2}. By definition, m ≤ k − 2
and, since b ≤ −a, we get m ≥ 1. Let us show that the β-expansion of 1 is eventually
periodic with period 1 and that the length of the preperiod is m + 3. So let us write it as
dβ(1) = .a− 2, d2, · · · , dm+3, d

ω
m+4.

When m = 1, since
p(x)(1+x) = x5−(a−1)x4−(a+b)x3−(b+c)x2−(c+1)x−1,

we get that
1 = .a−2, 2a+b−2, 2a+2b+c−2, 2a+2b+2c−1, (2a+2b+2c)ω.

Here d5 = dm+4, d4 = dm+3, d3 = dm+2.
When m = 2, since

p(x)(1+x+x2) = x6−(a−1)x5−(a+b−1)x4−(a+b+c)x3−(b+c+1)x2−(c+1)x−1,

we get that
1= .a−2, 2a+b−3, 3a+2b+c−3, 3a+3b+2c−2, 3(a+b+c)−1, (3a+3b+3c)ω.

Here d6 = dm+4, d5 = dm+3, d4 = dm+2, d3 = dm+1, where the formulas of di will
be given later.
When m ≥ 3, since
p(x)

Pm
i=0 xi = xm+4−(a−1)xm+3−(a+b−1)xm+2−(a+b+c−1)xm+1−

Pm
i=4(a+b+c)xi−

(a+b+c+1)x3−(b+c+1)x2−(c+1)x−1

(where the terms
∑m

i=4(a+b+c)xi do not appear for m = 3), we have that
d2 =2a+b−3, d3 = 3a+2b+c−4,
di = di−1 + (a + b + c) for i ∈ {4, 5, · · ·m}
(these terms do not appear for m = 3), (∗)
dm+4 = (m + 1)(a + b + c), dm+3 = dm+4 − 1,
dm+2 = dm+3 − (c + 1), dm+1 = dm+2 − (b + c + 1).
We now verify that the conditions of lexicographic order on dβ(1) are satisfied. Since
a + b + c + 1 ≥ 0, we have that d2 ≤ d3 < · · · < dm < dm+1. Here we get that
d2 ≥ b + 2a − 3 ≥ 2 and dm+1 = m(a + b + c) + a − c − 3 ≤ c + 1 + a − c − 3 ≤ a − 2.
From definition of m, we have that dm+2 = (m + 1)(a + b + c) − c − 2 ≥ 0 and, since
m ≤ k− 2, we have that (m + 1)(a + b + c) < a− 2. Since dm+2 < dm+3 < dm+4, till now
we showed that all di’s are nonnegative and di ≤ a− 2.
We now study the cases where di is not strictly smaller than d1. For m = 1 only d2 =
b + 2a− 2 may be equal to a− 2. For m ≥ 2 only dm+1 may be equal to a− 2, which
means that m(a + b + c) = c + 1 and that d2 − dm+2 = a− c− 2 is a positive integer.
So we showed that the above expansions of 1 defined by (∗) are β-expansions of 1.

� If (k−1)(a+b+c) ≤ c+1 and k(a + b + c) = a− 2, let us show that the β-expansion of
1 is finite with length 2k + 4. Let us write it as dβ(1) = a − 2, d2, · · · , d2k+3, 1, where
p(x)

∑k−1
i=0 xi

∑k+1
i=0 xi = x2k+4 −

∑2k+3
i=1 dix

2k+4−i − 1.
When k = 2, since 2(a + b + c) = a− 2, we get

dβ(1) = .a−2, 2a+b−2, 2a+2b+c−2, a−2, 0, 2c+b+2, c+2, 1.

We now verify that the conditions of lexicographic order on dβ(1) are satisfied. Since
1−a−c ≤ b ≤ −a, we have 3 ≤ a−c−1 ≤ b+2a−2 ≤ a−2. Since d3 = d2 + (b + c) =
d4 − (c + 2), we have 0 ≤ d3 < a− 2. Since d6 = −(a + b), we have 0 ≤ d6 ≤ a− 5.
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Since d2 ≥ 3 and d8 = 1, the conditions of lexicographic order are satisfied.
When k ≥ 3, since k(a + b + c) = a− 2, we get
d2 = 2a + b− 3,
di = ia+(i−1)b +(i−2)c−4 for 3 ≤ i ≤ k−1, (these terms do not appear for k = 3)
dk =ka+(k−1)b +(k−2)c−3, dk+1 =ka+kb +(k−1)c−2,
dk+2 = a− 2, dk+3 = 0, dk+4 = 1− b− a,
d2k+2−i = ia +(i+1)b +(i+2)c+4 for 1 ≤ i ≤ k−3, (these terms do not appear for k = 3)
d2k+2 = 2c + b + 3, d2k+3 = c + 2, d2k+4 = 1.
We now verify that the conditions of lexicographic order on dβ(1) are satisfied. Here we
have that d2 ≤ d3 < · · · < dk, d2 ≥ 2 and dk = (k−1)(a+b+c)+a−c−3 ≤ a−2. Since
dk+1+c+2 = a−2, we have 0 ≤ dk+1 ≤ a−5. We also have that dk+4 ≥ dk+5 > · · · >
d2k+2, dk+4 = 1−b−a ≤ c ≤ a−4 and d2k+2 ≥ b+c+2+(k−1)(a+b+c) = 0. So
we showed that all di are nonnegative and not greater than d1. Since d2 ≥ 3 we have that
a−2 may be followed by 1 or 2. If dk = a−2 we have that d2−dk+1 = b+a+c+1 ≥ 2.
So the conditions of lexicographic order are satisfied.

� If (k− 1)(a + b + c) ≤ c + 1 and k(a + b + c) > a− 2, let us show that the β-expansion
of 1 is finite with length 2k+3. Let us write it as dβ(1) = .d1, d2, · · · , d2k+2, 1, where
p(x)

Pk−1
i=0 xi Pk

i=0 xi = x2k+3 −
P2k+2

i=1 dix
2k+3−i − 1.

When k = 2, we get
dβ(1) = .a−2, 2a+b−2, 2a+2b+c−1, a+2b+2c+1, 2c+b+2, c+2, 1

We now verify that the conditions of lexicographic order on dβ(1) are satisfied. Since
1−a− c ≤ b ≤ −a, then 3 ≤ b+2a−2 ≤ a−2. Since 2(a+ b+ c) > a−2 then 2 ≤
2a+2b+c−1 ≤ c−1 ≤ a−5, 0 ≤ a+2b+2c+1 ≤ a−5. Also b+2c+2 ≤ a−6 and
b+2c+3=2(b+c+a)−b−2a+3> 1−b−a ≥ 1. Only d2 or d6 can be equal to d1. Since
1 < d2 the conditions of lexicographic order are satisfied.
When k ≥ 3 we get
d1 = a− 2, d2 = 2a + b− 3,
di = ia+(i−1)b +(i−2)c−4 for 3 ≤ i ≤ k−1, (these terms do not appear for k = 3)
dk =ka+(k−1)b +(k−2)c−3, dk+1 =ka+kb +(k−1)c−1,
dk+2 = (k − 1)a + kb + kc + 1, dk+3 = (k − 2)a + (k − 1)b + kc + 3,
d2k+1−i = ia +(i+1)b +(i+2)c+4 for 1 ≤ i ≤ k−3, (these terms do not appear for k = 3)
d2k+1 = 2c + b + 3, d2k+2 = c + 2.

We now verify that the conditions of lexicographic order on dβ(1) are satisfied.
Here we have that 2 ≤ d2 ≤ d3 < · · · < dk, dk > dk+1 > dk+2, dk+2 < dk+3 and
dk+3 ≥ dk+4 > · · ·>d2k+1. The condition (k−1)(a+b+c) ≤ c+1 < a− 2 implies that
dk = (k−1)(a+b+c)+a−c−3 ≤ a−2 and dk+3 ≤ a−4. Also, since k(a+b+c) > a−2,
then dk+2 = k(a+b+c)+1−a > −1. Since c+1 ≥ (k−1)(a+b+c) then d2k+1 > 0.
So we showed that all di’s satisfy 0 ≤ di ≤ d1. Since d2 ≥ 3 we have that a− 2 may be
followed by 1 or 2. If dk = a−2, which means that (k−1)a+(k−1)b+(k−2)c−1 = 0,
then d2 − dk+1 = a− c− 1 ≥ 1. So the conditions of lexicographic order are satisfied.

Second, let us find the common point of the smallest tile Tη and Tη − Φ(β−1). Since every
conjugate of β is also a root of p(x)(x5−1)(x2−x+1)

P∞
i=0 x10i =0, then

1+(c+1)β1+ ((b+c +1)β2+(a+b+c)β3+(a+b−1)β4+(a−2)β5−(c+2)β6
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−(b+c+1)β7−(a+b+c)β8−(a+b−1)β9−(a−2)β10+(c+2)β11)
P∞

i=0 β10i =0

and
ω(c+2, 0 , 1−a−b, 0 ,−b−c−1, 0 , a−2, 0 , a+b+c, 0 ), c+1. η=
ω(a−2, 0 , a+b+c, 0 , c+2, 0 , 1−a−b, 0 ,−1−b−c, 0 ). η −0.1

is a common point of the smallest tile Tη and Tη − Φ(β−1).

∗ If c = a− 3, we have 5− 3a

2
≤ b ≤ −a, bβc=a−2 and

dβ(1)= .a−2, b+2a−2, (3a+2b−4, 3a+2b−5, 2a+b−3, 0, 1−a−b, 2−a−b, 0, b+2a−3)ω.

To show that one of the tiles is not connected, according to Lemma 3 on page 300, it is enough
to prove that p(γ)>0. Since γ2−(a−2)γ−1=0, we have

p(γ) ≥ γ4 − aγ3 + aγ2 − (a− 3)γ − 1 = −γ2(γ − 2) > 0.

• If −a + 1 ≤ b ≤ −1, we have a ≥ 3, 0 ≤ c ≤ a− 1.

∗ If 0 ≤ c ≤ a− 3, we have a ≥ 4 and

dβ(1) =

8<:
.a−1, a+b, b+c, c+1, 1, if b+c≥0;
.a−1, a+b−1, a−1, 0 , c+1, 1, if b+c=−1;
.a−1, a+b−1, a+b+c−1, (a+b+c)ω, if b+c≤−2.

� If c+b≤−2 and b+a≥2, since every conjugate of β is also a root of p(x)(x3−1)
P∞

i=0 x6i =

0, we have
1+cβ1+ (bβ2+(a−1)β3−(c+1)β4−bβ5−(a−1)β6+(c+1)β7)

P∞
i=0β6i =0

and
ω(c+1, 0 ,−b, 0 , a−1, 0 ), c . η = ω(a−1, 0, c+1, 0 ,−b, 0 ). η −0.1

is a common point of the smallest tile Tη and Tη − Φ(β−1).
� If b=−a+1 and c≥1, we have c + b ≤ −2 and the smallest tile is Tη for η = (c + 1)ω.

Since every conjugate of β is also a root of p(x)(x4−1)(x + 1)
P∞

i=0 x8i =0, then
1+(c+1)β1+ ((c+1−a)β2+β3+(a−2)β4

−(c+2)β5+(a−c−1)β6−β7−(a−2)β8+(c+2)β9)
P∞

i=0β8i =0

and
ω(c+2, 0 , 0 , a−c−1, 0 , a−2, 1 , 0 ), c+1. η = ω(a−2, 1, 0, c+2, 0, 0, a−c−1, 0). η −0.1

is a common point of the smallest tile Tη and Tη − Φ(β−1).
� If b=−a+1 and c=0, we have c + b ≤ −2 and the smallest tile is Tη for η = 1ω. Since

every conjugate of β is also a root of p(x)(x2+ x +1)
P∞

i=0 x3i =0, then
1+β1−(a−2)β2+2β3+

P∞
i=4 βi = 0

and all the coefficients have absolute value less than bβc.
∗ If c = a− 2, we have −a + 2 ≤ b ≤ −1, bβc = a− 1 and

dβ(1)= .a− 1, a + b, a + b− 2, a− 1, 1.
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To show that one of the tiles is not connected, according to Lemma 3 on page 300, it is enough
to prove that p(γ)>0. Since γ2−(a−1)γ−1=0, we have

p(γ) ≥ γ4 − aγ3 + γ2 − (a− 1)γ − 1 = γ2(1− γ) > 0.

• If 0 ≤ b ≤ a, we have bβc = a and

dβ(1)= . a , b , c , 1.

• If a+1 ≤ b ≤ 2a−2, we have a ≥ 3, 2 ≤ c ≤ a−1 and 1+a ≤ b ≤ a+c−1. bβc = a + 1 and

dβ(1)= .a+1, b−a−1, c+a−b, b+1−c, c−1, 1.

Case 3. If a ≤ c ≤ a + 3, we have a ≥ 1 and 1− a2 + c2

4
≤ b ≤ a+c−1.

• If c = a, we get 1 ≤ b ≤ 2a−1 and

dβ(1)=


.a, b, 1, if b ≤ a;
.a+1, b−a−1, 2a−b, b−a+1, a−1, 1, if b > a.

• If c = a + 1, we get a+1
2 ≤ b ≤ 2a and

dβ(1)=

8<:
.a , b+1, (0 , a−b, b , b , a−b+1, 0 , b)ω , if b ≤ a−1;
.a+1, 0 , 0 , (0 , a , 0 , 0 , a , a , 1)ω, if b = a;
.a+1, b−a−1, 2a−b+1, b−a, a , 1, if b ≥ a+1.

∗ For b ≤ a − 1, to show that one of the tiles is not connected, according to Lemma 3 on
page 300, it is enough to prove that p(γ) > 0. Since γ2 − aγ − 1 = 0 we have

(γ) ≥ γ4 − aγ3 − (a− 1)γ2 − (a + 1)γ − 1 = γ2(1− γ) > 0.

∗ For b = a, since every conjugate of β is also a root of p(x)(x−1)
P∞

i=0 x3i =0, we have

1+aβ1−β2+ (β3−β4)
P∞

i=0 β3i = 0

and all the coefficients have absolute value less than bβc = a + 1.

• If c = a + 2, we get a+2 ≤ b ≤ 2a+1, bβc = a+1 and

dβ(1) = .a+1, b−a−1, 2a−b+2, b−a−1, a+1, 1.

• If c = a + 3, we get a+2+
a + 1

2
≤ b ≤ 2a+2, bβc = a + 1 and

dβ(1) = .a+1, b−a−1,(2a−b+3, b−a−1, 0 , 2a−b+3, 2b−3a−5, 4a−2b+6, 2b−3a−4, 2a−b+3, 0, b−a−2)ω.

To show that one of the tiles is not connected, according to Lemma 3 on page 300, it is enough to
prove that p(γ)>0. Since γ2−(a+1)γ−1=0 we have that

p(γ) ≥ γ4 − aγ3 − (2a + 2)γ2 − (a + 3)γ − 1 = −γ3 > 0.
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2

From the proof of this theorem we can easily see that a + c− 2bβc = 1 for the cases when at least one
of the tiles is disconnected and a + c− 2bβc ≤ 0 for the cases when each tile is connected. So, the above
theorem can be written in the following equivalent way:

Theorem 4.8 Let β be a Pisot unit of degree 4 with minimal polynomial p(x) = x4−ax3−bx2−cx−1.
Then a + c− 2bβc ≤ 1, and each tile is arcwise connected if and only if a + c− 2bβc ≤ 0.

In [14], Canterini gave an interesting example of GIFS substitutive tiles that the union
⋃

i Ki in (4.2)
is connected although each Ki is disconnected. In our setting,

⋃
i Ki corresponds to the central tile Tλ.

As the proof of disconnectedness relies on Lemma 3 on page 300, the readers see that Tλ is disconnected
provided there exists a disconnected tile and d−1 > d−2. After submission of this paper, we could further
show that all the tiles are disconnected, provided there exists a disconnected tile. As this paper is already
of this length, this fact will be published elsewhere. Therefore we can not find examples like Canterini’s
among quartic Pisot dual tiles.

Finally from the proof of Theorem 4.7 on page 301 we extract the following theorem which gives the β-
expansion of 1 for any Pisot unit of degree four with the minimal polynomial x4−ax3−bx2−cx−1 = 0.

Theorem 4.9 Let β be a Pisot unit of degree four with minimal polynomial p(x) = x4 − ax3 − bx2 −
cx− 1 = 0. Then the β-expansion of 1 is:

- When −a + 1 ≤ c ≤ −1,

� for b ≤ 0 we have

dβ(1)=
{

.a−1, a+b−1, a+b+c−1, (a+b+c)ω, for (c, b) 6= (−1, 0);

.a−1, a−1, a−1, 0, 0, 1, for (c, b) = (−1, 0);

� for b ≥ 1 we have dβ(1)= .a, b−1, (a+c, b)ω.

- When 0 ≤ c ≤ a,

� for b ≤ −a and c ≤ a−4, let k be the integer of {2, 3, · · · , a−2} with (k−1)(a+b+c) <
a−2 ≤ k(a+b+c).

∗ If (k−1)(a+b+c) ≥ c+2, let m = inf{i ∈ N such that (i+1)(a+b+c) ≥ c+2}.
m=1 ⇒ dβ(1)= .a−2, 2a+b−2, 2a+2b+c−2, 2a+2b+2c−1, (2a+2b+2c)ω

m=2 ⇒ dβ(1)= .a−2, 2a+b−3, 3a+2b+c−3, 3a+3b+2c−2, 3a+3b+3c−1, (3a+3b+3c)ω

m≥3 ⇒ dβ(1)= .a−2, 2a+b−3, 3a+2b+c−4, d4, · · · , dm+3, (dm+4)
ω

with di = di−1+a+b+c for 4 ≤ i ≤ m and


dm+1 =dm+a+b+c+1,
dm+2 =dm+1+b+c+1,
dm+3 =dm+2+c+1,
dm+4 =(m+1)(a+b+c).

∗ If (k−1)(a+b+c) ≤ c+1 and k(a + b + c) = a− 2 we have
k = 2 ⇒ dβ(1) = .a−2, 2a+b−2, 2a+2b+c−2, a−2, 0, 2c+b+2, c+2, 1,

k ≥ 3 ⇒ dβ(1) = .a − 2, 2a + b − 3, d3, · · · , d2k+1, 2c + b + 3, c + 2, 1 such that di =
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ia+(i−1)b +(i−2)c−4 for 3 ≤ i ≤ k−1, (these terms do not appear for k = 3)
dk =ka+(k−1)b +(k−2)c−3, dk+1 =ka+kb +(k−1)c−2,
dk+2 = a− 2, dk+3 = 0, dk+4 = 1− b− a,
d2k+2−i = ia +(i+1)b +(i+2)c+4 for 1 ≤ i ≤ k−3, (these terms do not appear for k = 3).

∗ If (k−1)(a+b+c) ≤ c+1 and k(a + b + c) > a− 2 we have
k = 2 ⇒ dβ(1) = .a−2, 2a+b−2, 2a+2b+c−1, a+2b+2c+1, 2c+b+2, c+2, 1, k ≥ 3 ⇒
dβ(1) = .a− 2, 2a + b− 3, d3, · · · , d2k, 2c + b + 3, c + 2, 1 such that
di = ia+(i−1)b +(i−2)c−4 for 3 ≤ i ≤ k−1, (these terms do not appear for k = 3)
dk =ka+(k−1)b +(k−2)c−3, dk+1 =ka+kb +(k−1)c−1,
dk+2 = (k − 1)a + kb + kc + 1, dk+3 = (k − 2)a + (k − 1)b + kc + 3,
d2k+1−i = ia +(i+1)b +(i+2)c+4 for 1 ≤ i ≤ k−3, (these terms do not appear for k = 3),

� for b ≤ −a and c = a− 3 we have
dβ(1)= .a−2, 2a+b−2, (3a+2b−4, 3a+2b−5, 2a+b−3, 0, 1−a−b, 2−a−b, 0, 2a+b−3)ω,

� for −a < b ≤ −1 and c ≤ a− 3 we have

dβ(1) =

8<:
.a−1, a+b, b+c, c+1, 1, for b+c ≥ 0;
.a−1, a+b−1, a−1, 0, c+1, 1, for b+c = −1;
.a−1, a+b−1, a+b+c−1, (a+b+c)ω for b+c ≤ −2;

� for −a < b ≤ −1 and c = a− 2 we have dβ(1)= .a−1, a+b, a+b−2, a−1, 1,

� for −a < b ≤ −1 and c=a−1 we have dβ(1)= .a−1, a+b,(a+b, 0,−b, 0, a+b−1)ω,

� for 0 ≤ b ≤ a we get dβ(1)= .a, b, c, 1,

� for b ≥ a + 1 we get dβ(1)= .a+1, b−a−1, c+a−b, b−c+1, c−1, 1.

- When a + 1 ≤ c ≤ a + 3 we have

� for c=a+1, dβ(1)=

.a, b+1, (0, a−b, b, b, a−b+1, 0, b)ω, for b≤a−1;
.a+1, 0, 0, (0, a, 0, 0, a, a, 1)ω, for b = a;
.a+1, b−a−1, 2a−b+1, b−a, a, 1, for b≥a+1;

� for c = a + 2 we have dβ(1)= .a+1, b−a−1, 2a−b+2, b−a−1, a+1, 1,

� for c = a + 3 we have
dβ(1)= .a+1, b−a−1, (2a−b+3, b−a−1, 0, 2a−b+3, 2b−3a−5, 4a−2b+6, 2b−3a−4, 2a−b+3, 0, b−a−2)ω.

Example 3 Here we want to show that, from a class of Pisot units of degree 4 which are roots of the
polynomial x4−ax3− bx2− cx−1 = 0, we can obtain an arbitrarily long β-expansion of 1 . For n ≥ 3,
a = n + 2, and c = a − 4 = n − 2 b = 1 − a − c = 1 − 2n we have that bβc = a − 2 = n and the
β-expansion of 1 is

dβ(1) = .n, 2, 2, 3, · · · , n−3, n−2| {z }
n−3 elements

, n, 0, n, 0, n−2, n−2, n−3, · · · , 3, 2| {z }
n−3 elements

, 0, n, 0, 1.

Hence the length of the β-expansion of 1 is 2n + 4.
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-1<c<a-a<c<0

1

dβ(1)=.a,

dβ(1)=.a-1,

dβ(1)=.a,

dβ(1)=.a-2,

dβ(1)=.a-1,

dβ(1)=.a-1,

dβ(1)=.a-1,

dβ(1)=.a-1,

dβ(1)=.a,

dβ(1)=.a,

dβ(1)=.a,

dβ(1)=.a-2,

dβ(1)=.a+1,

dβ(1)=.a+1,

a+b-1,   a+b+c-1,    (a+b+c-2)
ω

0,          a+c-1,        a-1,            a+c,        (a+c-1)

b-1,       (c+a,          b-2)

a-2,       c-2,            2c-3,          (2c-4)

(a-2,      c-1,            2c-a-1,          2c-a-2,    c-3,           a-3)

a+b-1,   a+b+c-1,    (a+b+c-2)

a-2,       a-1,            (a-2)

(a+b,     b+c,            c-2,            a-2)

a-1,       a-1,            (a-2)

0,          a-1,            (a,              0,            a-2)

b-1,       (a,              b-2)

(b,         c-1,            a-1)

a,           (a,             a-1)

(b-a-2,    a+1,         b-a-2,          0,            a-1,           b-a,     a-1,    b-a-1,    a)

(b-a-1,    a-b+c,      b-c-1,          c,            a)

   

ω

dβ(1)=.a,

2

3

4

5

7

6

8

9

10

11

12

13

14

15

ω

ω

ω

ω

ω

ω

ω

ω

ω

ω

ω

ω

ω

|b-2|<a+c

a-c>0

1

3-a<b<1

2

b=1

3

1<b<a+1 3-2a<b<-a b=-a -a<b<0 -1<b<a+1 a<b<2a+1

4

2c-a<2

5

2c-a>1

6

b+c<0 b+c>-1 c=0

12

c>0

15

a-b+c>-1a-b+c=-1

14

b>a+1

13

b=a+1

11

b>1

10

b=1

9

b=0

7

c=1

8

c>1

Fig. 2: β-expansion of 1 for x4 − ax3 − bx2 − cx + 1 = 0. The length is not fixed in the shaded box.
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|b|<a+c

a
2

+4b-c
2

>0

-a<c<0 -1<c<a+1 a<c<a+4

-2a+1<b<-a+1 -a<b<0 -1<b<a+1

10

a<b<2a-1

11

c=a+1

15

c=a+2

13

b=a

12

b<a

14

b>a

16

c=a+3

9

c=a-1

8

c=a-2-1<c<a-2

1-a<b<1 0<b<a-1

3

(c,b)=(-1,0)

2

(c,b) (-1,0)

1

5

b+c>-1

7

b+c<-1

6

b+c=-1

4

c=a-30<c<a-3

1

dβ(1)=.a+1,

dβ(1)=.a-1,

dβ(1)=.a-1,

dβ(1)=.a-1,

dβ(1)=.a-1,

dβ(1)=.a-1,

dβ(1)=.a-1,

dβ(1)=.a-1,

dβ(1)=.a,

dβ(1)=.a,

dβ(1)=.a,

dβ(1)=.a-2,

dβ(1)=.a+1,

dβ(1)=.a+1,

dβ(1)=.a+1,

dβ(1)=.a+1,

2

3

4

5

7

6

8

9

10

11

12

13

14

15

16

ω

ω

ω

ω

ω

ω

ω

a+b-1,   a+b+c-1,    (a+b+c)
ω

a-1,       a-1,            0,             0,           1

b-1,       (c+a,          b)

b+2a-2, (3a+2b-4,  3a+2b-5,  2a+b-3,  0,          1-a-b,      2-a-b,       0,             b+2a-3)

a+b,      b+c,           c+1,         1

a+b-1,   a-1,            0,             c+1,       1

a+b-1,   a+b+c-1,   (a+b+c)

a+b,      a+b-2,       a-1,          1

a+b,      (a+b,         0,             -b,           0,          a+b-1)

b,          c,               1

b-a-1,    c+a-b,       b-c+1,      c-1,         1

b+1,      (0,             a-b,          b,            b,          a-b+1,     0,             b)

0,           0,             (0,            a,            0,          0,             a,             a,           1)

b-a-1,     2a-b+1,    b-a,          a,            1

b-a-1,     2a-b+2,    b-a-1,      a+1,        1

b-a-1,     (2a-b+3,   b-a-1,      0,            2a-b+3, 2b-3a-5,  4a-2b+6,  2b-3a-4, 2a-b+3,   0,     b-a-2)

   

disconnected

disconnected

disconnected

Fig. 3: β-expansion of 1 for x4 − ax3 − bx2 − cx − 1 = 0. The length is not fixed in the shaded box. Four
disconnected cases are indicated.
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