\documentstyle[twoside,amssymb]{article} % amssym.def is used for R in Real numbers \pagestyle{myheadings} \markboth{\hfil Multiple positive solutions \hfil EJDE--1997/13}% {EJDE--1997/13\hfil C. O. Alves \hfil} \begin{document} \title{\vspace{-1in}\parbox{\linewidth}{\footnotesize\noindent {\sc Electronic Journal of Differential Equations}, Vol.\ {\bf 1997}(1997), No.\ 13, pp. 1--10. \newline ISSN: 1072-6691. URL: http://ejde.math.swt.edu or http://ejde.math.unt.edu \newline ftp (login: ftp) 147.26.103.110 or 129.120.3.113} \vspace{\bigskipamount} \\ Multiple positive solutions for equations involving critical Sobolev exponent in ${\Bbb R}^N$ \thanks{ {\em 1991 Mathematics Subject Classifications:} 35J20, 35J25. \hfil\break\indent {\em Key words and phrases:} Mountain Pass Theorem, Ekeland Variational Principle. \hfil\break\indent \copyright 1997 Southwest Texas State University and University of North Texas. \hfil\break\indent Submitted April 22,1997. Published August 19, 1997.} } \date{} \author{C. O. Alves} \maketitle \begin{abstract} This article concerns with the problem $$ -\mbox{div}(|\nabla u|^{m-2}\nabla u) = \lambda h u^q+u^{m^*-1},\quad\mbox{in}\quad {\Bbb R}^N\,. $$ Using the Ekeland Variational Principle and the Mountain Pass Theorem, we show the existence of $\lambda ^*>0$ such that there are at least two non-negative solutions for each $\lambda$ in $(0,\lambda ^*)$. \end{abstract} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \section{Introduction} In this work, we study the existence of solutions for the problem $$ \left\{ \begin{array}{l} -\Delta_mu=\lambda hu^q+u^{m^*-1},\;{\Bbb R}^N \\ u\geq 0,\;u\neq 0,\;u\in D^{1,m}({\Bbb R}^N) \end{array} \right. \leqno(P) $$ where $\Delta_mu=\mbox{div}\,(\left|\nabla u\right|^{m-2}\nabla u)$, $\lambda >0$, $N>m\geq 2$, $m^*=Nm/(N-m)$, $00$. Techniques for finding the solutions $u_1$ and $u_2$ are borrowed from Cao, Li \& Zhou \cite{r:1}. Then we combine these techniques with arguments developed by Chabrowski \cite{r:8}, Noussair, Swanson \& Jianfu \cite{r:9}, Jianfu \& Xiping \cite{r:10}, Azorero \& Alonzo \cite{r:11}, Gon\c {c}alves \& Alves \cite{r:4} and Alves, Gon\c {c}alves \& Miyagaki \cite{r:12} to obtain the following result \begin{theorem} There exists a constant $\lambda ^*>0$, such that (P) has at least two solutions, $u_1$ and $u_2$, satisfying \[ I(u_1)<00$ such that \begin{equation} I(u_n)-\frac 1{m^*}I'(u_n)u_n\leq M+\| u_n\| \quad \forall n\geq n_o\,. \label{eq:e2} \end{equation} Now, using (1) and the H\"{o}lder's inequality, we have \begin{equation} I(u_n)-\frac 1{m^*}I'(u_n)u_n\geq \frac 1N\left\| u_n\right\| ^m+c_1\left\| u_n\right\| ^{q+1} \label{eq:e3} \end{equation} where $c_1$ is a constant depending of $N, m,q,\| h\| _\Theta $ and $\Theta$. It follows from (2) and (3) that $\{u_n\}$ is bounded. Now, we shall show that $\{u_n^+\}$ is a also $(PS)_c$ sequence. Since $\{u_n\}$ is bounded, the sequence $u_n^{-}=u_n-u_n^+$ is also bounded. Then \[ I'(u_n)u_n^{-}\rightarrow 0 \] and we conclude that \begin{equation} \left\| u_n^{-}\right\| \rightarrow 0. \label{eq:e4} \end{equation} From (4) we achieve that \begin{equation} \left\| u_n\right\| =\left\| u_n^+\right\| +o_n(1). \label{eq:e5} \end{equation} Therefore, by (4) and (5) \[ I(u_n)=I(u_n^+)+o_n(1) \] and \[ I'(u_n)=I'(u_n^+)+o_n(1), \] which consequently implies that $\{u_n^+\}$ is a $(PS)_c$ sequence. \hfil $\Box $ From Lemma 1, it follows that any $(PS)_c$ sequence can be considered as a sequence of nonnegative functions. \begin{lemma} If $\{u_n\}$ is a $(PS)_c$ sequence with $u_n\rightharpoonup u$ in $D^{1,m}$, then $I'(u)=0$, and there exists a constant $M>0$ depending of $N, m, q, | h| _\Theta$ and $\Theta$, such that \[ I(u)\geq -M\lambda ^\Theta \] \end{lemma} \paragraph{Proof.} If $\{u_n\}$ is a $(PS)_c$ sequence with $u_n\rightharpoonup u$, using arguments similar to those found in \cite{r:4}, \cite{r:10} and \cite{r:9}, we can obtain a subsequence, still denoted by $u_n$, satisfying \begin{eqnarray} u_n(x)&\rightarrow& u(x) \quad\mbox{a.e. in}\quad {\Bbb R}^N \label{eq:e6}\\ \nabla u_n(x)&\rightarrow& \nabla u(x)\quad\mbox{a.e. in}\quad {\Bbb R}^N \label{eq:e7} \\ u(x)&\geq& 0\quad\mbox{a.e. in}\quad {\Bbb R}^N. \label{eq:e8} \end{eqnarray} From (6), (7) and using the hypothesis that $\{u_n\}$ is bounded in $D^{1,m}$, we get \begin{equation} I'(u)=0\,, \label{eq:e9} \end{equation} which in implies $I'(u)u=0$, and \[ \left\| u\right\| ^m=\lambda \int hu^{q+1}+\int u^{m^*}\,. \] Consequently \[ I(u)=\lambda \left( \frac 1m-\frac 1{q+1}\right) \int hu^{q+1}+\frac 1N\int u^{m^*}. \] Using H\"{o}lder and Young Inequalities, we obtain \[ I(u)\geq -\frac 1N\left| u\right| _{m^*}^{m^*}-M\lambda ^\Theta +\frac 1N\left| u\right| _{m^*}^{m^*}=-M\lambda ^\Theta \] where $M=M(N,m,q,\Theta ,\| h\| _\Theta )$. \hfil$\Box$ For the remaining of this article, we will denote by $S$ the best Sobolev constant for the imbedding $D^{1,m}\hookrightarrow L^{m^*}$. \begin{lemma} Let $\{u_n\}\subset D^{1,m}$ be a $(PS)_c$ sequence with \[ c<\frac 1NS^{N/m}-M\lambda ^\Theta \,, \] where $M>0$ is the constant given in Lemma 2. Then, there exists a subsequence $\{u_{n_j}\}$ that converges strongly in $D^{1,m}$. \end{lemma} \paragraph{Proof} By Lemmas 1 and 2, there is a subsequence, still denoted by $\{u_n\}$ and a function $u\in D^{1,m}$ such that $u_n\rightharpoonup u$. Let $w_n=u_n-u$. Then by a lemma in Brezis \& Lieb \cite{r:18}, we have \begin{eqnarray} \left\| w_n\right\| ^m&=&\left\| u_n\right\| ^m-\left\| u\right\| ^m+o_n(1) \label{eq:e10}\\ \| w_n\| _{m^*}^{m^*}&=&\left| u_n\right| _{m^*}^{m^*}-\left| u\right| _{m^*}^{m^*}+o_n(1)\,. \label{eq:e11} \end{eqnarray} Using the Lebesgue theorem (see Kavian \cite{r:19}), it follows that \begin{equation} \int hu_n^{q+1}\longrightarrow \int hu^{q+1}. \label{eq:e12} \end{equation} From (10), (11) and (12), we obtain \begin{equation} \left\| w_n\right\| ^m=\left| w_n\right| _{m^*}^{m^*}+o_n(1) \label{eq:e13} \end{equation} and \begin{equation} \frac 1m\left\| w_n\right\| ^m-\frac 1{m^*}\left| w_n\right| _{m^*}^{m^*}=c-I(u)+o_n(1). \label{eq:e14} \end{equation} Using the hypothesis that $\{w_n\}$ is bounded in $D^{1,m}$, there exists $l\geq 0$ such that \begin{equation} \left\| w_n\right\| ^m\rightarrow l\geq 0. \label{eq:e15} \end{equation} From (13) and (15), we have \begin{equation} \left| w_n\right| _{m^*}^{m^*}\rightarrow l, \label{eq:e16} \end{equation} and using the best Sobolev constant $S$ and recalling that \begin{equation} \| w_n\| ^m\geq S\left( \int \left| w_n\right| ^{m^*}\right) ^{m/m^*}\,, \label{eq:e17} \end{equation} we deduce from (15), (16) and (17) that \begin{equation} l\geq Sl^{ m/m^*}. \label{eq:e18} \end{equation} Now, we claim that $l=0$. Indeed, if $l>0,$ from (18) \begin{equation} l\geq S^{N/m}\,. \label{eq:e19} \end{equation} By (14), (15) and (16), we have \begin{equation} \frac 1Nl=c-I(u). \label{eq:e20} \end{equation} From (19), (20) and Lemma 2 we get \[ c\geq \frac 1NS^{N/m}-M\lambda ^\Theta \,, \] but this result contradicts the hypothesis. Thus, $l=0$ and we conclude that \[ u_n\rightarrow u\quad\mbox{in}\quad D^{1,m}\,. \] \section{Existence of a first solution (Local Minimization)} \begin{theorem} There exists a constant $\lambda_1^*>0$ such that for $0<\lambda <\lambda _1^*$ Problem (P) has a weak solution $u_1$ with $I(u_1)<0$. \end{theorem} \paragraph{Proof.} Using arguments similar to those developed in \cite{r:1}, we have \[ I(u)\geq \left( \frac 1m-\epsilon \right) \left\| u\right\| ^m+o\left( \left\| u\right\| ^m\right) -C(\epsilon )\lambda ^{ m/(m-(q+1))}\,, \] where $C(\epsilon )$ is a constant depending on $\epsilon >0$. The last inequality implies that for small $\epsilon$, there exist constants $\gamma ,\rho $ and $\lambda _1^*>0$ such that \[ I(u)\geq \gamma >0\,,\quad \| u\| =\rho\,, \quad\mbox{and}\quad 0<\lambda <\lambda _1^*\,. \] Using the Ekeland Variational Principle, for the complete metric space $\overline{B}_\rho (0)$ with $d(u,v)=\left\| u-v\right\|$, we can prove that there exists a $(PS)_{\gamma _o}$ sequence $\{u_n\}\subset\overline{B}_\rho (0)$ with \[ \gamma _o=\inf \{I(u)\mid u\in \overline{B}_\rho (0)\}. \] Choosing a nonnegative function $\Phi \in D^{1,m}\backslash \{0\}$, we have that $I(t\Phi )<0$ for small $t>0$ and consequently $\gamma _o<0$. Taking $\lambda _1^*>0,$ such that \[ 0<\frac 1NS^{ N/m}-M\lambda ^\Theta \quad\forall \lambda \in (0,\lambda_1^*) \] from Lemma 3, we obtain a subsequence $\{u_{n_j}\}\subset \{u_n\}$ and $u_1\in D^{1,m}$, such that \[ u_{n_j}\rightarrow u\quad\mbox{in}\quad D^{1,m}\,. \] Therefore, \[ I'(u_1)=0\quad\mbox{and}\quad I(u_1)=\gamma _o<0\,, \] which completes this proof.\hfil$\Box $ \section{Existence of a second solution (Mountain Pass)} In this section, we shall use arguments similar to those explored by Cao, Li \& Zhou \cite{r:1}, Chabrowski \cite{r:8}, Noussair, Swanson \& Jianfu \cite{r:9}, Jianfu \& Xiping \cite{r:10} and Gon\c calves \& Alves \cite{r:4} to obtain the following \begin{theorem} There exists a constant $\lambda_2^*>0$ such that for $0<\lambda <\lambda _2^*$ Problem (P) has a weak solution $u_2$ with $I(u_2)>0$. \end{theorem} \paragraph{Proof.} By arguments found in \cite{r:1} and \cite{r:4}, we can prove that there exists $\delta _1>0$ such that for all $\lambda \in (0,\delta _1)$, the functional $I$ has the Mountain Pass Geometry, that is: \begin{description} \item{(i)} There exist positive constants $r,\rho$ with $I(u)\geq r>0$ for $\|u\|=\rho$ \item{(ii)} There exists $e\in D^{1,m}$ with $I(e)<0$ and $\| e\| >\rho$ \,. \end{description} Then by \cite{r:6}, there exists a $(PS)_{\gamma _1}$ sequence $\{v_n\}$ with \[ \gamma_1 = \inf_{g\in \Gamma}\max_{t\in [0,1]}I(g(t)) \] where \[ \Gamma =\{g\in C([0,1],D^{1,m})\mid g(0)=0\quad\mbox{and}\quad g(1)=e\}\,. \] Using the next claim, which is a variant of a result found in \cite{r:1}, we can complete the proof of this theorem. \paragraph{Claim.} There exists $\lambda _2^*>0$ such that for the constant $M$ given by Lemma 2, \[ 0<\gamma _1<\frac 1NS^{N/m}-M\lambda ^\Theta \quad \forall \lambda \in (0,\lambda _2^*)\,. \] Assuming this claim, by Lemma 3 there exists a subsequence $\{v_{n_j}\}\subset \{v_n\}$ and a function $u_2\in D^{1,m}$ such that $v_{n_j}\rightarrow u_2$. Therefore, \[ I'(u_2)=0\quad\mbox{and}\quad I(u_2)=\gamma _1>0 \,. \] Which concludes the present proof. \hfil $\Box$ \paragraph{Verification of the above claim.} For $x\in {\Bbb R}^N$, let \[ \Psi (x)=\frac{\left[ N\left( \frac{N-m}{m-1}\right) ^{m-1}\right] ^{% (N-m)/m^2}}{\left[ 1+\left| x\right| ^{m/(m-1)}\right] \frac{N-m}m}\,. \] Then it is well known that (see \cite{r:16} or \cite{r:20}) {\large {\normalsize \begin{equation} \left\| \Psi \right\| ^m=\left| \Psi \right| _{m^*}^{m^*}=S^{N/m}\,. \label{eq:e21} \end{equation} Let $\delta _2>0$ such that \[ \frac 1NS^{ N/m}-M\lambda ^\Theta >0\quad\forall \lambda \in (0,\delta _2)\,. \] Then from (1) and (21), we have \[ I(t\Psi )\leq \frac{t^m}mS^{N/m}\,, \] and there exists $t_o\in (0,1)$ with }} \[ \sup_{0\leq t\leq t_o}I(t\Psi )<\frac 1NS^{N/m}-M\lambda ^\Theta \quad\forall \lambda \in (0,\delta _2)\,. \] Moreover, from (1) and (21), we have \[ I(t\Psi )=\left( \frac{t^m}m-\frac{t^{m^*}}{m^*}\right) S^{N/m}-% \frac{\lambda t^{q+1}}{q+1}\int h\Psi ^{q+1}\,, \] and remarking that \[ \left( \frac{t^m}m-\frac{t^{m^*}}{m^*}\right) \leq \frac 1N\quad\forall t\geq 0, \] we obtain \[ {\large {\normalsize I(t\Psi )\leq \frac 1NS^{N/m}-\frac{\lambda t^{q+1}% }{q+1}\int h\Psi ^{q+1}\,;}} \] therefore, \[ \sup_{t\geq t_o}I(t\Psi )\leq \frac 1NS^{N/m}- \frac{\lambda t_0^{q+1}}{q+1}\int h\Psi ^{q+1}. \] Now, taking $\lambda >0$ such that \[ -\frac{\lambda t_0^{q+1}}{q+1}\int h\Psi ^{q+1}<-M\lambda ^\Theta \] that is, \[ 0<\lambda <\left( \frac{t_0^{q+1}\int h\Psi ^{q+1}}{M(q+1)}\right) ^{ 1/(\Theta -1)}=\delta _3 \] we deduce that \[ \sup_{t\geq t_o}I(t\Psi )<\frac 1NS^{N/m}-M\lambda ^\Theta \quad\forall \lambda \in (0,\delta _3)\,. \] Choosing $\lambda _2^*=\min \{\delta _1,\delta _2,\delta _3\}$, we have \[ \sup_{t\geq 0}I(t\Psi )<\frac 1NS^{N/m}-M\lambda ^\Theta \quad\forall \lambda \in (0,\lambda _2^*)\,. \] and consequently \[ 0<\gamma _1<\frac 1NS^{N/m}-M\lambda ^\Theta \quad\forall \lambda \in (0,\lambda _2^*) \] which proves the claim. \paragraph{Proof of Theorem 1.} Theorem 1 is an immediate consequence of Theorems~2 and 3. \paragraph{Remark.} Using Lemma 3 and the same arguments explored by Azorero \& Alonzo, in the case $0