\def\Pij{\nabla_{i}u\,\nabla_{j}u} % \documentstyle[twoside]{article} \input amssym.def \pagestyle{myheadings} \markboth{\hfil $\infty$-harmonic Functions \hfil EJDE--1995/07}% {EJDE--1995/07\hfil Nobumitsu Nakauchi \hfil} \begin{document} \ifx\Box\undefined \newcommand{\Box}{\diamondsuit}\fi \title{\vspace{-1in}\parbox{\linewidth}{\footnotesize\noindent {\sc Electronic Journal of Differential Equations}\newline Vol. {\bf 1995}(1995), No. 07, pp. 1-10. Published June 15, 1995.\newline ISSN 1072-6691. URL: http://ejde.math.swt.edu or http://ejde.math.unt.edu \newline ftp (login: ftp) 147.26.103.110 or 129.120.3.113 } \vspace{\bigskipamount} \\ A Remark on $\infty$-harmonic Functions on Riemannian Manifolds \thanks{ {\em 1991 Mathematics Subject Classifications:} 35J70, 35J20, 26B35. \newline\indent {\em Key words and phrases:} $\infty$-harmonic function, $\infty$-Laplacian. \newline\indent \copyright 1995 Southwest Texas State University and University of North Texas.\newline\indent Submitted: February 20,1995.} } \date{} \author{Nobumitsu Nakauchi} \maketitle \begin{abstract} In this note we prove an equality for $\,\infty$-harmonic functions on Riemannian manifolds. As a corollary, there is no non-constant $\,\infty$-harmonic function on positively (or negatively) curved manifolds. \end{abstract} \newtheorem{theorem}{Theorem} \newtheorem{corollary}{Corollary} \newtheorem{lemma}{Lemma} \section{Introduction} In \cite{Aro1}, \cite{Aro2}, Aronsson studied solutions of the boundary value problem for the degenerate elliptic equation \begin{eqnarray} \sum_{i,j}\ \nabla_{i}u\,\nabla_{j}u\,\nabla_{i}\nabla_{j}u = 0 \label{eq:infty-harmonic} \end{eqnarray} in a bounded subdomain $\,D\,$ of $\,{\Bbb R}^{n}\,$ with the boundary condition $\,u\,$ $=\,$ $\varphi\,$ on $\,\partial D\,$. His motivation is to consider the {\it absolutely minimizing Lipschitz extension problem}, which means the problem of finding an extension $\,u\,$ in $\,{\rm W}^{1,\infty}(D)\,$ of any given Lipschitz function $\,\varphi\,$ on $\partial D\,$ satisfying the minimization property \begin{eqnarray*} \|\nabla u\|_{_{\scriptstyle {\rm L}^{\infty}(U) }} \ \leq\ \|\nabla v\|_{_{\scriptstyle {\rm L}^{\infty}(U)}} \end{eqnarray*} for any open set $\,U\,$ $\subset\,$ $D\,$ and for $\,v\,$ $\in\,$ ${\rm W}^{1,\infty}(U)\,$ such that $\,v\,-\,u\,$ $\in\,$ ${\rm W}^{1,\infty}_{0}(U)\,$. The equation (\ref{eq:infty-harmonic}) is the Euler-Lagrange equation of the functional $\,F_{\infty}(u)\,$ $=\,$ $\,\|\nabla u\|_{_{\scriptstyle {\rm L}^{\infty}}}\,$ in the following sense. A $\,p$-harmonic function $\,u\,$ is a solution of \begin{eqnarray} {\rm div}(\|\nabla u\|^{p\,-\,2}\,\nabla u)\ =\ 0\,, \label{eq:p-harmonic} \end{eqnarray} which is the Euler-Lagrange equation of the functional $\,F_{p}(u)\,$ $=\,$ $\,\|\nabla u\|_{_{\scriptstyle {\rm L}^{p}}}\,$. Rewrite (\ref{eq:p-harmonic}) to read \begin{eqnarray*} {1 \over {p\,-\,2} }\, \|\nabla u\|^{2}\,\bigtriangleup u \ + \ \sum_{i,j}\ \nabla_{i}u\,\nabla_{j}u\,\nabla_{i}\nabla_{j}u \ = \ 0\,. \end{eqnarray*} Formally passing to the limit as $\,p\,$ tends to infinity, the Euler-Lagrange equation~(\ref{eq:p-harmonic}) of the functional $\,F_{p}\,$ converges in some sense to the Euler-Lagrange equation (\ref{eq:infty-harmonic}) of the functional $\,F_{\infty}\,$. From the point of view by Aronsson, Jensen \cite{Jen} obtained existence and uniqueness results. (See also Bhattacharya, DiBenedetto and Manfredi \cite{B-D-M}.) He proved \begin{enumerate} \item any solution of the absolutely minimizing Lipschitz extension problem is a viscosity solution of (\ref{eq:infty-harmonic}), and \item there exists a unique viscosity solution of (\ref{eq:infty-harmonic}). Any {\it bounded} such solution is locally Lipschitz continuous. \end{enumerate} Aronsson's pioneering papers \cite{Aro1}, \cite{Aro2} investigated classical solutions. Recently Evans \cite{Eva} obtained a Harnack inequality for classical solutions. The absolutely minimizing Lipschitz extension problem is considered also on subdomains of {\it Riemannian manifolds} $\,M\,$. Then the associated equation corresponding to (\ref{eq:infty-harmonic}) is \begin{eqnarray} g^{ip}g^{jq} \nabla_{i}u\,\nabla_{j}u\,\nabla_{p}\nabla_{q}u = 0\,, \label{eq:infty-harmonic2} \end{eqnarray} where $\,g_{ij}\,$ (resp. $\,g^{ij}\,$) is the metric of $\,M\,$ (resp. the inverse matrix of $\,g_{ij}\,$), and $\,\nabla\,$ denotes the Levi-Civita connection of $\,g\,$. (Throughout this note, we use the Einstein summation convention; if the same index appears twice, once as a superscript and once as a subscript, then the index is summed over all possible values.) In this note we are concerned with $\,{\rm W}^{2,2+\varepsilon}_{loc}\,$-solutions of (\ref{eq:infty-harmonic2})\ \, ($\,\varepsilon\,$ $>\,$ $0\,$). We say that $\,u\,$ is a {\it $\,{\rm W}^{2,2+\varepsilon}_{loc}\,$-solution} of (\ref{eq:infty-harmonic2}) in $\,D\,$ if the following two conditions hold: \begin{enumerate} \item $u$ is locally Lipschitz continuous, and \item $u\in {\rm W}^{2,2+\varepsilon}_{loc}(D)$, and $u$ satisfies (\ref{eq:infty-harmonic2}) a.e., \end{enumerate} where $\,{\rm W}^{2,2+\varepsilon}_{loc}(D)\,$ denotes the Sobolev space of functions whose second derivatives belong to $\,{\rm L}^{2+\varepsilon}_{loc}(D)\,$. On this general setting, the curvature of $\,M\,$ provides an obstruction on existence of nontrivial $\,{\rm W}^{2,2+\varepsilon}_{loc}$-solutions of (\ref{eq:infty-harmonic2})\,. The purpose of this note is to prove the following equality. \begin{theorem} Let $\,M\,$ be a Riemannian manifold, and let $\,D\,$ be a domain in $\,M\,$. Let $\,u\,$ be a $\,{\rm W}^{2,2+\varepsilon}_{loc}$-solution of the equation {\rm (\ref{eq:infty-harmonic2})} in $\,D\,$. Then \begin{eqnarray} g^{ip}g^{jq}g^{kr}g^{ls} R_{ijkl}\, \nabla_{p}u\, \nabla_{q}u\, \nabla_{r}u\, \nabla_{s}u \ = \ 0 \hskip 4ex {\rm a.e.} \hskip 2ex {\rm in} \hskip 2ex D\,, \label{eq:main equality} \end{eqnarray} where $\,R_{ijkl}\,$ is the Riemannian curvature tensor of $\,M\,$. \end{theorem} Note that when $\,M\,$ $=\,$ ${\Bbb R}^{n}\,$, $\,R_{ijkl}\,$ $\equiv\,$ $0\,$; hence the equality (\ref{eq:main equality}) holds automatically in this case. >From equality (\ref{eq:main equality}), we have $\,\nabla u\,$ $=\,$ $0\,$ at any point where the curvature is positive (or negative). So we have: \begin{corollary} Suppose that the sectional curvature of $\,M\,$ is positive {\rm (}or negative{\rm )} in $\,D\,$. Then any ${\rm W}^{2,2+\varepsilon}_{loc}$-solution of {\rm (\ref{eq:infty-harmonic2})} in $\,D\,$ is a constant function. \end{corollary} We mention a related fact on harmonic functions. Let $\,u\,$ be a harmonic function on a Riemannian manifold $\,M\,$. Then $\,u\,$ is a constant function if one of the following two conditions holds: \begin{enumerate} \item $\,M\,$ is compact (the maximum principle). \item $\,M\,$ is complete and non-compact, the Ricci curvature of $\,M\,$ is nonnegative, and $\,u\,$ is bounded on $\,M\,$ (Yau \cite{Yau}). \end{enumerate} These results need the assumption that $\,u\,$ is globally defined on compact or complete manifolds. On the other hand, the above equality (\ref{eq:main equality}) holds when an $\,\infty$-harmonic function $\,u\,$ is defined on a {\it subdomain} of $\,M\,$; the structure of $\infty$-Laplacian gives a restriction on local existence of solutions. The author thinks that our theorem holds without the assumption that solutions belong to the class $\,{\rm W}^{2,2+\varepsilon}_{loc}(D)\,$, though we use this assumption. Then Aronsson's minimization approach of the Lipschitz extention problem does not seem to work on any positively (or negatively) curved manifold. \section{A Bochner type formula} In this section we prove the following formula of Bochner type. \begin{lemma} Let $\,u\,$ be a $\,{\rm C}^{3}_{loc}$-solution of {\rm (\ref{eq:infty-harmonic2})} on a subdomain $\,D\,$ of a Riemannian manifold $\,M\,$. Then the following equality holds. \begin{eqnarray} g^{ip}g^{jq} \nabla_{i}u\,\nabla_{j}u\,\nabla_{p}\nabla_{q}\,\|\nabla u\|^{2} \ + \ { 1 \over 2 }\,\|\nabla \|\nabla u\|^{2}\,\|^{2} & & \label{eq:Bochner equality} \\ +2\,g^{ip}g^{jq}g^{kr}g^{ls} R_{ikjl}\,\nabla_{p}u\,\nabla_{q}u\,\nabla_{r}u\,\nabla_{s}u &=& 0 \hskip 4ex {\rm in\ \,}D\,,\nonumber \end{eqnarray} where $\,\|\nabla u\|^{2}\,=\, g^{ij}\nabla_{i}u \nabla_{j}u\,$ and $\,\|\nabla \|\nabla u\|\,\|^{2}\, =\,g^{ij}\nabla_{i}\|\nabla u\| \nabla_{j}\|\nabla u\|\,$. \end{lemma} \paragraph{Proof.} Note $\,\nabla g_{ij}\,=\,\nabla g^{ij}\,=\,0\,$, since $\,\nabla\,$ is the Levi-Civita connection. Applying $\,\nabla_{r}\,$ to both sides of (\ref{eq:infty-harmonic2}), we have \begin{eqnarray} g^{ip}g^{jq} \nabla_{i}u\,\nabla_{j}u\,\nabla_{r}\nabla_{p}\nabla_{q}u \ + \ 2\,g^{ip}g^{jq} \nabla_{i}u\,\nabla_{r}\nabla_{j}u\,\nabla_{p}\nabla_{q}u\, \ = \ 0\,. \label{eq:equality 1} \end{eqnarray} We see that \begin{eqnarray} \nabla_{p}\nabla_{q}\nabla_{r}u & = & \nabla_{p}\nabla_{r}\nabla_{q}u \label{eq:equality 2} \\ & = & \nabla_{r}\nabla_{p}\nabla_{q}u \ - \ g^{ls} R_{prqs} \nabla_{l}u \hskip 2ex (\mbox{by the Ricci formula})\,. \nonumber \end{eqnarray} We get \begin{eqnarray} \lefteqn{ g^{ip}g^{jq}g^{kr} \nabla_{i}u\,\nabla_{j}u\,\nabla_{p}\nabla_{k}u\, \nabla_{q}\nabla_{r}u } \label{eq:equality 3} \\ & & \hskip 5ex \ = \ g^{kr} { 1 \over 2 }\, \nabla_{k}(g^{ip}\nabla_{i}u \nabla_{p}u)\ { 1 \over 2 }\, \nabla_{r}(g^{jq}\nabla_{j}u \nabla_{q}u) \nonumber \\ & & \hskip 5ex \ = \ { 1 \over 4 }\, g^{kr} \nabla_{k}\|\nabla u\|^{2}\, \nabla_{r}\|\nabla u\|^{2} \nonumber \\ & & \hskip 5ex \ = \ { 1 \over 4 }\,\|\nabla \|\nabla u\|^{2}\,\|^{2}\,. \nonumber \end{eqnarray} Then we have \begin{eqnarray*} \lefteqn{ g^{ip}g^{jq} \Pij\,\nabla_{p}\nabla_{q}\,\|\nabla u\|^{2} } \nonumber \\ &=& g^{ip}g^{jq} \Pij\,\nabla_{p}\nabla_{q}(g^{kr}\nabla_{r}u\nabla_{k}u) \nonumber \\ &=& 2\,g^{ip}g^{jq}g^{kr} \Pij\,\nabla_{p}\nabla_{q}\nabla_{r}u\,\nabla_{k}u \nonumber\\ &&+ 2\,g^{ip}g^{jq}g^{kr} \Pij\,\nabla_{q}\nabla_{r}u\,\nabla_{p}\nabla_{k}u \nonumber \\ & =& 2\,g^{ip}g^{jq}g^{kr} \Pij\,\nabla_{r}\nabla_{p}\nabla_{q}u\,\nabla_{k}u \nonumber\\ &&- 2\,g^{ip}g^{jq}g^{kr} \Pij\,g^{ls}R_{prqs}\,\nabla_{l}u\,\nabla_{k}u \nonumber \\ & & + 2\,g^{ip}g^{jq}g^{kr} \Pij\,\nabla_{q}\nabla_{r}u\,\nabla_{p}\nabla_{k}u \hskip 7ex (\mbox{by (\ref{eq:equality 2})}\,) \nonumber \\ & =& -\,4\,g^{ip}g^{jq}g^{kr} \nabla_{i}u\,\nabla_{k}u\,\nabla_{r}\nabla_{j}u\, \nabla_{p}\nabla_{q}u \nonumber\\ && -2\,g^{ip}g^{jq}g^{kr}g^{ls} R_{prqs}\,\nabla_{i}u\,\nabla_{j}u\,\nabla_{k}u\,\nabla_{l}u \nonumber \\ & & + 2\,g^{ip}g^{jq}g^{kr} \Pij\,\nabla_{q}\nabla_{r}u\,\nabla_{p}\nabla_{k}u \hskip 7ex (\mbox{by (\ref{eq:equality 1})}\,) \nonumber \\ & = & -\,2\,g^{ip}g^{jq}g^{kr}g^{ls} R_{pqrs}\,\nabla_{i}u\,\nabla_{j}u\,\nabla_{k}u\,\nabla_{l}u\nonumber\\ &&-2\,g^{ip}g^{jq}g^{kr} \Pij\,\nabla_{q}\nabla_{r}u\,\nabla_{p}\nabla_{k}u \hskip 7ex (\mbox{by exchange of indices}\,) \nonumber \\ & = & -\,2\,g^{ip}g^{jq}g^{kr}g^{ls} R_{pqrs}\,\nabla_{i}u\,\nabla_{j}u\,\nabla_{k}u\,\nabla_{l}u \ - \ { 1 \over 2 }\,\|\nabla \|\nabla u\|^{2}\,\|^{2} \hskip 4ex (\mbox{by (\ref{eq:equality 3})}\,)\,. \end{eqnarray*} \section{Proof of Theorem 1 for $\,{\rm C}^{3}_{loc}$-solutions} Take any $\,\eta\,$ $\in\,$ ${\rm C}_{0}^{\infty}(D)\,$. Then from (\ref{eq:Bochner equality}), we have \begin{eqnarray} \lefteqn{ \int_{D}\ \eta\, g^{ip}g^{jq} \nabla_{i}u\,\nabla_{j}u\,\nabla_{p}\nabla_{q}\,\|\nabla u\|^{2} \ + \ { 1 \over 2 }\, \int_{D}\ \|\nabla \|\nabla u\|^{2}\,\|^{2}\,\eta } \label{eq:equality 4} \\ & & \hskip 10ex \ + \ 2\, \int_{D}\ \eta\, g^{ip}g^{jq}g^{kr}g^{ls} R_{ikjl}\,\nabla_{p}u\,\nabla_{q}u\,\nabla_{r}u\,\nabla_{s}u \ = \ 0\,. \nonumber \end{eqnarray} Note here \begin{eqnarray} g^{jq} \nabla_{j}u\,\nabla_{q}\|\nabla u\|^{2} & = & g^{jq} \nabla_{j}u\,\nabla_{q}(g^{ip}\nabla_{i}u\nabla_{p}u) \label{eq:equality 5} \\ & = & 2\,g^{ip}g^{jq} \nabla_{j}u\,\nabla_{i}u\,\nabla_{q}\nabla_{p}u \ =\ 0\,. \nonumber \end{eqnarray} Using integration by parts, we get \begin{eqnarray} \lefteqn{ \int_{D}\ \eta\, g^{ip}g^{jq} \nabla_{i}u\,\nabla_{j}u\,\nabla_{p}\nabla_{q}\,\|\nabla u\|^{2} } \label{eq:equality 6} \\ & = & -\int_{D}\ g^{ip}g^{jq} \nabla_{p}\eta\, \nabla_{i}u\,\nabla_{j}u\,\nabla_{q}\,\|\nabla u\|^{2} \nonumber \\ & & - \int_{D}\ \eta\, g^{ip}g^{jq} \nabla_{p}\nabla_{i}u\,\nabla_{j}u\,\nabla_{q}\,\|\nabla u\|^{2} \nonumber \\ & & - \int_{D}\ \eta\, g^{ip}g^{jq} \nabla_{i}u\,\nabla_{p}\nabla_{j}u\,\nabla_{q}\,\|\nabla u\|^{2} \nonumber \\ & = & -\int_{D}\ \eta\, g^{ip}g^{jq} \nabla_{i}u\,\nabla_{p}\nabla_{j}u\,\nabla_{q}\,\|\nabla u\|^{2} \hskip 7ex (\mbox{by (\ref{eq:equality 5})}\,) \nonumber \\ & = & -\int_{D}\ \eta\, { 1 \over 2 } g^{jq} \nabla_{j}(g^{ip}\nabla_{i}u\,\nabla_{p}u)\,\nabla_{q}\,\|\nabla u\|^{2} \nonumber \\ & = & -\, { 1 \over 2 } \int_{D}\ \eta\, g^{jq} \nabla_{j}\|\nabla u\|^{2}\, \nabla_{q}\,\|\nabla u\|^{2} \nonumber \\ & = & -\, { 1 \over 2 } \int_{D}\ \|\nabla \|\nabla u\|^{2}\,\|^{2}\,\eta\,. \nonumber \end{eqnarray} >From (\ref{eq:equality 4}) and (\ref{eq:equality 6}), we have \begin{eqnarray} \int_{D}\ \eta\, g^{ip}g^{jq}g^{kr}g^{ls} R_{ikjl}\,\nabla_{p}u\,\nabla_{q}u\,\nabla_{r}u\,\nabla_{s}u \ = \ 0\,. \label{eq:equality 7} \end{eqnarray} Since $\,\eta\,$ is an arbitrary test function in $\,{\rm C}_{0}^{\infty}(D)\,$, we have \begin{eqnarray*} g^{ip}g^{jq}g^{kr}g^{ls} R_{ikjl}\,\nabla_{p}u\,\nabla_{q}u\,\nabla_{r}u\,\nabla_{s}u \ = \ 0 \hskip 3ex {\rm a.e.\ \,in}\ \,D\,. \hskip 3ex \Box \end{eqnarray*} \section{Proof of Theorem 1} In this section we complete our proof of Theorem 1 using an approximation. For any ${\rm W}^{2,2+\varepsilon}_{loc}$-solution $\,u\,$ of (\ref{eq:infty-harmonic2}), we take an approximating sequence $\,\{\,u^{(\nu)}\,\}_{\nu\,=\,1}^{\infty}\,$ $\subset\,$ ${\rm C}^{3}_{loc}(D)\,$ such that for any compact set $\,K\,$ in $\,D\,$, \begin{enumerate} \item $\,\varphi^{(\nu)}\,:\,$ $=\,$ $u^{(\nu)}\,$ $-\,$ $u\,$ approaches zero ${\rm in}\ $ ${\rm W}^{2,2+\varepsilon}_{loc}(D)\,$ as $\,\nu\,$ tends to infinity, and \item the Lipschitz constants of $\,u^{(\nu)}\,$ $(\nu\,$ $=\,$ $1,\,$ $2,\,...)\,$ are uniformly bounded on $\,K\,:\ $ hence $\,\|\nabla u^{(\nu)}\|_{_{\scriptstyle {\rm L}^{\infty}(K)}}\,$ and $\,\|\nabla \varphi^{(\nu)}\|_{_{\scriptstyle {\rm L}^{\infty}(K)}}\,$ $(\nu\,$ $=\,$ $1,\,$ $2,\,...)\,$ are uniformly bounded on $\,K\,$. \end{enumerate} Since $\,u\,$ $=\,$ $u^{(\nu)}\,$ $-\,$ $\varphi^{(\nu)}\,$ satisfies (\ref{eq:infty-harmonic2}), we have $$ g^{ip}g^{jq} \nabla_{i}(u^{(\nu)}\,-\,\varphi^{(\nu)})\, \nabla_{j}(u^{(\nu)}\,-\,\varphi^{(\nu)})\, \nabla_{p}\nabla_{q}(u^{(\nu)}\,-\,\varphi^{(\nu)}) = 0 $$ i.e., \begin{equation} g^{ip}g^{jq} \nabla_{i}u^{(\nu)}\,\nabla_{j}u^{(\nu)}\, \nabla_{p}\nabla_{q}u^{(\nu)} + F( \varphi^{(\nu)},\,u^{(\nu)} ) = 0 \label{eq:approximating infty-harmonic} \end{equation} where \begin{eqnarray*} \lefteqn{ F( \varphi^{(\nu)},\,u^{(\nu)} ) } \nonumber \\ & = & - g^{ip}g^{jq} \nabla_{i}\varphi^{(\nu)}\,\nabla_{j}u^{(\nu)}\, \nabla_{p}\nabla_{q}u^{(\nu)} - g^{ip}g^{jq} \nabla_{i}u^{(\nu)}\,\nabla_{j}\varphi^{(\nu)}\, \nabla_{p}\nabla_{q}u^{(\nu)} \nonumber \\ & & - g^{ip}g^{jq} \nabla_{i}u^{(\nu)}\,\nabla_{j}u^{(\nu)}\, \nabla_{p}\nabla_{q}\varphi^{(\nu)} + g^{ip}g^{jq} \nabla_{i}\varphi^{(\nu)}\,\nabla_{j}\varphi^{(\nu)}\, \nabla_{p}\nabla_{q}u^{(\nu)} \nonumber \\ & & + g^{ip}g^{jq} \nabla_{i}u^{(\nu)}\,\nabla_{j}\varphi^{(\nu)}\, \nabla_{p}\nabla_{q}\varphi^{(\nu)} + g^{ip}g^{jq} \nabla_{i}\varphi^{(\nu)}\,\nabla_{j}u^{(\nu)}\, \nabla_{p}\nabla_{q}\varphi^{(\nu)} \nonumber \\ & & - g^{ip}g^{jq} \nabla_{i}\varphi^{(\nu)}\,\nabla_{j}\varphi^{(\nu)}\, \nabla_{p}\nabla_{q}\varphi^{(\nu)}\,. \nonumber \end{eqnarray*} Let $\,\psi\,$ $\in\,$ ${\rm W}^{1,1}_{0}(D)\,$. Multiply by $\,-\,\nabla_{r}\psi\,$ both sides of (\ref{eq:approximating infty-harmonic}) and use integration by parts, then we have \begin{eqnarray*} \int_{D}\ \psi\, g^{ip}g^{jq} \nabla_{i}u^{(\nu)}\,\nabla_{j}u^{(\nu)}\, \nabla_{r}\nabla_{p}\nabla_{q}u^{(\nu)} & & \\ + 2 \int_{D}\ \psi\, g^{ip}g^{jq} \nabla_{i}u^{(\nu)}\,\nabla_{r}\nabla_{j}u^{(\nu)}\, \nabla_{p}\nabla_{q}u^{(\nu)} & & \\ - \int_{M}\ F( \varphi^{(\nu )},\,u^{(\nu)} )\, \nabla_{r}\psi & = & 0\,. \end{eqnarray*} Let $\,\psi\,$ $=\,$ $\eta\,g^{kr}\nabla_{k}u^{(\nu)}\,$ and sum them up with respect to $\,r\,$. Then we get \begin{eqnarray} \int_{D}\ \eta\, g^{ip}g^{jq}g^{kr} \nabla_{i}u^{(\nu)}\,\nabla_{j}u^{(\nu)}\, \nabla_{r}\nabla_{p}\nabla_{q}u^{(\nu)}\,\nabla_{k}u^{(\nu)} & & \label{eq:equality 8} \\ + 2 \int_{D}\ \eta\, g^{ip}g^{jq}g^{kr} \nabla_{i}u^{(\nu)}\, \nabla_{k}u^{(\nu)}\, \nabla_{r}\nabla_{j}u^{(\nu)}\, \nabla_{p}\nabla_{q}u^{(\nu)} & &\nonumber \\ - \int_{M}\ F(\varphi^{(\nu )},\,u^{(\nu)})\, g^{kr}\nabla_{r}(\eta\,\nabla_{k}u^{(\nu)}) & = & 0 \nonumber \end{eqnarray} We see \begin{eqnarray*} \lefteqn{ \int_{D}\ \eta\, g^{ip}g^{jq} \nabla_{i}u^{(\nu)}\,\nabla_{j}u^{(\nu)}\, \nabla_{p}\nabla_{q}\,\|\nabla u^{(\nu)}\|^{2} } \nonumber \\ & = & \int_{D}\ \eta\, g^{ip}g^{jq} \nabla_{i}u^{(\nu)}\,\nabla_{j}u^{(\nu)}\, \nabla_{p}\nabla_{q}(g^{kr}\nabla_{r}u\nabla_{k}u) \nonumber \\ & =& 2 \int_{D}\ \eta\, g^{ip}g^{jq}g^{kr} \nabla_{i}u^{(\nu)}\,\nabla_{j}u^{(\nu)}\, \nabla_{p}\nabla_{q}\nabla_{r}u^{(\nu)}\,\nabla_{k}u^{(\nu)} \nonumber \\ & & + 2 \int_{D}\ \eta\, g^{ip}g^{jq}g^{kr} \nabla_{i}u^{(\nu)}\,\nabla_{j}u^{(\nu)}\, \nabla_{q}\nabla_{r}u^{(\nu)}\,\nabla_{p}\nabla_{k}u^{(\nu)} \nonumber \\ & =& 2 \int_{D}\ \eta\, g^{ip}g^{jq}g^{kr} \nabla_{i}u^{(\nu)}\,\nabla_{j}u^{(\nu)}\, \nabla_{r}\nabla_{p}\nabla_{q}u^{(\nu)}\,\nabla_{k}u^{(\nu)} \nonumber \\ & & -2 \int_{D}\ \eta\, g^{ip}g^{jq}g^{kr} \nabla_{i}u^{(\nu)}\,\nabla_{j}u^{(\nu)}\, g^{ls}R_{prqs}\,\nabla_{l}u^{(\nu)}\,\nabla_{k}u^{(\nu)} \nonumber \\ & & +2 \int_{D}\ \eta\, g^{ip}g^{jq}g^{kr} \nabla_{i}u^{(\nu)}\,\nabla_{j}u^{(\nu)}\, \nabla_{q}\nabla_{r}u^{(\nu)}\,\nabla_{p}\nabla_{k}u^{(\nu)} \hskip 7ex (\mbox {by (\ref{eq:equality 2}})\,) \nonumber \\ & =& -4 \int_{D}\ \eta\, g^{ip}g^{jq}g^{kr} \nabla_{i}u^{(\nu)}\,\nabla_{k}u^{(\nu)}\, \nabla_{r}\nabla_{j}u^{(\nu)}\, \nabla_{p}\nabla_{q}u^{(\nu)} \nonumber \\ & & + 2 \int_{D}\ F(\varphi^{(\nu)},\,u^{(\nu)})\, g^{kr} \nabla_{k}(\eta\,\nabla_{r}u^{(\nu)}) \nonumber \\ & & - 2 \int_{D}\ \eta\, g^{ip}g^{jq}g^{kr}g^{ls} R_{prqs}\,\nabla_{i}u^{(\nu)}\,\nabla_{j}u^{(\nu)}\, \nabla_{k}u^{(\nu)}\,\nabla_{l}u^{(\nu)} \nonumber \\ & & + 2 \int_{D}\ \eta\, g^{ip}g^{jq}g^{kr} \nabla_{i}u^{(\nu)}\,\nabla_{j}u^{(\nu)}\, \nabla_{q}\nabla_{r}u^{(\nu)}\,\nabla_{p}\nabla_{k}u^{(\nu)} \hskip 7ex (\mbox{by (\ref{eq:equality 8})}\,) \nonumber \\ & =& -2 \int_{D}\ \eta\, g^{ip}g^{jq}g^{kr}g^{ls} R_{pqrs}\,\nabla_{i}u^{(\nu)}\,\nabla_{j}u^{(\nu)}\, \nabla_{k}u^{(\nu)}\,\nabla_{l}u^{(\nu)} \nonumber \\ & & - 2 \int_{D}\ \eta\, g^{ip}g^{jq}g^{kr} \nabla_{i}u^{(\nu)}\,\nabla_{j}u^{(\nu)}\, \nabla_{q}\nabla_{r}u^{(\nu)}\,\nabla_{p}\nabla_{k}u^{(\nu)} \hskip 7ex \nonumber \\ & & +2 \int_{D}\ F(\varphi^{(\nu)},\,u^{(\nu)})\, g^{kr} \nabla_{k}(\eta\,\nabla_{r}u^{(\nu)}) \hskip 7ex (\mbox {by exchange of indices}) \nonumber \\ & =& -2 \int_{D}\ \eta\, g^{ip}g^{jq}g^{kr}g^{ls} R_{pqrs}\,\nabla_{i}u^{(\nu)}\,\nabla_{j}u^{(\nu)}\, \nabla_{k}u^{(\nu)}\,\nabla_{l}u^{(\nu)}\nonumber \\ & &-{ 1 \over 2 } \int_{D}\ \|\nabla \|\nabla u^{(\nu)}\|^{2}\,\|^{2} + 2 \int_{D}\ F(\varphi^{(\nu)},\,u^{(\nu)})\, g^{kr} \nabla_{k}(\eta\,\nabla_{r}u^{(\nu)}) \hskip 4ex (\mbox{by (\ref{eq:equality 3})}\,)\,. \nonumber \end{eqnarray*} Therefore we obtain an integral form of the Bochner equality for $\,u^{(\nu )}\,$: \begin{eqnarray} \int_{M}\ \eta\, g^{ip}g^{jq} \nabla_{i}u^{(\nu)}\,\nabla_{j}u^{(\nu)}\, \nabla_{p}\nabla_{q}\,\|\nabla u^{(\nu)}\|^{2} \ + \ { 1 \over 2 } \int_{M}\ \|\nabla \|\nabla u^{(\nu)}\|^{2}\,\|^{2}\, \eta & & \nonumber \\ -2 \int_{M}\ F(\varphi^{(\nu )},\,u^{(\nu)})\, g^{kr} \nabla_{k}(\eta\,\nabla_{r}u^{(\nu)}) & & \label{eq:Bochner^(nu)} \\ +2 \int_{M}\ \eta\, g^{ip}g^{jq}g^{kr}g^{ls} R_{ikjl}\,\nabla_{p}u^{(\nu)}\,\nabla_{q}u^{(\nu)}\, \nabla_{r}u^{(\nu)}\,\nabla_{s}u^{(\nu)} &=& 0\,. \nonumber \end{eqnarray} for any $\,\eta\,$ $\in\,$ ${\rm C}^{\infty}_{0}(D)\,$. Note here \begin{eqnarray} g^{jq} \nabla_{j}u^{(\nu)}\,\nabla_{q}\|\nabla u^{(\nu)}\|^{2} & = & g^{jq} \nabla_{j}u^{(\nu)}\, \nabla_{q}(g^{ip}\nabla_{i}u^{(\nu)}\nabla_{p}u^{(\nu)}) \label{eq:equality 9} \\ & = & 2\,g^{ip}g^{jq} \nabla_{j}u^{(\nu)}\,\nabla_{i}u^{(\nu)}\, \nabla_{q}\nabla_{p}u^{(\nu)} \nonumber \\ & = & -\,2\,F(\varphi^{(\nu)},\,u^{(\nu)}) \hskip 7ex (\mbox{by (\ref{eq:approximating infty-harmonic})}\,)\,. \nonumber \end{eqnarray} Then using integration by parts, we get \begin{eqnarray} \lefteqn{ \int_{D}\ \eta\, g^{ip}g^{jq} \nabla_{i}u^{(\nu)}\,\nabla_{j}u^{(\nu)}\, \nabla_{p}\nabla_{q}\,\|\nabla u^{(\nu)}\|^{2} } \label{eq:equality 10} \\ & =& -\int_{D}\ g^{ip}g^{jq} \nabla_{p}\eta\, \nabla_{i}u^{(\nu)}\,\nabla_{j}u^{(\nu)}\, \nabla_{q}\,\|\nabla u^{(\nu)}\|^{2} \nonumber \\ & & -\int_{D}\ \eta\, g^{ip}g^{jq} \nabla_{p}\nabla_{i}u^{(\nu)}\,\nabla_{j}u^{(\nu)}\, \nabla_{q}\,\|\nabla u^{(\nu)}\|^{2} \nonumber \\ & & -\int_{D}\ \eta\, g^{ip}g^{jq} \nabla_{i}u^{(\nu)}\,\nabla_{p}\nabla_{j}u^{(\nu)}\, \nabla_{q}\,\|\nabla u^{(\nu)}\|^{2} \nonumber \\ & =& 2\int_{D}\ g^{ip}\nabla_{p}\eta\,\nabla_{i}u^{(\nu)}\, F(\varphi^{(\nu)},\,u^{(\nu)}) =2\int_{D}\ \eta\, g^{ip} \nabla_{p}\nabla_{i}u^{(\nu)}\, F(\varphi^{(\nu)},\,u^{(\nu)}) \nonumber \\ & & -\int_{D}\ \eta\, g^{ip}g^{jq} \nabla_{i}u^{(\nu)}\,\nabla_{p}\nabla_{j}u^{(\nu)}\, \nabla_{q}\,\|\nabla u^{(\nu)}\|^{2} \hskip 7ex (\mbox{by (\ref{eq:equality 9})}\,) \nonumber \\ &=& 2\int_{D}\ g^{ip}\nabla_{i}u^{(\nu)}\,\nabla_{p}\eta\, F(\varphi^{(\nu)},\,u^{(\nu)}) \ + \ 2 \int_{D}\ \eta\, \bigtriangleup u^{(\nu)}\, F(\varphi^{(\nu)},\,u^{(\nu)}) \nonumber \\ & & -{ 1 \over 2 } \int_{D}\ \|\nabla \|\nabla u^{(\nu)}\|\,\|^{2}\,\eta\,, \nonumber \end{eqnarray} because $$ g^{ip}\nabla_{i}u^{(\nu)}\,\nabla_{p}\nabla_{j}u^{(\nu)} \,=\, { 1 \over 2 } \, \nabla_{j}(g^{ip}\nabla_{i}u^{(\nu)}\,\nabla_{p}u^{(\nu)}) \,=\, {\displaystyle { 1 \over 2 } }\, \nabla_{j}\|\nabla u^{(\nu)}\|^{2}\,. $$ Then by (\ref{eq:Bochner^(nu)}) and (\ref{eq:equality 10}), we obtain \begin{eqnarray} \lefteqn{ 2 \int_{D}\ \eta\, g^{ip}g^{jq}g^{kr}g^{ls} R_{ijkl}\nabla_{p}u^{(\nu)}\,\nabla_{q}u^{(\nu)}\, \nabla_{r}u^{(\nu)}\,\nabla_{s}u^{(\nu)} }\nonumber \\ & =& -2 \int_{D}\ g^{ip}\nabla_{i}u^{(\nu)}\,\nabla_{p}\eta\, F(\varphi^{(\nu)},\,u^{(\nu)}) \label{eq:equality 11} \\ & & -2 \int_{D}\ \eta\, \bigtriangleup u^{(\nu)}\, F(\varphi^{(\nu)},\,u^{(\nu)}) \nonumber \\ & & +2 \int_{D}\ g^{kr}\nabla_{r}(\eta\,\nabla_{k}u^{(\nu)})\, F(\varphi^{(\nu )},\,u^{(\nu)})\,. \nonumber \end{eqnarray} Since $\,\|\nabla u^{(\nu)}\|\,$ is bounded uniformly on $\,K\,$, we get \begin{eqnarray*} \lefteqn{ |\,{\rm the\ right\ hand\ side\ of\ \,} (\ref{eq:equality 11})\,| } \nonumber \\ & \leq & C \int_{K}\ \|F(\varphi^{(\nu)},\,u^{(\nu)})\| + \ C \int_{K}\ \|\nabla \nabla u^{(\nu)}\|\, \|F(\varphi^{(\nu)},\,u^{(\nu)})\| \nonumber \\ & \leq & C \int_{K}\ \|\nabla \varphi^{(\nu)}\|\, \|\nabla \nabla u^{(\nu)}\| + \ C \int_{K}\ \|\nabla \nabla \varphi^{(\nu)}\| \nonumber \\ & & + \ C \int_{K}\ \|\nabla \varphi^{(\nu)}\|^{2}\, \|\nabla \nabla u^{(\nu)}\| + \ C \int_{K}\ \|\nabla \varphi^{(\nu)}\|\, \|\nabla \nabla \varphi^{(\nu)}\| \nonumber \\ & & + \ C \int_{K}\ \|\nabla \varphi^{(\nu)}\|^{2}\, \|\nabla \nabla \varphi^{(\nu)}\| + \ C \int_{K}\ \|\nabla \varphi^{(\nu)}\|\, \|\nabla \nabla u^{(\nu)}\|^{2} \nonumber \\ & & + \ C \int_{K}\ \|\nabla \nabla \varphi^{(\nu)}\|\, \|\nabla \nabla u^{(\nu)}\| + \ C \int_{K}\ \|\nabla \varphi^{(\nu)}\|^{2}\, \|\nabla \nabla u^{(\nu)}\|^{2} \nonumber \\ & & + \ C \int_{K}\ \|\nabla \varphi^{(\nu)}\|\, \|\nabla \nabla \varphi^{(\nu)}\|\, \|\nabla \nabla u^{(\nu)}\| \nonumber \\ & & + \ C \int_{K}\ \|\nabla \varphi^{(\nu)}\|^{2}\, \|\nabla \nabla \varphi^{(\nu)}\|\, \|\nabla \nabla u^{(\nu)}\| \nonumber \\ & = \ : & {\rm I}_{1} \ + \ {\rm I}_{2} \ + \ {\rm I}_{3} \ + \ {\rm I}_{4} \ + \ {\rm I}_{5} \ + \ {\rm I}_{6} \ + \ {\rm I}_{7} \ + \ {\rm I}_{8} \ + \ {\rm I}_{9} \ + \ {\rm I}_{10}\,. \nonumber \end{eqnarray*} Since $\,\varphi^{(\nu)}\,$ converges to in $\,{\rm W}^{2,2+\varepsilon}(K)\,$ as $\,\nu\,$ tends to infinity, $\,\nabla \varphi^{(\nu)}\,$ and $\,\nabla \nabla \varphi^{(\nu)}\,$ approaches zero in $\,{\rm L}^{2}(K)\,$. Then \begin{eqnarray*} {\rm I}_{1} \ \leq\ C\, \left\{ \int_{K}\ \|\nabla \varphi^{(\nu)}\|^{2} \right\}^{1/2} \left\{ \int_{K}\ \|\nabla \nabla u^{(\nu)}\|^{2} \right\}^{1/2} \ \rightarrow\ 0\,, \end{eqnarray*} \begin{eqnarray*} {\rm I}_{2} \ \leq\ C\, \left\{ \int_{K}\ \|\nabla \nabla \varphi^{(\nu)}\|^{2} \right\}^{1/2} \left\{ \int_{K}\ 1^{2} \right\}^{1/2} \ \rightarrow\ 0\,, \end{eqnarray*} \begin{eqnarray*} {\rm I}_{3} \ \leq\ C\, \sup_{K}\ \|\nabla \varphi^{(\nu)}\|\, \left\{ \int_{K}\ \|\nabla \varphi^{(\nu)}\|^{2} \right\}^{1/2} \left\{ \int_{K}\ \|\nabla \nabla u^{(\nu)}\|^{2} \right\}^{1/2} \ \rightarrow\ 0\,, \end{eqnarray*} \begin{eqnarray*} {\rm I}_{4} \ \leq\ C\, \left\{ \int_{K}\ \|\nabla \varphi^{(\nu)}\|^{2} \right\}^{1/2} \left\{ \int_{K}\ \|\nabla \nabla \varphi^{(\nu)}\|^{2} \right\}^{1/2} \ \rightarrow\ 0\,, \end{eqnarray*} \begin{eqnarray*} {\rm I}_{5} \ \leq\ C\, \sup_{K}\ \|\nabla \varphi^{(\nu)}\|\, \left\{ \int_{K}\ \|\nabla \varphi^{(\nu)}\|^{2} \right\}^{1/ 2} \left\{ \int_{K}\ \|\nabla \nabla \varphi^{(\nu)}\|^{2} \right\}^{1/2} \ \rightarrow\ 0\,, \end{eqnarray*} \begin{eqnarray*} {\rm I}_{7} \ \leq\ C\, \left\{ \int_{K}\ \|\nabla \nabla \varphi^{(\nu)}\|^{2} \right\}^{1/2} \left\{ \int_{K}\ \|\nabla \nabla u^{(\nu)}\|^{2} \right\}^{1/2} \ \rightarrow\ 0\,, \end{eqnarray*} \begin{eqnarray*} {\rm I}_{9} \ \leq\ C\, \sup_{K}\ \|\nabla \varphi^{(\nu)}\|\, \left\{ \int_{K}\ \|\nabla \nabla \varphi^{(\nu)}\|^{2} \right\}^{1/2} \left\{ \int_{K}\ \|\nabla \nabla u^{(\nu)}\|^{2} \right\}^{1 \over 2} \ \rightarrow\ 0\,, \end{eqnarray*} \begin{eqnarray*} {\rm I}_{10} \ \leq\ C\, \sup_{K}\ \|\nabla \varphi^{(\nu)}\|^{2}\, \left\{ \int_{K}\ \|\nabla \nabla \varphi^{(\nu)}\|^{2} \right\}^{1/2} \left\{ \int_{K}\ \|\nabla \nabla u^{(\nu)}\|^{2} \right\}^{1/2} \ \rightarrow\ 0\,. \end{eqnarray*} Furthermore, since $\,\varphi^{(\nu)}\,$ converges to zero in $\,{\rm W}^{2,2+\varepsilon}(K)\,$, we have $$ {\rm I}_{6} \leq C \sup_{K}\|\nabla \varphi^{(\nu)}\|^{1-\varepsilon} \left\{ \int_{K} \|\nabla \varphi^{(\nu)}\|^{2+\varepsilon} \right\}^{\varepsilon/(2+\varepsilon) } \left\{ \int_{K} \|\nabla \nabla u^{(\nu)}\|^{2+\varepsilon} \right\}^{ 2/(2+\varepsilon) } \rightarrow 0\,, $$ $$ {\rm I}_{8}\leq C \sup_{K}\|\nabla \varphi^{(\nu)}\|^{2-\varepsilon} \left\{ \int_{K} \|\nabla \varphi^{(\nu)}\|^{2+\varepsilon} \right\}^{\varepsilon /(2+\varepsilon) } \left\{ \int_{K} \|\nabla \nabla u^{(\nu)}\|^{2+\varepsilon} \right\}^{ 2/(2+\varepsilon)} \rightarrow 0\,. $$ Thus the right hand side of (\ref{eq:equality 11}) converges to zero as $\,\nu\,$ tends to infinity. Then, letting $\,\nu\,$ go to infinity in (\ref{eq:equality 11}), we have (\ref{eq:equality 7}). This completes the proof. \hspace{5ex} $\Box$ \begin{thebibliography}{99} \bibitem{Aro1} Aronsson, G., {\it Extension of function satisfying Lipschitz conditions}, Ark. Mat. 6 (1967), 551-561. \bibitem{Aro2} Aronsson, G., {\it On the partial differential equation $\,u_{x}^{2}\,u_{xx}\,$ $+\,$ $2\,u_{x}\,u_{y}\,u_{xy}\,$ $+\,$ $u_{y}^{2}\,u_{yy}\,$ $=\,$ $0\,$}, Ark. Mat. 7 (1968), 395-425. \bibitem{Aro3} Aronsson, G., {\it On certain singular solutions of the partial differential equation $\,u_{x}^{2}\,u_{xx}\,$ $+\,$ $2\,u_{x}\,u_{y}\,u_{xy}\,$ $+\,$ $u_{y}^{2}\,u_{yy}\,$ $=\,$ $0\,$}, Manuscripta Math. 47 (1984), 131-151. \bibitem{B-D-M} Bhattacharya, T., DiBenedetto, E. \& Manfredi, J., {Limits as $\,p\,\rightarrow\,\infty\,$ of $\,\bigtriangleup_{p}u_{p}\,$ $=\,$ $f\,$ and related extremal problems}, Rend. Sem. Mat. Univ. Pol. Torino, Fascicolo Speciale 1989 Nonlinear PDE's, 15-68. \bibitem{Eva} Evans, L.C., {\it Estimates for smooth absolutely minimizing Lipschitz extensions}, Electronic J. Diff. Equations 1993 (1993), No.3, 1-9. \bibitem{Jen} Jensen, R., {\it Uniqueness of Lipschitz extensions: minimizing the sup norm of the gradient}, Arch. Rational Mech. Anal. 123 (1993), 51-74. \bibitem{Yau} Yau, S.-T., {\it Harmonic functions on complete Riemannian manifolds}, Comm. Pure Appl. Math. XXVIII (1975), 201-228. \end{thebibliography} \noindent {\sc Nobumitsu Nakauchi \newline Department of Mathematics \newline Faculty of Science \newline Yamaguchi University \newline Yamaguchi 753, Japan \newline} E-mail: nakauchi\@@ccy.yamaguchi-u.ac.jp \newpage \section*{December 11, 1996 Addendum} In this article, Theorem 1 follows from general properties of the Riemannian curvature tensor, and Corollary 1 is incorrect. The Bochner formula does not seem to work in this situation. \medskip Lemma 1 can be used in proving the following Liouville theorem for ${\rm C}^{3}$-solutions. \medskip \noindent{\bf Theorem A.} {\it Let $M$ be a complete noncompact Riemannian manifold of nonnegative (sectional) curvature. Let $u$ be a bounded $\infty$-harmonic function of ${\rm C}^{3}$-class on $M$. Then $u$ is a constant function. } \medskip The curvature assumption in Theorem A is necessary only for applying the Hessian comparison theorem in the proof (Here we use the operator ${\rm Q}^{ij} = g^{ip}g^{jq}\nabla_{p}\nabla_{q}$). Theorem A also follows from arguments in [Cheng, S.Y., {\em Liouville theorem for harmonic maps}, Proc. Symp. Pure Math. 36(1980), 147-151]. See also the article [Hong, N.C., {\it Liouville theorems for exponentially harmonic functions on Riemannian manifolds}, Manuscripta Math. 77(1992), 41-46]. \bigskip Sincerely yours, Nobumitsu Nakauchi \end{document}