\input amstex
\documentstyle{amsppt}
\loadmsbm
\magnification=\magstephalf \hcorrection{1cm} \vcorrection{-6mm}
\nologo
\TagsOnRight
\NoBlackBoxes
\headline={\ifnum\pageno=1 \hfill\else%
{\tenrm\ifodd\pageno\rightheadline \else
\leftheadline\fi}\fi}
\def\rightheadline{EJDE--1997/25\hfil A note on very weak solutions
\hfil\folio}
\def\leftheadline{\folio\hfil Juha Kinnunen \& Shulin Zhou
\hfil EJDE--1997/25}
\def\pretitle{\vbox{\eightrm\noindent\baselineskip 9pt %
Electronic Journal of Differential Equations,
Vol.\ {\eightbf 1997}(1997), No.~25, pp.\ 1--4.\hfil\break
ISSN: 1072-6691. URL: http://ejde.math.swt.edu or http://ejde.math.unt.edu
\hfill\break
ftp (login: ftp) 147.26.103.110 or 129.120.3.113\bigskip} }
\topmatter
\title A note on very weak p--harmonic mappings
\endtitle
\thanks \noindent
{\it 1991 Mathematics Subject Classifications:} 35J60, 35B45.\hfil\break
{\it Key words and phrases:} Very weak p--harmonic mapping.
\hfil\break
\copyright 1997 Southwest Texas State University and
University of North Texas.\hfil\break
Submitted November 27, 1997. Published December 19, 1997.\hfil\break
The second author would like to thank NSF of China for their support,
and the University of Helsinki for its hospitality.
\endthanks
\author Juha Kinnunen \& Shulin Zhou \endauthor
\address Juha Kinnunen\hfil\break
Department of Mathematics, P.O.Box 4, FIN-00014 University of Helsinki,
Finland.
\endaddress
\email Juha.Kinnunen\@ Helsinki.Fi
\endemail
\address Shulin Zhou \hfil\break
Department of Mathematics, Peking University, Beijing 100871,
P. R. China
\endaddress
\email zsl\@sxx0.math.pku.edu.cn
\endemail
\abstract
We prove a new {\it a priori\/} estimate for
very weak $p$--harmonic mappings when $p$ is close to two.
This sheds some light on a conjecture posed by Iwaniec and Sbordone.
\endabstract
\endtopmatter
\define\dive{\operatorname{div}}
\define\loc{\operatorname{loc}}
\document
\head 1. Introduction \endhead
Let $\varOmega$ be a bounded regular domain
(Definition 2.1 in [IS]) in $\bold R^n$
and $1
\max\{1,p-1\}$ would do for the $p$--harmonic system,
but their estimate for $r_1$ is very close to $p$.
The objective of our note is to study
the case when $p$ is close to two.
We show that $r_1$ in (1.3) can be chosen
arbitrarily close to one if $p$ is close to two.
This does not solve the conjecture by Iwaniec and Sbordone, but
we are able to obtain estimates when $r_1$ is arbitrarily
close to $\max\{1,p-1\}$.
\proclaim{Theorem 1.4}
Let $0<\eta<1$.
For every exponent $r_1\ge1+\eta$ there are
$\delta=\delta(\eta,m,\varOmega)>0$
and $r_2=r_2(p,m,\varOmega)>p$
such that every very weak $p$--harmonic mapping
$u\in W^{1,r_1}_{\loc}(\varOmega,\bold R^m)$
belongs to $W^{1,r_2}_{\loc}(\varOmega,\bold R^m)$
provided $|p-2|<\delta$.
\endproclaim
Our method is a sharpening of [IS].
If $u$ belongs to the Sobolev space with the natural
exponent $p$, then we may use the classical method of reverse
H\"older inequalities, see [ME].
However, if $u$ is assumed to belong to a Sobolev space
below the natural exponent, then we cannot choose
$\eta u$, where $\eta$ is a cut-off function, as a
test function in (1.2) and hence it is difficult
to obtain any {\it a priori}\/ estimates.
Iwaniec and Sbordone used the Hodge decomposition
ingeniously to build a test function for equation (1.2).
Another argument has been given by Lewis in [L].
The main new feature in our proof is that we
use the Hodge decomposition twice and also employ
the fact that the matrix field involved
is divergence free.
This trick works only for $p$--harmonic operator.
As Serrin's example in [S] shows, our result is not true
for $\Cal A-$harmonic operators studied by [IS] and [L].
\head
2. Main results
\endhead
For the convenience of the reader we recall
the formulation of the Hodge decomposition (Theorem 3 in [IS]).
\proclaim{Theorem 2.1}
Let $\varOmega$ be a regular domain in $\bold R^n$ and
$w\in W^{1,r}_0(\varOmega,\bold R^m)$ with $r>1$, and let
$-1<\varepsilon\max\{1,p-1\}$ of
the non homogeneous system
$$
\dive\big(|g+\nabla w|^{p-2}(g+\nabla w)\big)
=\dive h
\tag 2.4
$$
where $g\in L^r(\varOmega,\bold R^{m\times n})$
and $h\in L^{r/(p-1)}(\varOmega,\bold R^{m\times n})$
are matrix fields.
Equation (2.4) is understood in the weak sense, that is,
$$
\int_\varOmega|g+\nabla w|^{p-2}(g+\nabla w)\cdot\nabla\phi\,dx
=\int_\varOmega h\cdot\nabla\phi\,dx
\tag 2.5
$$
for every $\phi\in W^{1,r/(r-p+1)}_0(\varOmega,\bold R^m)$.
\proclaim{Theorem 2.6}
Let $0<\eta<1$.
Suppose that $w\in W^{1,r}_0(\varOmega,\bold R^m)$ with
$r\ge1+\eta$ satisfies {\rm (2.3)}.
Then there is $\delta=\delta(\eta,m,\varOmega)>0$
such that if $|p-2|<\delta$, then
$$
\int_\varOmega|\nabla w|^r\,dx
\le C(\eta,p,m,\varOmega)\int_\varOmega\big(|g|^r+|h|^{r/(p-1)}\big)\,dx.
\tag 2.7
$$
\endproclaim
\demo{Proof}
Using Theorem 2.1 with $\varepsilon=r-p$ we obtain
functions $\phi_1\in W^{1,r/(r-p+1)}_0(\varOmega,\bold R^m)$
and $H_1\in L^{r/(r-p+1)}(\varOmega,\bold R^{m\times n})$ such that
$$
\align
|\nabla w|^{r-p}\nabla w
&=\nabla\phi_1+H_1,
\tag 2.8
\\
\int_\varOmega H_1\cdot\nabla\varphi\,dx
&=0,
\qquad\text{for every $\varphi\in W^{1,r/(p-1)}_0(\varOmega,\bold R^m)$,}
\tag 2.9
\endalign
$$
and
$$
\|H_1\|_{r/(r-p+1),\varOmega}
\le c_1|r-p|
\,\|\nabla w\|_{r,\varOmega}^{r-p+1},
\qquad c_1=C_r(\varOmega,m).
\tag 2.10
$$
In particular, we have
$$
\|\nabla\phi_1\|_{r/(r-p+1),\varOmega}
\le (c_1+1)
\,\|\nabla w\|_{r,\varOmega}^{r-p+1}.
\tag 2.11
$$
Since $\phi_1$ can be used as a test function in (2.5),
we obtain
$$
\int_\varOmega|\nabla w+g|^{p-2}(\nabla w+g)
\cdot\nabla\phi_1\,dx
=\int_\varOmega h\cdot\nabla\phi_1\,dx.
$$
Inserting (2.8) we arrive at
$$
\aligned
\int_\varOmega|\nabla w|^r\,dx
=&\int_\varOmega|\nabla w|^{p-2}\nabla w\cdot H_1\,dx
+\int_\varOmega h\cdot\nabla\phi_1\,dx
\\
&+\int_\varOmega\big(|\nabla w|^{p-2}\nabla w
-|\nabla w+g|^{p-2}
(\nabla w+g)\big)
\cdot\nabla\phi_1\,dx
\\
=&I_1+I_2+I_3.
\endaligned
\tag 2.12
$$
We begin with estimating $I_1$.
This is the crucial step of our argument.
By using Theorem 2.1 again with $\varepsilon=p-2$, we obtain
$\phi_2\in W^{1,r/(p-1)}(\varOmega,\bold R^m)$
and $H_2\in L^{r/(p-1)}(\varOmega,\bold R^{m\times n})$
such that
$$
\align
|\nabla w|^{p-2}\nabla w
&=\nabla\phi_2+H_2
\tag 2.13
\\
\int_\varOmega H_2\cdot\nabla\varphi\,dx
&=0,
\qquad\text{when $\varphi\in W^{1,r/(r-p+1)}_0(\varOmega,\bold R^m)$,}
\tag 2.14
\endalign
$$
and
$$
\|H_2\|_{r/(p-1),\varOmega}
\le c_1|p-2|
\,\|\nabla w\,\|_{r,\varOmega}^{p-1},
\qquad c_1=C_r(\varOmega,m).
\tag 2.15
$$
Using (2.13), (2.14), (2.8), (2.9) and (2.15)
we have
$$
\aligned
I_1
&=\int_\varOmega\big(\nabla\phi_2+H_2\big)
\cdot H_1\,dx
=\int_\varOmega H_1\cdot H_2\,dx
\\
&=\int_\varOmega\big(|\nabla w|^{r-p}\nabla w-\nabla\phi_1
\big)\cdot H_2\,dx\\
&=\int_\varOmega|\nabla w|^{r-p}\nabla w\cdot H_2\,dx
\\
&\le c_1|p-2|\,\|\nabla w\|_{r,\varOmega}^r.
\endaligned
$$
The same reasoning shows that
$$
I_1\le c_1|r-p|\,\|\nabla w\|_{r,\varOmega}^r
$$
and hence
$$
I_1\le c_1\min\big\{|p-2|,|r-p|\big\}\|\nabla w\|_{r,\varOmega}^r.
\tag 2.16
$$
By virtue of (2.11) we may estimate $I_2$ and $I_3$
in the same way as in [IS].
That is
$$
\align
I_2+I_3
\le & C\big(\|\nabla w\|_{r,\varOmega}^{r-p+1}
\|h\|_{r/(p-1),\varOmega}
\\
&+\|g\|_{r,\varOmega}^{p-1}
\|\nabla w\|^{r-p+1}_{r,\varOmega}
+\|g\|_{r,\varOmega}
\|\nabla w\|^{r-1}_{r,\varOmega}
\big).
\endalign
$$
Recalling Young's inequality we conclude that,
for every $\theta>0$,
$$
I_2+I_3
\le\theta\,\|\nabla w\|_{r,\varOmega}^r
+C_\theta\big(\|g\|_{r,\varOmega}^r
+\|h\|_{r/(p-1),\varOmega}^{r/(p-1)}\big).
\tag 2.17
$$
Using (2.12), (2.16) and (2.17) we obtain
$$
\big(1-c_1\min\{|p-2|,|r-p|\}-\theta\big)\|\nabla w\|^r_{r,\varOmega}
\le C_{\theta}\big(
\|g\|^r_{r,\varOmega}
+\|h\|^{r/(p-1)}_{r/(p-1),\varOmega}
\big).
$$
In particular, if $c_1|p-2|<1$, then (2.5) holds.
Estimates for the constant $c_1=C_r(\varOmega,m)$ can be found
in [I] and formula (2.10) in [IS].
Using these estimates it is easy to see that we may choose
$c_1=c(\eta,m,\varOmega)$.
This completes the proof.
\enddemo
\Refs
\widestnumber\key{ABCD}
%
\ref
\key GLS
\by D. Giachetti, F. Leonetti and R. Schianchi
\paper On the regularity of very weak minima
\jour Proc. Roy. Soc. Edinburgh Sect. A
\vol 126
\yr 1996
\pages 287--296
\endref
%
\ref
\key GS
\by D. Giachetti and R. Schianchi
\paper Boundary higher integrability for
the gradient of distributional solutions of nonlinear systems
\jour Studia Math.
\vol 123 (2)
\yr 1997
\pages 175--184
\endref
%
\ref
\key I
\by T. Iwaniec
\paper $p$--harmonic tensors and quasiregular mappings
\jour Ann. of Math.
\vol 136
\yr 1992
\pages 589--624
\endref
%
\ref
\key IS
\by T. Iwaniec and C. Sbordone
\paper Weak minima of variational integrals
\jour J. Reine Angew. Math.
\pages 143--161
\vol 454
\yr 1994
\endref
%
\ref
\key L
\by J. Lewis
\paper On very weak solutions of certain elliptic equations
\jour Comm. Partial Differential Equations
\vol 18 (9\&10)
\pages 1515--1537
\yr 1993
\endref
%
\ref
\key M
\by N. Meyers
\paper An $L^p-$estimate for the gradient of solutions of
second order elliptic divergence equations
\jour Ann. Scuola Norm. Sup. Pisa (3)
\vol 17
\yr 1963
\pages 189--206
\endref
%
\ref
\key ME
\by N. Meyers and A. Elcrat
\paper Some results on regularity for solutions
of non-linear elliptic systems and quasi-regular functions
\jour Duke Math. J.
\vol 42
\yr 1975
\pages 121--136
\endref
%
\ref
\key S
\by J. Serrin
\paper Pathological solutions of elliptic equations
\jour Ann. Scuola Norm. Sup. Pisa
\vol 18
\yr 1964
\pages 385--387
\endref
%
\endRefs
\enddocument