\documentclass[twoside]{article} \usepackage{amssymb} \pagestyle{myheadings} \markboth{\hfil On a Mixed Problem \hfil EJDE--1998/04}% {EJDE--1998/04\hfil H.R. Clark, L.P.S.G. Jutuca, \& M.M. Miranda \hfil} \begin{document} \title{\vspace{-1in}\parbox{\linewidth}{\footnotesize\noindent {\sc Eletronic Journal of Differential Equations}, Vol.\ {\bf 1998}(1998), No.~04, pp. 1--20. \newline ISSN: 1072-6691. URL: http://ejde.math.swt.edu or http://ejde.math.unt.edu \newline ftp (login: ftp) 147.26.103.110 or 129.120.3.113} \vspace{\bigskipamount} \\ On a mixed problem for a linear coupled system with variable coefficients \thanks{ {\em 1991 Mathematics Subject Classifications:} 35F15, 35N10, 35B40. \hfil\break\indent {\em Key words and phrases:} Mixed problem, Boundary damping, Exponential stability. \hfil\break\indent \copyright 1998 Southwest Texas State University and University of North Texas. \hfil\break\indent Submitted August 24, 1997. Published February 13, 1998.}} \date{} \author{H. R. Clark, L. P. San Gil Jutuca, \& M. Milla Miranda} \maketitle \begin{abstract} We prove existence, uniqueness and exponential decay of solutions to the mixed problem \begin{eqnarray*} &u''(x,t)-\mu(t)\Delta u(x,t)+\sum_{i=1}^n{\frac{\partial \theta}{\partial x_i}(x,t)}=0\,,&\\ &\theta'(x,t)-\Delta \theta(x,t) +\sum_{i=1}^n{\frac{\partial u'}{\partial x_i}(x,t)}=0\,,& \end{eqnarray*} with a suitable boundary damping, and a positive real-valued function $\mu$. \end{abstract} \renewcommand{\theequation}{\arabic{section}.\arabic{equation}} \newtheorem{myth}{Theorem}[section] \newtheorem{mylem}{Lemma}[section] \newtheorem{mypro}{Proposition}[section] \newtheorem{mydef}{Definition}[section] \newtheorem{myrem}{Remark}[section] \newtheorem{mycor}{Corollary}[section] \newcommand{\cqd}{\hfill\fbox{\thinspace}\medskip} \section{Introduction} Let $\Omega$ be a bounded and open set in ${\mathbb R}^n$ $(n\geq 1)$ with boundary $\Gamma$ of class $C^2$. Assumed that there exists a partition $\{\Gamma_0,\Gamma_1\}$ of $\Gamma$ such that $\Gamma_0$ and $\Gamma_1$ each has positive induced Lebesgue measure, and that $\overline\Gamma_0\cap \overline\Gamma_1$ is empty. We consider the linear system \begin{eqnarray} &u''(x,t)-\mu(t)\Delta u(x,t)+\sum_{i=1}^n{\frac{\partial \theta}{\partial x_i} (x,t)}=0\hspace{7pt}\mbox{in}\hspace{7pt}\Omega\times]0,\infty[ \label{eq:1.1}&\\ &\theta'(x,t)-\Delta \theta(x,t) +\sum_{i=1}^n{\frac{\partial u'}{\partial x_i} (x,t)}=0\hspace{7pt}\mbox{in}\hspace{7pt}\Omega \times ]0,\infty[ \label{eq:1.2}&\\ &u(x,t)=0,\;\;\theta(x,t)=0\hspace{7pt}\mbox{on}\hspace{7pt}\Gamma_0\times]0, \infty[ \label{eq:1.3}&\\ &\frac{\partial u}{\partial \nu}(x,t)+\alpha(x)u'(x,t)=0\hspace{7pt}\mbox{on} \hspace{7pt}\Gamma_1\times ]0,\infty[ \label{eq:1.4}&\\ &\frac{\partial \theta}{\partial \nu}(x,t)+\beta \theta(x,t)=0\hspace{7pt} \mbox{on}\hspace{7pt}\Gamma_1\times ]0,\infty[ \label{eq:1.5}&\\ &u(x,0)=u^0(x),\hspace{4pt}u'(x,0)=u^1(x),\hspace{4pt}\theta(x,0)=\theta^0(x) \hspace{7pt}\mbox{on}\hspace{7pt}\Omega, \label{eq:1.6} \end{eqnarray} where $\mu$ is a function of $W^{1,\infty}_{\rm loc}(0,\infty)$, such that $\mu(t)\geq \mu_0>0.$ By $\alpha $ we represent a function of $W^{1,\infty}(\Gamma_1)$ such that $\alpha (x)\geq \alpha_0>0$, and by $\beta $ a positive real number. The prime notation denotes time derivative, and $\frac{\partial}{\partial \nu}$ denotes derivative in the direction of the exterior normal to $\Gamma$. The above system is physically meaningful only in one dimension. For which there exists an extensive literature on existence, uniqueness and stability when $\mu \equiv 1$. See the recent papers of Mu\~nhoz Rivera \cite{rivera}, Henry, Lopes, Perisinotto \cite{henry}, and Scott Hansen \cite{scott}. The paper of Milla Miranda and L. A. Medeiros \cite{mi-me} on wave equations with variable coefficients has a particular relevance to this work. In that paper, due to the boundary condition of feedback type, the authors introduced a special basis necessary to apply the Galerkin method. This is the natural method solving problems with variable coefficients. In this article, we show the existence of a strong global solution of (\ref{eq:1.1})--(\ref{eq:1.6}), when $u^0,\;u^1$ and $\theta^0$ satisfy additional regularity hypotheses. Then this result is used for finding a weak global solution to (\ref{eq:1.1})--(\ref{eq:1.6}) in the general case. By the use of a method proposed in \cite{kom-zua}, we study the asymptotic behavior of an energy determined by solutions. The paper is organized as follows: In \S2 notation and basic results, in \S3 strong solutions, in \S4 weak solutions, and in \S5 asymptotic behavior. \section{Notation and Basic Results} \setcounter{equation}{0} Let the Hilbert space $$V=\{v\in H^1(\Omega);v=0\quad\mbox{on }\Gamma_0\}$$ be equipped with the inner product and norm given by $$((u,v))={\sum_{i=1}^n\int_{\Omega}}\frac{\partial u}{\partial x_i}(x) \frac{\partial v}{\partial x_i}(x)\,dx\,, \quad \|v\|=\left({\sum_{i=1}^n} {\int_{\Omega}}\left(\frac{\partial u}{\partial x_i}(x)\right)^2\,dx\right)^{1/2}\,.$$ While in $L^2(\Omega)$, $(.,.)$ and $|.|$ represent the inner product and norm, respectively. \begin{myrem} Milla Miranda and Medeiros \cite{mi-me} showed that in $V\cap H^2(\Omega)$ the norm $ {\left(|\Delta u|^2+\left\| \frac{\partial u}{\partial \nu}\right\|^2_{H^{1/2}(\Gamma_1)}\right)}^{1/2}$ is equivalent to the norm $\|.\|_{H^2(\Omega)}$. \end{myrem} We assume that \begin{equation} \beta\geq \frac{n}{2\alpha_0\mu_0}\,. \label{eq:2.1} \end{equation} To obtain the strong solution and consequently weak solution for system (1.1)--(1.6), we need the following results. \begin{mypro} Let $u_1\in V\cap H^2(\Omega),\;u_2\in V$ and $\theta\in V\cap H^2(\Omega)$ satisfy \begin{equation} \frac{\partial u_1}{\partial \nu}+\alpha (x)u_2=0\quad \mbox{on } \Gamma_1\quad\mbox{and}\quad\frac{\partial \theta}{\partial \nu}+\beta \theta=0 \quad\mbox{on }\Gamma_1\,. \label{eq:2.2} \end{equation} Then, for each $\varepsilon >0$, there exist w, y and z in $V\cap H^2(\Omega)$, such that $$\|w-u_1\|_{V\cap H^2(\Omega)}<\varepsilon\,,\;\|z-u_2\|<\varepsilon\,,\; \|y-\theta\|_{V\cap H^2(\Omega)}<\varepsilon\,,$$ with $$\frac{\partial w}{\partial \nu}+\alpha (x)z=0\quad\mbox{on }\Gamma_1\quad \mbox{and}\quad\frac{\partial y}{\partial \nu}+\beta y=0\quad\mbox{on }\Gamma_1\,.$$ \end{mypro} \paragraph{Proof.} We assume the conclusion of Proposition 3 in \cite{mi-me}. So, it suffices to prove the existence of $y$. By the hypothesis $\Delta \theta \in L^2(\Omega)$, for each $\varepsilon >0$ there exists $y\in {\cal D} (\Omega)$ such that $|y-\Delta \theta|<\varepsilon$. Let q be solution of the elliptic problem \begin{eqnarray*} &-\Delta q=-y\quad\mbox{in }\Omega &\\ &q=0\quad\mbox{on }\Gamma_0 &\\ &\frac{\partial q}{\partial \nu}+\beta q=0\quad\mbox{on }\Gamma_1\,.& \end{eqnarray*} On the other hand, we observe that $\theta $ is the solution of the above problem with $y=\Delta \theta$. Using results of elliptic regularity, cf. H. Brezis \cite{bre}, we conclude that $q-\theta \in V\cap H^2(\Omega)$ and that there exists a positive constant C such that $$\|q-\theta\|_{V\cap H^2(\Omega)}\leq C\,|y-\Delta \theta|\,.$$ \begin{mypro} If $\theta \in V$, then for each $\varepsilon >0$ there exists $q\in V\cap H^2(\Omega)$ satisfying $ \frac{\partial q}{\partial \nu}+\beta q=0$ on $\Gamma_1$ such that $\|\theta -q\|<\varepsilon $. \end{mypro} \paragraph{Proof.} Observe that the set $$W=\left\{q\in V\cap H^2(\Omega); \frac{\partial q}{\partial \nu}+\beta q=0 \quad\mbox{on }\Gamma_1\right\}$$ is dense in $V$. This is so because $W$ is the domain of the operator $A=-\Delta $ determined by the triplet $\left\{V,L^2(\Omega),a(u,v)\right\}$, where $$a(u,v)=((u,v))+(\beta u,v)_{L^2(\Gamma_1)}\,.$$ See for example J. L. Lions \cite{lions}. Hence, the result follows. \section{Strong Solutions} \setcounter{equation}{0} In this section, we prove existence and uniqueness of a solution to (1.1)--(1.6) when $u^0, u^1$ and $\theta^0$ are smooth. First, we have the following result. \begin{myth} Suppose that $u^0 \in V\cap H^2(\Omega)$, $u^1 \in V$, and $\theta^{0} \in V\cap H^2(\Omega)$ satisfy $$\frac{\partial u^0}{\partial \nu}+\alpha (x)u^1=0\quad\mbox{on }\Gamma_1\quad \mbox{and}\quad\frac{\partial \theta^0}{\partial \nu}+\beta \theta^0=0\quad\mbox{on }\Gamma_1\,.$$ Then there exists a unique pair of real functions $\{u,\theta\}$ such that \begin{eqnarray} &u\in L^{\infty}_{\rm loc}(0,\infty;V\cap H^2(\Omega)),\;u'\in L^{\infty}_{\rm loc} (0,\infty;V), \label{eq:3.1}&\\ &u''\in L^{\infty}_{\rm loc}(0,\infty;L^2(\Omega)) \label{eq:3.2}&\\ &\theta\in L^{\infty}_{\rm loc}(0,\infty;V\cap H^2(\Omega)),\;\;\theta'\in L^{\infty}_{\rm loc}(0,\infty;V) \label{eq:3.3}&\\ &u''-\mu\Delta u+\displaystyle\sum_{i=1}^n\frac{\partial \theta}{\partial x_i}=0 \hspace*{7pt}\mbox{in}\hspace*{7pt}L^{\infty}_{\rm loc}(0,\infty;L^2(\Omega)) \label{eq:3.4}&\\ &\frac{\partial u}{\partial \nu}+\alpha u'=0\hspace*{7pt}\mbox{in}\hspace*{7pt} L^{\infty}_{\rm loc}(0,\infty;H^{1/2}(\Gamma_1)) \label{eq:3.5}&\\ &\theta'-\Delta \theta+\displaystyle\sum_{i=1}^n\displaystyle\frac{\partial u'} {\partial x_i}=0\hspace*{7pt}\mbox{in}\hspace*{7pt}L^{\infty}_{\rm loc}(0,\infty; L^2(\Omega)) \label{eq:3.6}&\\ &\frac{\partial \theta}{\partial \nu}+\beta \theta=0\hspace*{7pt}\mbox{in} \hspace*{7pt}L^{\infty}_{\rm loc}(0,\infty;H^{1/2}(\Gamma_1)) \label{eq:3.7}&\\ &u(0)=u^0,\;\; u'(0)=u^1,\;\;\theta(0)=\theta^0\,.& \label{eq:3.8} \end{eqnarray} \end{myth} \paragraph{Proof.} We use the Galerkin method with a special basis in $V\cap H^2(\Omega)$. Recall that from Proposition 2.1 there exist sequences $(u_{\ell}^0)_{\ell\in {\mathbb N}}$, $(u_{\ell}^1)_{\ell\in {\mathbb N}}$ and $(\theta_{\ell}^0)_{\ell\in {\mathbb N}}$ of vectors in $V\cap H^2(\Omega)$ such that: \begin{eqnarray} &u_{\ell}^0\longrightarrow u^0\hspace*{7pt}\mbox{strongly}\hspace*{7pt}\mbox{in} \hspace*{7pt}V\cap H^2(\Omega) &\label{eq:3.9}\\ &u_{\ell}^1\longrightarrow u^1\hspace*{7pt}\mbox{strongly}\hspace*{7pt}\mbox{in} \hspace*{7pt}V &\label{eq:3.10}\\ &\theta_{\ell}^0\longrightarrow \theta_0\hspace*{7pt}\mbox{strongly}\hspace*{7pt} \mbox{in}\hspace*{7pt}V\cap H^2(\Omega) &\label{eq:3.11}\\ &\frac{\partial u_{\ell}^0}{\partial \nu}+\alpha u_{\ell}^1=0\hspace*{7pt}\mbox{on} \hspace*{7pt}\Gamma_1 &\label {eq:3.12}\\ &\frac{\partial \theta_{\ell}^0}{\partial \nu}+\beta \theta_{\ell}^0=0\hspace*{7pt} \mbox{on}\hspace*{7pt}\Gamma_1\,. &\label{eq:3.13} \end{eqnarray} For each $\ell \in{\mathbb N}$ pick $u_{\ell}^0$, $u_{\ell}^1$ and $\theta_{\ell}^0$ linearly independent, then define the vectors $w_1^{\ell}=u_{\ell}^0,\;w_2^{\ell}= u^1_{\ell}$ and $w_3^{\ell}=\theta_{\ell}^0$, and then construct an orthonormal basis in $V\cap H^2(\Omega)$, $$\{w_1^{\ell},w_2^{\ell},...,w_j^{\ell},...\}\hspace{7pt}\mbox{for each}\hspace{4pt} \ell\in{\mathbb N}\,.$$ For $\ell$ fixed and each $m \in{\mathbb N}$, we consider the subspace $W^{\ell}_{m}= [w^{\ell}_1,w^{\ell}_2,...,w^{\ell}_ m]$ generated by the m-first vectors of the basis. Thus for $u_{\ell m}(t),\;\theta_{\ell m}(t)\in W^{\ell}_{m}$ we have $$u_{\ell m}(t)=\sum_{j=1}^{m}g_{\ell jm}(t)w^{\ell }_j(x)\quad\mbox{and}\quad \theta_{\ell m}(t)=\sum_{j=1}^{m}h_{\ell jm}(t)w^{\ell}_j(x)\,.$$ For each $m \in{\mathbb N}$, we find pair of functions $\{u_{\ell m}(t), \theta_{\ell m}(t)\}$ in $W^{\ell}_{m}\times W^{\ell}_{m}$, such that for all $v\in W^{\ell}_{m}$ and all $w\in W^{\ell}_{m}$, \begin{eqnarray} &(u''_{\ell m}(t),v)+\mu(t)((u_{\ell m}(t),v))+\mu(t)\int_{\Gamma_1}{\alpha (x) u'_{\ell m}(t)vd\Gamma}& \nonumber \\ &+\sum_{i=1}^{n}\left(\frac{\partial \theta_{\ell m}}{\partial x_{i}}(t),v\right)=0\,,& \label{eq:3.14} \\ &(\theta'_{\ell m}(t),w)+((\theta_{\ell m}(t),w)) +\beta\int_{\Gamma_1}{\theta_{\ell m} (t)w\,d\Gamma} +\sum^{n}_{i=1}\left(\frac{\partial u'_{\ell m}}{\partial x_{i}}(t),w\right)=0\,, \nonumber \\ &u_{\ell m}(0)=u_{\ell}^0,\;\;\;u'_{\ell m}(0)=u_{\ell}^1\quad \mbox{and}\quad \theta_{\ell m}(0)=\theta^0\,. &\nonumber \end{eqnarray} The solution $\left\{u_{\ell m}(t),\theta_{\ell m}(t)\right\}$ is defined on a certain interval $[0,t_m[$. This interval will be extended to any interval $[0,T]$, with $T>0$, by the use of the following a priori estimate. \paragraph{Estimate I.} In (\ref{eq:3.14}) we replace $v$ by $u_{\ell m}'(t)$ and $w$ by $\theta_{\ell m}(t)$. Thus \begin{eqnarray*} &\frac{1}{2}\frac{d}{dt}|u'_{\ell m}(t)|^2+\frac{1}{2}\frac{d}{dt}\left\{\mu(t) \|u_{\ell m}(t)\|^2\right\}+\mu(t)\displaystyle\int_{\Gamma_1}{\alpha (x)(u'_{\ell m} (t))^2d\Gamma}&\\ &+\sum_{i=1}^n{\left(\frac{\partial \theta_{\ell m}}{\partial x_i}(t), u'_{\ell m}(t)\right)\;\leq \;|\mu'(t)|\|u_{\ell m}(t)\|^2}\,,&\\ &\frac{1}{2}\frac{d}{dt}|\theta_{\ell m}(t)|^2+\|\theta_{\ell m}(t)\|^2+ \beta\int_{\Gamma_1}{(\theta_{\ell m}(t))^2d\Gamma}+ \sum_{i=1}^{n}{\left(\frac{\partial {u'_{\ell m}}}{\partial x_i}(t),\theta_{\ell m}(t) \right)}=0.& \end{eqnarray*} Define $$E_1(t)=\frac{1}{2}\left\{|u'_{\ell m}(t)|^2+\mu(t)\|u_{\ell m}(t)\|^2+ |\theta_{\ell m}(t)|^2\right\}.$$ and we make use of the Gauss identity $$\sum_{i=1}^n\left(\frac{\partial u_{\ell m}'}{\partial x_i}(t),\theta_{\ell m}(t) \right)=-\sum_{i=1}^n\left(u_{\ell m}'(t),\frac{\partial \theta_{\ell m}} {\partial x_i}(t)\right)+\sum_{i=1}^n\int_{\Gamma_1}{u'_{\ell m}(t) \theta_{\ell m}(t)\nu_{i}d\Gamma}$$ to obtain \begin{eqnarray*} \lefteqn{ \frac{d}{dt}E_1(t)+\|\theta_{\ell m}(t)\|^2+\mu(t)\int_{\Gamma_1}{\alpha (x)(u'_{\ell m}(t))^2d\Gamma} }&&\\ \lefteqn{ +\sum_{i=1}^{n}\left(\frac{\partial \theta_{\ell m}}{\partial x_i}(t), u'_{\ell m}(t)\right) +\beta\int_{\Gamma_1}{(\theta_{\ell m}(t))^2d\Gamma} }&&\\ &\leq& \sum_{i=1}^{n} {\int_{\Gamma_1}{u'_{\ell m}(t)\theta_{\ell m}(t)\nu_id\Gamma}+ \frac{|\mu'(t)|}{\mu(t)}E_1(t).} \end{eqnarray*} % By the Cauchy-Schwarz inequality it follows that $${\sum_{i=1}^{n}\int_{\Gamma_1}{u'_{\ell m}(t)\theta_{\ell m}(t)\nu_id\Gamma}\leq \frac{n}{2\alpha_0\mu_0}\int_{\Gamma_1}{(\theta_{\ell m}(t))^2d\Gamma}+\frac{\alpha_0 \mu(t)}{2}\int_{\Gamma_1}{(u'_{\ell m}(t))^2d\Gamma}},$$ and this yields \begin{eqnarray} & {\frac{d}{dt}E_1(t)+\|\theta_{\ell m}(t)\|^2+\mu(t)\frac{\alpha_0}{2}\int_{\Gamma_1} {(u'_{\ell m}(t))^2d\Gamma}} +\left(\beta-\frac{n}{2\alpha_0\mu_0}\right)\int_{\Gamma_1}{(\theta_{\ell m}(t))^2d \Gamma} & \nonumber \\ \label{eq:3.15} &\leq\quad \frac{|\mu'(t)|}{\mu(t)}E_1(t)\,.& \end{eqnarray} Integrating (\ref{eq:3.15}) over [0,t[, $0\leq t\leq t_m$, using (\ref{eq:2.1}) and applying Gronwall inequality, we conclude that there is a positive constant $C>0$, independent of $\ell$ and $m$, such that \begin{equation} E_1(t)+\int_0^t{\|\theta_{\ell m}(s)\|^2ds}\leq C. \label{eq:3.16} \end{equation} Then there exists a subsequence still denoted by $(u_{\ell m})_{m\in{\mathbb N}}$ and a subsequence still denoted by $(\theta_{\ell m})_{m\in{\mathbb N}}$, such that \begin{eqnarray} & (u_{\ell m})_{m\in{\mathbb N}}\;\;\mbox{is}\;\;\mbox{bounded}\;\;\mbox{in}\;\; L^{\infty}_{loc}(0,\infty;V) &\label{eq:3.17}\\ & (u'_{\ell m})_{m\in{\mathbb N}} \;\;\mbox{is}\;\;\mbox{bounded}\;\;\mbox{in}\;\; L^{\infty}_{loc}(0,\infty;L^2(\Omega)) &\label{eq:3.18}\\ & (\theta_{\ell m})_{m\in{\mathbb N}}\;\;\mbox{is}\;\;\mbox{bounded}\;\;\mbox{in}\;\; L^2_{loc}(0,\infty;V). \label{eq:3.19} &\end{eqnarray} \paragraph{Estimate II.} Differentiating in (\ref{eq:3.14}) with respect to t, taking $v=u''_{\ell m}(t)$ and $w=\theta'_{\ell m}(t)$, we obtain \begin{eqnarray} \lefteqn{\frac{d}{dt}E_2(t)+\mu(t)\int_{\Gamma_1}{\alpha (x)(u''_{\ell m}(t))^2d\Gamma} +\mu'(t)\int_{\Gamma_1}{\alpha(x) u'_{\ell m}(t)u''_{\ell m}(t)\,d\Gamma} }&& \nonumber \\ \lefteqn{+\|\theta'_{\ell m}(t)\|^2 + \beta\int_{\Gamma_1}{ (\theta'_{\ell m}(t))^2d\Gamma} } &&\label{eq:3.20}\\ &=&\frac{1}{2}\mu'(t)\|u'_{\ell m}(t)\|^2 -\mu'(t)((u_{\ell m}(t),u''_{\ell m}(t))) +\sum_{i=1}^n\int_{\Gamma_1}{\theta'_{\ell m}(t)u''_{\ell m}(t)\nu_i \,d\Gamma}, \nonumber \end{eqnarray} where $$E_2(t)=\frac{1}{2}\left\{|u''_{\ell m}(t)|^2+\mu(t)\|u'_{\ell m}(t)\|^2+| \theta'_{\ell m}(t)|^2\right\}.$$ Put $v=\frac{\mu'(t)}{\mu(t)}u''_{\ell m}(t)$ in $(\ref{eq:3.14})_1$, to obtain \begin{eqnarray*} \mu'(t)((u_{\ell m}(t),u''_{\ell m}(t)))&=&-\frac{\mu'(t)}{\mu(t)}|u''_{\ell m}(t)|^2+ \mu'(t)\int_{\Gamma_1}{\alpha (x)u'_{\ell m}(t)u''_{\ell m}(t)d\Gamma}\\ &&-\frac{\mu'(t)}{\mu(t)}\sum_{i=1}^{n}\left(\frac{\partial \theta_{\ell m}} {\partial x_i}(t),u''_{\ell m}(t)\right). \end{eqnarray*} Replacing this last expression in (\ref{eq:3.20}) we obtain \begin{eqnarray} \lefteqn{ \frac{d}{dt}E_2(t)+\mu(t)\int_{\Gamma_1}{\alpha (x) (u''_{lm}(t))^2d\Gamma}+ \|\theta'_{\ell m}(t)\|^2 + \beta \int_{\Gamma_1}{(\theta'_{\ell m}(t))^2d\Gamma} }&&\nonumber\\ &=&\frac{1}{2}\mu'(t)\|u'_{\ell m}(t)\|^2+\frac{\mu'(t)}{\mu(t)}|u''_{\ell m}(t)|^2+ \frac{\mu'(t)}{\mu(t)}\sum_{i=1}^{n}\left(\frac{\partial \theta_{\ell m}}{\partial x_i}(t),u''_{\ell m}(t)\right) \nonumber \\ &&+\sum_{i=1}^n\int_{\Gamma_1}{\theta'_{\ell m}(t)u''_{\ell m}(t)\nu_i d\Gamma}\,. \label{eq:3.21} \end{eqnarray} Making use of the Cauchy-Schwarz inequality in the last two terms of the right-hand-side of (\ref{eq:3.21}), we obtain \begin{equation} \frac{\mu'(t)}{\mu(t)}\sum_{i=1}^n\left|\left(\frac{\partial \theta_{\ell m}} {\partial x_i}(t),u''_{\ell m}(t)\right)\right|\leq \frac{1}{2}\frac{|\mu'(t)|} {\mu(t)}|u''_{\ell m}(t)|^2+\frac{n}{2}\frac{|\mu'(t)|}{\mu(t)}\|\theta_{\ell m}(t)\|^2 \label{eq:3.22} \end{equation} and \begin{equation} \sum_{i=1}^{n}\int_{\Gamma_1}{\theta'_{\ell m}(t)u''_{\ell m}(t)\nu_i\,d\Gamma}\leq \frac{\mu_0\alpha_0}{2}\int_{\Gamma_1}{(u''_{\ell m}(t))^2d\Gamma} +\frac{n}{2\mu_0\alpha_0}\int_{\Gamma_1}(\theta'_{\ell m}(t))^2d\,\Gamma. \label{eq:3.23} \end{equation} Combining (\ref{eq:3.21}), (\ref{eq:3.22}) and (\ref{eq:3.23}) we obtain \begin{eqnarray} & \frac{d}{dt}E_2(t)+\mu(t)\frac{\alpha_0}{2}\int_{\Gamma_1}{(u''_{\ell m}(t))^2d\Gamma} +\|\theta'_{\ell m}(t)\|^2 +\left(\beta-\frac{n}{2\mu_0\alpha_0}\right)\int_{\Gamma_1}{(\theta'_{\ell m}(t))^2d \Gamma} & \nonumber \\ &\leq\quad \frac{1}{2}\frac{|\mu'(t)|}{\mu_0}\mu(t)\|u'(t)\|^2 +\frac{3}{2}\frac{|\mu'(t)|}{\mu_0}|u''_{\ell m}(t)|^2 +\frac{n|\mu'(t)|}{2\mu_0}\|\theta_{\ell m}(t)\|^2\,.& \end{eqnarray} From (\ref{eq:2.1}) it follows that $$ \frac{d}{dt}E_2(t)+\|\theta'_{\ell m}(t)\|^2 +\leq 4 \frac{|\mu'(t)|}{\mu_0}E_2(t)+\frac{n|\mu'(t)|}{2\mu_0}\|\theta_{\ell m}(t)\|^2.$$ To complete this estimate, we integrate the above inequality over [0,t], $t\leq T$. Now we show that $u''_{\ell m}(0)$ and $\theta'_{\ell m}(0)$ are bounded in $L^2(\Omega)$. For this end put $v=u''_{\ell m}(t)$, $w=\theta'_{\ell m}(t)$, and $t=0$. Because of the choice of basis we have \begin{eqnarray*} \lefteqn{|u''_{\ell m}(0)|^2} &&\\ &\leq&\left(\mu(0)|\Delta u^0_{\ell}|+\sum_{i=1}^n{\left| \frac{\partial \theta_{\ell}^0}{\partial x_i}\right|}\right)|u''_{\ell m}(0)|+\mu(0) \int_{\Gamma_1}{\left(\frac{\partial u^0_{\ell}}{\partial \nu}+\alpha(x) u^1_{\ell}\right)u''_{\ell m}(0)d\Gamma} \end{eqnarray*} and $$|\theta'_{\ell m}(0)|^2\leq \left(|\Delta \theta^0_{\ell }|+\sum_{i=1}^{n}\left| \frac{\partial u^1_{\ell}}{\partial x_i}\right|\right)|\theta'_{\ell m}(0)|+ \int_{\Gamma_1}{\left(\frac{\partial \theta^0_{\ell}}{\partial \nu}+\beta \theta^0_{\ell}\right)\theta'_{\ell m}(0)d\Gamma }\,.$$ Since by hypothesis $\frac{\partial u^0_{\ell}}{\partial \nu}+\alpha(x) u^1_{\ell}=0$ and $\frac{\partial \theta^0_{\ell}}{\partial \nu}+\beta \theta^0_{\ell}=0\;\mbox{in}\; \Gamma_1$, it follows that $(u''_{\ell m}(0))_{m\in{\mathbb N}}\;\mbox{and}\; (\theta'_{\ell m}(0))_{m\in{\mathbb N}}$ are bounded in $L^2(\Omega)$. Consequently for a fixed $\ell$, \begin{eqnarray} &(u'_{\ell m})_{m\in{\mathbb N}}\;\;\mbox{is}\;\;\mbox{bounded}\;\;\mbox{in}\;\; L^{\infty}_{\rm loc}(0,\infty;V), &\label{eq:3.24}\\ &(u''_{\ell m})_{m\in{\mathbb N}}\;\;\mbox{is}\;\;\mbox{bounded}\;\;\mbox{in}\;\; L^{\infty}_{\rm loc}(0,\infty;L^2(\Omega)), &\label{eq:3.25}\\ &(\theta'_{\ell m})_{m\in{\mathbb N}}\;\;\mbox{is}\;\;\mbox{bounded}\;\;\mbox{in}\;\; L^{\infty}_{\rm loc}(0,\infty;L^2(\Omega)) &\label{eq:3.26}\\ &(\theta'_{\ell m})_{m\in {\mathbb N}}\;\;\mbox{is}\;\;\mbox{bounded}\;\;\mbox{in}\;\; L^2_{\rm loc}(0,\infty;V) &\label{eq:3.27} \end{eqnarray} From (\ref{eq:3.17})--(\ref{eq:3.19}) and (\ref{eq:3.24})--(\ref{eq:3.27}), by induction and the diagonal process, we obtain subsequences, denoted with the same symbol as the original sequences, $(u_{\ell m_{n}})_{n\in{\mathbb N}}$ and $(\theta_{\ell m_{n}})_{n\in{\mathbb N}}$; and functions $u_{\ell}:\Omega \times ]0, \infty[\longrightarrow {\mathbb R}$ and $\theta_{\ell}:\Omega \times]0,\infty[ \longrightarrow {\mathbb R}$ such that: \begin{eqnarray} &&u_{\ell m}\longrightarrow u_{\ell}\;\;\mbox{weak star in}\;\;L^{\infty}_{\rm loc} (0,\infty;V) \label{eq:3.28}\\ &&u'_{\ell m}\longrightarrow u'_{\ell}\;\;\mbox{weak star in}\;\;L^{\infty}_{\rm loc} (0,\infty;V) \label{eq:3.29}\\ &&u''_{\ell m}\longrightarrow u''_{\ell}\;\;\mbox{weak star in}\;\;L^{\infty}_{\rm loc} (0,\infty;L^2(\Omega)) \label{eq:3.30}\\ &&u'_{\ell m}\longrightarrow u'_{\ell}\;\;\mbox{weak star in}\;\;L^{\infty}_{\rm loc} (0,\infty;H^{1/2}(\Gamma_1)) \label{eq:3.31}\\ &&\theta_{\ell m}\longrightarrow \theta_{\ell}\;\;\mbox{weakly in}\;\;L^2_{\rm loc} (0,\infty;V) \label{eq:3.32}\\ &&\theta'_{\ell m}\longrightarrow \theta'_{\ell}\;\;\mbox{weak star in}\;\; L^{\infty}_{\rm loc}(0,\infty;L^2(\Omega)) \label{eq:3.33}\\ &&\theta_{\ell m}\longrightarrow \theta_{\ell}\;\;\mbox{weak star in}\;\; L^2_{\rm loc}(0,\infty;H^{1/2}(\Gamma_1)). \label{eq:3.34} \end{eqnarray} Next, we multiply both sides of (\ref{eq:3.14}) by $\psi \in {\cal D}(0,\infty)$ and integrate with respect to $t$. From (\ref{eq:3.28})--(\ref{eq:3.34}), for all $v,w\in V^{\ell}_m$ we obtain \begin{eqnarray} &&\int_0^\infty{(u''_{\ell}(t),v)\psi(t) \,dt}+\int_0^\infty{\mu(t)((u_{\ell}(t),v)) \psi(t) \,dt}\label{eq:3.35}\\ &&+ \int_0^\infty\int_{\Gamma_1}{\alpha (x) u'_{\ell}(t)\,v\,\psi(t)\,d\Gamma}\,dt+ \sum_{i=1}^n\int_0^\infty\left(\frac{\partial \theta_{\ell}}{\partial x_i}(t),v\right) \psi(t)\,dt=0,\nonumber \\ &&\int_0^\infty{(\theta'_{\ell},w)\psi(t)\,dt}+\int_0^\infty{((\theta_{\ell}(t),w)) \psi(t)\,dt}\label{eq:3.36}\\ &&+\beta\int_0^\infty{\int_{\Gamma_1} \theta_{\ell}(t)w\psi(t) d\Gamma} +\sum_{i=1}^n\int_0^{\infty}{\left(\frac{\partial u'_{\ell}}{\partial x_i}(t),w\right) \psi(t) \,dt}=0.\nonumber \end{eqnarray} Since $\{w_{1}^{\ell},w_{2}^{\ell},...\}$ is a basis of $V\cap H^2(\Omega)$, then by denseness it follows that the last two equalities are true for all $v$ and $w$ in $V\cap H^2(\Omega)$. Also notice that (\ref{eq:3.17})--(\ref{eq:3.19}) and (\ref{eq:3.24})--(\ref{eq:3.27}) hold for all $\ell \in{\mathbb N}$. Then by the same process used in obtaining of (\ref{eq:3.28})--(\ref{eq:3.34}), we find diagonal subsequences denoted as the original sequences, $(u_{\ell_{\ell}})_{\ell \in{\mathbb N}}$ and $\theta_{\ell_{\ell}})_{\ell \in{\mathbb N}}$, and functions $u:\Omega \times ]0,\infty[\longrightarrow {\mathbb R},\theta:\Omega \times ]0, \infty[\longrightarrow {\mathbb R}$ such that: \begin{eqnarray} &&u_{\ell}\longrightarrow u\;\;\mbox{weak star in}\;\;L^\infty_{\rm loc}(0,\infty;V) \label{eq:3.37}\\ && u'_{\ell}\longrightarrow u'\;\;\mbox{weak star in }\;\;L^\infty_{\rm loc}(0,\infty;V) \label{eq:3.38}\\ && u''_{\ell}\longrightarrow u''\;\;\mbox{weak star in}\;\;L^\infty_{\rm loc}(0,\infty; L^2(\Omega)) \label{eq:3.39}\\ && u'_{\ell}\longrightarrow u'\;\;\mbox{weak star in}\;\;L^\infty_{\rm loc}(0,\infty; H^{1/2}(\Gamma_1)) \label{eq:3.40}\\ && \theta_{\ell}\longrightarrow \theta\;\;\mbox{weakly in}\;\;L^2_{\rm loc}(0,\infty;V) \label{eq:3.41}\\ &&\theta'_{\ell}\longrightarrow \theta'\;\;\mbox{weak star in}\;\;L^{\infty}_{\rm loc} (0,\infty;L^2(\Omega)) \label{eq:3.42}\\ &&\theta_{\ell}\longrightarrow \theta\;\;\mbox{weak star in}\;\;L^2_{\rm loc}(0,\infty ;H^{1/2}(\Gamma_1)) \label{eq:3.43} \end{eqnarray} Taking limits in (\ref{eq:3.35}) and in (\ref{eq:3.36}), using the convergences showed in (\ref{eq:3.37})--(\ref{eq:3.43}), and using the fact that $V\cap H^2(\Omega)$ is dense in V, we obtain that for all $\psi$ in ${\cal D}(0,\infty)$ and $v,w\in V$, \begin{eqnarray} &&\int_0^{\infty}{(u''(t),v)\psi(t)\, dt}+\int_0^{\infty}{\mu(t)((u(t),v))\psi(t)\, dt} \label{eq:3.44}\\ && +\int_0^{\infty}{\int_{\Gamma_1}{\alpha (x)u'(t)v\psi(t)\, d\Gamma} dt}+\sum_{i=1}^n\int_0^\infty\left(\frac{\partial \theta}{\partial x_i}(t), v\right)\psi(t)\,dt=0,\nonumber \\ &&\int_0^{\infty}{(\theta'(t),w)\psi(t)\,dt}+\int_0^\infty{((\theta(t),w))\psi(t)\,dt} \label{eq:3.45}\\ &&+\beta\int_0^{\infty}{\int_{\Gamma_1}{\theta(t)w\psi(t)d\Gamma}dt}+\sum_{i=1}^n \int_0^\infty\left(\frac{\partial u'}{\partial x_i}(t),w\right)\psi(t)\,dt=0\,. \nonumber \end{eqnarray} Since ${\cal D}(\Omega)\subset V$, by (\ref{eq:3.44}) and (\ref{eq:3.45}) it follows that \begin{eqnarray} &u''-\mu\,\Delta u+\sum_{i=1}^n\frac{\partial \theta}{\partial x_i}=0\;\;\mbox{in}\;\; L^{2}_{\rm loc}(0,\infty;L^2(\Omega))\,, &\label{eq:3.46}\\ &\theta'-\Delta \theta+\sum_{i=1}^n\frac{\partial u'}{\partial x_i}=0\;\;\mbox{in}\;\; L^{\infty}_{\rm loc}(0,\infty;L^2(\Omega))\,. \label{eq:3.47} \end{eqnarray} Since $u\in L^{\infty}_{\rm loc}(0,\infty;V)$ and $\theta \in L^{2}_{\rm loc}(0,\infty; V)$, we take into account (\ref{eq:3.46}) and (\ref{eq:3.47}) to deduce that $\Delta u, \;\Delta \theta\in L^{2}_{\rm loc}(0,\infty;L^2(\Omega))$. Therefore \begin{equation} \frac{\partial u}{\partial \nu},\frac{\partial \theta}{\partial \nu}\in L^{2}_{\rm loc} (0,\infty;H^{-{1/2}}(\Gamma_1)) \label{eq:3.48} \end{equation} Multiply (\ref{eq:3.46}) by $v\psi$ and (\ref{eq:3.47}) by $w\psi$ with $v,\,w\in V$ and $\psi \in {\cal D}(0,\infty)$. By integration and use of the Green's formula, we obtain \begin{eqnarray} &&\int_0^{\infty}{(u''(t),v)\psi(t)\, dt}+\int_0^{\infty}{\mu(t)((u(t),v))\psi(t)\, dt} \label{eq:3.49}\\ &&-\int_0^{\infty}{\langle\mu(t)\frac{\partial u}{\partial \nu}(t),v\rangle\psi(t)\, dt} +\sum_{i=1}^n\int_0^{\infty}{\left(\frac{\partial \theta}{\partial x_i}(t),v\right) \psi(t)\,dt}=0\,, \nonumber\\ &&\int_0^{\infty}{(\theta'(t),w)\psi(t)\,dt}+\int_0^{\infty}{((\theta(t),w))\psi(t)\,dt} \label{eq:3.50}\\ &&-\int_0^{\infty}{\langle\frac{\partial \theta}{\partial \nu}(t),w\rangle\psi(t)\,dt}+ \sum_{i=1}^n\int_0^{\infty}{\left(\frac{\partial u'}{\partial x_i}(t),w\right)\psi(t)\, dt=0},\nonumber \end{eqnarray} where $\langle.,.\rangle$ denotes the duality pairing of $H^{-{1/2}}(\Gamma_1)\times H^{1/2}(\Gamma_1)$. Comparing (\ref{eq:3.44}) with (\ref{eq:3.49}) and (\ref{eq:3.45}) with (\ref{eq:3.50}), we obtain that for all $\psi$ in ${\cal D}(0,\infty)$ and for all $v,w\in V$, $$\int _0^{\infty}{\langle\frac{\partial u}{\partial \nu}(t)+\alpha (x) u'(t), v\rangle\psi(t)\, dt} =0,\qquad \int_0^{\infty}{\langle\frac{\partial \theta}{\partial \nu}(t)+\beta \theta(t),w\rangle\psi(t)\,dt}=0.$$ From (\ref{eq:3.38}), (\ref{eq:3.43}) and (\ref{eq:3.48}) it follows that \begin{eqnarray*} &\frac{\partial u}{\partial \nu}+\alpha u'=0\;\;\mbox{in}\;\;L^{\infty}_{\rm loc} (0,\infty;H^{-{1/2}}(\Gamma_1)),&\\ &\frac{\partial \theta}{\partial \nu}+\beta\theta=0\;\;\mbox{in}\;\;L^2_{\rm loc} (0,\infty;H^{-{1/2}}(\Gamma_1)).& \end{eqnarray*} Since $\alpha u'\in L^{\infty}_{\rm loc}(0,\infty;H^{1/2}(\Gamma_1))$ and $\beta \theta\in L^2_{\rm loc}(0,\infty;H^{1/2}(\Gamma_1))$, it follows that \begin{eqnarray} &&\frac{\partial u}{\partial \nu}+\alpha u'=0\;\;\;\mbox{in}\;\;\;L^2_{\rm loc} (0,\infty;H^{1/2}(\Gamma_1)) \label{eq:3.51}\\ && \frac{\partial \theta}{\partial \nu}+\beta\,\theta=0\;\;\mbox{in}\;\; L^2_{\rm loc}(0,\infty;H^{1/2}(\Gamma_1)). \label{eq:3.52} \end{eqnarray} To complete the proof of the Theorem 3.1, we shall show that $u$ and $\theta$ are in $L^{\infty}_{\rm loc}(0,\infty;H^2(\Omega))$. In fact, for all $T>0$ the pair $\{u,\theta\}$ is the solution to \begin{eqnarray} &-\Delta u=-\frac{1}{\mu}\left(u''+\sum_{i=1}^n\frac{\partial \theta}{\partial x_i} \right)\;\;\;\mbox{in}\;\;\;\Omega \times ]0,T[&\nonumber\\ &-\Delta \theta=-\theta'-\displaystyle \frac{\partial u'}{\partial x_i}\quad\mbox{in} \quad\Omega \times ]0,T[\nonumber\\ &u=\theta=0\;\quad\mbox{on}\;\quad\Gamma_0\times ]0,T[\nonumber\\ &\frac{\partial u}{\partial \nu}=-\alpha u'\;\;\;\mbox{on}\;\;\;\Gamma_1\times]0,T[&\\ &\frac{\partial \theta}{\partial \nu}=-\beta \theta\;\quad\mbox{on}\;\quad\Gamma_1 \times]0,T[.&\nonumber \label{eq:3.53} \end{eqnarray} In view of (\ref{eq:3.39}), (\ref{eq:3.41}) and (\ref{eq:3.38}) we have $u''$ and $\frac{\partial \theta}{\partial x_i}$ are in $L^{\infty}_{\rm loc}(0,\infty; L^2(\Omega))$ and $\alpha u'$ is in $L^{\infty}_{\rm loc}(0,\infty;H^{1/2}(\Gamma_1))$. Thus by results on elliptic regularity, it follows that $u\in L^{\infty}_{\rm loc} (0,\infty;V\cap H^2(\Omega))$. In the same manner it follows that $\theta \in L^{\infty}_{\rm loc}(0,\infty;H^2(\Omega))$. Uniqueness of the solution $\{u,\theta\}$ is showed by the standard energy method. The verification of the initial conditions is done through the convergences in (\ref{eq:3.37})--(\ref{eq:3.43}). \cqd Next, we establish a result on existence and uniqueness of global solutions. \begin{mycor} Under the supplementary hypothesis $\mu'\in L^1(0,\infty)$, the pair of functions $\{u,\theta\}$ obtained by Theorem 3.1 satisfies \begin{eqnarray*} & u\in L^{\infty}(0,\infty;V\cap H^2(\Omega)),\;\;u'\in L^{\infty}(0,\infty;V),\;\; \theta\in L^{\infty}(0,\infty;V\cap H^2(\Omega))&\\ &\frac{\partial u}{\partial \nu}+\alpha u'=0\hspace{4pt}\mbox{and}\hspace{4pt} \frac{\partial \theta}{\partial \nu}+\beta \theta=0\hspace{4pt}\mbox{in}\hspace{4pt} L^2(0,\infty;L^2(\Gamma_1))& \\ &u(0)=u^0,\;\;u'(0)=u^1\;\;\mbox{and}\;\;\theta(0)=\theta^0\,.& \end{eqnarray*} \end{mycor} \section{Weak Solutions} \setcounter{equation}{0} In this section, we find a solution for the system (\ref{eq:1.1})--(\ref{eq:1.6}) with initial data $u^0\in V$, $u^1\in L^2(\Omega)$ and $\theta^0\in V$. To reach this goal we approximate $u^0$, $u^1$ and $\theta^0$ by sequences of vectors in $V\cap H^2(\Omega)$, and we use the Theorem~3.1. \begin{myth} If $\{u^0,u^1,\theta^0\}\in V\times L^2(\Omega)\times V$, then for each real number $ T>0$ there exists a unique pair of real functions $\{u,\theta\}$ such that: \begin{eqnarray} &u\in C([0,T];V)\cap C^1([0,T];L^2(\Omega)),\;\;\;\theta\in C([0,T];L^2(\Omega)) &\label{eq:4.1}\\ &u''-\mu\,\Delta u+\sum_{i=1}^n\frac{\partial \theta}{\partial x_i}=0\hspace*{7pt} \mbox{in}\hspace*{7pt}L^2(0,T;V') &\label{eq:4.2}\\ &\theta'-\Delta \theta+\sum_{i=1}^n\frac{\partial u'}{\partial x_i}=0\hspace*{7pt} \mbox{in}\hspace*{7pt}L^2(0,T;V') &\label{eq:4.3}\\ &\frac{\partial u}{\partial \nu}+\alpha u'=0\hspace*{7pt}\mbox{in} \hspace*{7pt}L^2(0,T;L^2(\Gamma_1)) &\label{eq:4.4}\\ &\frac{\partial \theta}{\partial \nu}+\beta \theta=0\hspace*{7pt} \mbox{in}\hspace*{7pt}L^2(0,T;L^2(\Gamma_1)) &\label{eq:4.5}\\ &u(0)=u^0,\;\;u'(0)=u^1,\;\;\mbox{and}\;\;\theta(0)=\theta^0. &\label{eq:4.6} \end{eqnarray} \end{myth} \paragraph{Proof.} Let $(u^0_p)_{p\in{\mathbb N}},\;(u^1_p)_{p\in {\mathbb N}},\; (\theta^0_p)_{p\in {\mathbb N}}$ be sequences in $V\cap H^2(\Omega)$ such that $$u^0_p\longrightarrow u^0\;\;\mbox{in}\;\;V,\;\; u^1_p\longrightarrow u^1\;\;\mbox{in}\;\;L^2(\Omega)\;\mbox{and}\; \theta^0_p\longrightarrow \theta^0\;\;\mbox{in}\;\;V$$ with $$\frac{\partial u^0_p}{\partial \nu}+\alpha (x) u^1_p=0\;\;\mbox{on}\;\; \Gamma_1\;\;\;\mbox{and}\;\;\; \frac{\partial \theta^0_p}{\partial \nu}+\beta \theta^0_p=0\;\;\mbox{on}\;\;\Gamma_1.$$ Let $\{u_p,\theta_p\}_{p\in {\mathbb N}}$ be a sequence of strong solutions to (\ref{eq:1.1})--(\ref{eq:1.6}) with initial data $\{u^0_p,u^1_p,\theta^0_p\}_{p\in{\mathbb N}}$. Using the same arguments as in the preceding section, we obtain the following estimates \begin{eqnarray} &(u_p)_{p\in{\mathbb N}}\;\;\mbox{is bounded in}\;\;L^{\infty}_{\rm loc}(0,\infty;V) &\label{eq:4.7}\\ &(u'_p)_{p\in{\mathbb N}}\;\;\mbox{is bounded in}\;\;L^{\infty}_{\rm loc}(0,\infty;V) &\label{eq:4.8}\\ &(u'_p)_{p\in{\mathbb N}}\;\;\mbox{is bounded in}\;\;L^{\infty}_{\rm loc}(0, \infty;H^{1/2}(\Gamma_1)) &\label{eq:4.9}\\ &\left(\frac{\partial u_p}{\partial \nu}\right)_{p\in{\mathbb N}}\;\;\mbox{is bounded in}\;\;L^{\infty}_{\rm loc}(0,\infty;H^{1/2}(\Gamma_1)) &\label{eq:4.10}\\ &(\theta_p)_{p\in{\mathbb N}}\;\;\mbox{is bounded in}\;\;L^2_{\rm loc}(0,\infty;V) &\label{eq:4.11}\\ &(\theta_p)_{p\in{\mathbb N}}\;\;\mbox{is bounded in}\;\; L^{\infty}_{\rm loc}(0,\infty;H^{1/2}(\Gamma_1)) &\label{eq:4.12}\\ & \left(\frac{\partial \theta_p}{\partial \nu}\right)_{p\in{\mathbb N}}\;\; \mbox{is bounded in }\;\;L^2_{\rm loc}(0,\infty;H^{1/2}(\Gamma_1)). &\label{eq:4.13} \end{eqnarray} Note that (\ref{eq:4.10}) and (\ref{eq:4.13}) follow as a consequence of \begin{equation} \begin{array}{l} \frac{\partial u_p}{\partial \nu}+\alpha u_p'=0\;\;\mbox{in}\;\; L^{\infty}(0,\infty;H^{1/2}(\Gamma_1))\\[8pt] \frac{\partial \theta_p}{\partial \nu}+\beta\theta_p=0\;\;\mbox{in}\;\;L^{\infty} (0,\infty;H^{1/2}(\Gamma_1)). \end{array} \label{eq:4.14} \end{equation} From (\ref{eq:4.7})--(\ref{eq:4.13}) there exist subsequences of $(u_p)_{p \in{\mathbb N}}$ and $(\theta_p)_{p\in{\mathbb N}}$, still denoted as the original sequences, and functions $u:\Omega\times ]0,\infty[\to {\mathbb R}$, $\theta:\Omega\times ]0,\infty[\to {\mathbb R}$, $\varphi_1:\Gamma_1\times ]0,\infty[\to {\mathbb R}$, $\varphi_2:\Gamma_1\times ]0,\infty[\to {\mathbb R}$, $\chi_1:\Gamma_1\times ]0,\infty[\to {\mathbb R}$, and $\chi_2:\Gamma_1\times ]0,\infty[\to {\mathbb R}$, such that \begin{eqnarray} &&u_p\to u\;\;\mbox{weak star in}\;\;L^{\infty}_{\rm loc}(0,\infty;V) \label{eq:4.15}\\ &&u'_p\to u'\;\;\mbox{weak star in}\;\;L^{\infty}_{\rm loc}(0,\infty;L^2(\Omega)) \label{eq:4.16}\\ &&u'_p\to \varphi_1\;\;\mbox{weakly in}\;\;L^2_{\rm loc}(0,\infty;H^{1/2}(\Gamma_1)) \label{eq:4.17}\\ &&\frac{\partial u_p}{\partial \nu}\to \varphi_2\;\;\mbox{weakly in}\;\; L^2_{\rm loc}(0,\infty;H^{1/2}(\Gamma_1)) \label{eq:4.18}\\ &&\theta_p\to \theta\;\;\mbox{weakly in}\;\;L^2_{\rm loc}(0,\infty;V) \label{eq:4.19}\\ &&\theta_p\to \chi_1\;\;\mbox{weakly in}\;\;L^2_{\rm loc}(0,\infty;H^{1/2}(\Gamma_1)) \label{eq:4.20}\\ &&\frac{\partial \theta_p}{\partial \nu}\to \chi_2\;\;\mbox{weakly in}\;\; L^2_{\rm loc}(0,\infty;H^{1/2}(\Gamma_1)). \label{eq:4.21} \end{eqnarray} Moreover, from Theorem 3.1, \begin{eqnarray} &u''_p-\mu\Delta u_p+\sum _{i=1}^n\frac{\partial \theta_p}{\partial x_i}=0\;\; \mbox{in}\;\;L^{\infty}_{loc}(0,\infty;L^2(\Omega)),& \label{eq:4.22}\\ &\theta_p'-\Delta \theta_p +\sum_{i=1}^n\frac{\partial u_p'}{\partial x_i}=0\;\; \mbox{in}\;\;L^{\infty}_{loc}(0,\infty;L^2(\Omega))\,.& \label{eq:4.23} \end{eqnarray} Multiplying (\ref{eq:4.22}) and (\ref{eq:4.23}) by $v\psi$ and $w\phi$ respectively, with $v$ and $w$ in V and $\phi\;\mbox{in}\;{\cal D}(0,\infty)$ , we deduce the equalities \begin{eqnarray*} &&-\int_0^{\infty}{(u'_p(t),v)\phi'(t)}dt+\int_0^{\infty}{\mu(t)((u_p(t),v))\phi(t)}dt\\ &&+\int_0^{\infty}{\int_{\Gamma_1}{\alpha(x) u'_p(t)v\phi(t) d\,\Gamma}dt}+\sum_{i=1}^n\int_0^{\infty}\left(\frac{\partial \theta_p}{\partial x_i}(t),v\right)\phi dt=0\\ &&-\int_0^{\infty}(\theta_p(t),w)\phi'(t)dt+\int_0^{\infty}((\theta_p(t),w))dt\\ &&+\beta\int_0^{\infty}\int_{\Gamma_1}\theta_p(t)w\phi(t)d\,\Gamma dt+\sum_{i=1}^n \int_0^{\infty}\left(\frac{\partial u'_p}{\partial x_i}(t),w\right)\phi(t)dt=0. \end{eqnarray*} Taking the limit, as $p\longrightarrow \infty$, from (\ref{eq:4.15})--(\ref{eq:4.21}) we conclude that \begin{eqnarray} &&-\int_0^{\infty}(u'(t),v)\phi'(t)dt+\int_0^{\infty}\mu(t)((u(t),v))\phi(t) \label{eq:4.24}\\ &&+\int_0^{\infty}\int_{\Gamma_1}\alpha(x) u'(t)v\phi(t)d\,\Gamma dt +\sum_{i=1}^n\int_0^{\infty}\left(\frac{\partial \theta}{\partial \nu}(t),v\right) \phi(t)dt=0\nonumber \\ &&-\int_0^{\infty}(\theta(t),w)\phi'(t)dt+\int_0^{\infty}((\theta(t),w))\phi(t)dt \label{eq:4.25} \\ &&+\beta\int_0^{\infty}\int_{\Gamma_1}\theta(t)w\phi(t)d\,\Gamma dt +\sum_{i=1}^n \int_0^{\infty}\left(\frac{\partial u'}{\partial x_i},w \right) \phi(t)dt=0.\nonumber \end{eqnarray} In view of (\ref{eq:4.24}) and (\ref{eq:4.25}), for $v$ and $w\in {\cal D}(\Omega),$ we obtain \begin{equation} \begin{array}{c} u''-\mu\Delta u+\sum_{i=1}^n\frac{\partial \theta}{\partial x_i}=0\;\;\mbox{in}\;\; H^{-1}_{loc}(0,\infty;L^2(\Omega))\\[8pt] \displaystyle \theta'-\Delta \theta+\sum_{i=1}^n\frac{\partial u'}{\partial x_i}=0\;\; \mbox{in}\;\;H^{-1}_{loc}(0,\infty;L^2(\Omega)). \end{array} \label{eq:4.26} \end{equation} As shown in M. Milla Miranda \cite{milla}, from (\ref{eq:4.8}) follows that for $T>0$ \begin{equation} u_p''\longrightarrow u''\;\;\mbox{weakly in}\;\;H^{-1}(0,T;L^2(\Omega)). \label{eq:4.27} \end{equation} Thus, from (\ref{eq:4.19}), (\ref{eq:4.22}) and (\ref{eq:4.27}) we conclude that \begin{equation} \Delta u_p\longrightarrow \Delta u\;\;\mbox{weakly in}\;\;H^{-1}(0,T;L^2(\Omega)). \label{eq:4.28} \end{equation} Furthermore, from (\ref{eq:4.15}) and (\ref{eq:4.28}) we obtain $\frac{\partial u}{\partial \nu}\;\mbox{in}\; H^{-1}(0,T;H^{-{1/2}}(\Gamma_1))$ and \begin{equation} \frac{\partial u_p}{\partial \nu}\to \frac{\partial u}{\partial \nu}\;\; \mbox{weakly in}\;\;H^{-1}(0,T;H^{-{1/2}}(\Gamma_1)). \label{eq:4.29} \end{equation} To prove that $\varphi_1=u'$ and $\varphi_2=\frac{\partial u}{\partial \nu}$, we use (\ref{eq:4.18}) and the fact that \begin{equation} \frac{\partial u_p}{\partial \nu}\to \varphi_2\;\;\mbox{weakly in}\;\;H^{-1} (0,T;H^{1/2}(\Gamma_1)). \label{eq:4.30} \end{equation} Whence we conclude that $\varphi_2=\frac{\partial u}{\partial \nu}$ is in $L^2(0,T;L^2(\Gamma_1)),$ for all $T>0$. Also from (\ref{eq:4.15}), cf. M. Milla Miranda \cite{milla}, we get \begin{equation} u_p'\longrightarrow u'\;\;\mbox{weakly in}\;\;H^{-1}(0,T;H^{1/2}(\Gamma_1)); \label{eq:4.31} \end{equation} and from (\ref{eq:4.17}) and (\ref{eq:4.31}) we have $u'=\varphi_1$ in $L^{\infty}(0,T;H^{1/2}(\Gamma_1))$. Next, we shall prove that $\chi_1=\theta$ and $\chi_2=\frac{\partial \theta} {\partial \nu}$. In fact, from \begin{equation} \begin{array}{l} \displaystyle \frac{\partial u_p'}{\partial x_i}\to \frac{\partial u}{\partial x_i}\;\; \mbox{weakly in}\;\;H^{-1}(0,T;L^2(\Omega))\\[5pt] \displaystyle \theta_p'\to \theta'\;\;\mbox{weakly in}\;\;H^{-1}(0,T;V) \end{array} \label{eq:4.32} \end{equation} and (\ref{eq:4.30}) it follows that \begin{equation} \Delta \theta_p\longrightarrow \Delta \theta\;\;\mbox{weakly in}\;\;H^{-1}(0,T; L^2(\Omega)). \label{eq:4.33} \end{equation} % From (\ref{eq:4.19}) and (\ref{eq:4.33}) it results that $$\frac{\partial \theta_p}{\partial \nu}\longrightarrow \frac{\partial \theta} {\partial \nu}\;\;\mbox{weakly in}\;\;H^{-1}(0,T;H^{-{1/2}}(\Gamma_1)).$$ On the other hand, by (\ref{eq:4.21}) $$\frac{\partial \theta_p}{\partial \nu}\longrightarrow \chi_2\;\;\mbox{weakly in} \;\;H^{-1}(0,T;H^{-{1/2}}(\Gamma_1)),$$ whence we conclude that $\frac{\partial \theta}{\partial \nu}=\chi_2$. We deduce that $\displaystyle \chi_1=\theta$ in $L^2(0,T;H^{1/2}(\Gamma_1))$ through of the convergences showed in (\ref{eq:4.19}) and (\ref{eq:4.20}). Therefore we obtain \begin{equation} \begin{array}{l} \displaystyle \frac{\partial u}{\partial \nu}+\alpha u'=0\;\;\mbox{in}\;\; L^2(0,T;L^2(\Gamma_1))\\[5pt] \displaystyle \frac{\partial \theta}{\partial \nu}+\beta \theta=0\;\;\mbox{in}\;\; L^2(0,T;L^2(\Gamma_1)). \end{array} \label{eq:4.34} \end{equation} % To prove (\ref{eq:4.2}) and (\ref{eq:4.3}) we remark that for all $v,\;w\in V$, \begin{eqnarray*} &|\langle-\Delta u,v\rangle|\leq \|u\|.\|v\|+{\left\|\frac{\partial u}{\partial \nu} \right\|}_{H^{-{1/2}}(\Gamma_1)}.\|v\|_{H^{1/2}(\Gamma_1)},&\\ &|\langle-\Delta \theta,v\rangle|\leq \|\theta\|.\|w\|+{\left\|\frac{\partial \theta} {\partial \nu}\right\|}_{H^{-{1/2}}(\Gamma_1)}.\|w\|_{H^{1/2}(\Gamma_1)}& \end{eqnarray*} and by continuity of the trace operator we deduce to inequalities: $$|\langle-\Delta u,v\rangle|\leq C(u)\|v\|\;\mbox{and}\; |\langle-\Delta \theta , w\rangle|\leq C(\theta )\|w\|,$$ whence for all $T>0$ we obtain that \begin{equation} -\Delta u\in L^2(0,T;V')\;\;\;\mbox{and}\;\;-\Delta \theta \in L^2(0,T;V'). \label{eq:4.35} \end{equation} So, by (\ref{eq:4.24}), (\ref{eq:4.25}), (\ref{eq:4.35}) and Green's formula, for all $\psi$ in ${\cal D}(0,T)$, for all $v\;\mbox{and}\; w\;\mbox{in}\; V$ we get \begin{eqnarray*} &&-\int_0^T{(u'(t),v)\psi'(t)dt}+\int_0^T{\mu(t)\langle-\Delta u(t),v\rangle\psi(t)dt}\\ &&+\sum_{i=1}^n\int_0^T{\left(\frac{\partial \theta}{\partial x_i}(t),v\right)\psi(t)dt} =0\\ &&-\int_0^T{(\theta(t),w)\phi'(t)dt}+\int_0^T\langle-\Delta \theta (t),w\rangle\psi(t) dt\\ &&+\sum_{i=1}^n\int_0^T{\left(\frac{\partial u'}{\partial x_i}(t),w\right)}\psi(t)dt=0 \,.\\ \end{eqnarray*} From these two inequalities and (\ref{eq:4.35}), we obtain that for each $T>0$ \begin{eqnarray*} &u''-\mu \Delta u+\sum_{i=1}^n \frac{\partial \theta}{\partial x_i}=0\;\;\mbox{in}\;\; L^2(0,T;V')&\\ &\theta'-\Delta \theta +\sum_{i=1}^n \frac{\partial u'}{\partial x_i}=0\;\;\mbox{in} \;\;L^2(0,T;V')& \end{eqnarray*} The regularity in (\ref{eq:4.1}) follows from $\{u_p,\theta_p\}$ being a Cauchy sequence. The initial data considerations follow from the analysis of the Galerkin approximation. The uniqueness of the weak solution is proved by the method of Lions Magenes \cite{lima}, see also Visik-Ladyzhenskaya \cite{vi}. \cqd Now, we give a result which assures the existence and uniqueness of a weak global solution for (\ref{eq:1.1})--(\ref{eq:1.6}). \vspace*{10pt} \begin{mycor} Under the supplementary hypothesis $\mu'\in L^1(0,\infty)$, the pair of functions $\{u,\theta\}$ obtained by Theorem 4.1 satisfies the following properties: \begin{eqnarray*} &u\in L^{\infty}(0,\infty;V),\;\;\;\theta\in L^{\infty}(0,\infty;L^2(\Omega))&\\ &\frac{\partial u}{\partial \nu}+\alpha u'=0\hspace*{7pt}and\hspace*{7pt} \frac{\partial \theta}{\partial \nu}+\beta \theta=0\hspace*{7pt}\mbox{in}\hspace*{7pt} L^2(0,\infty;L^2(\Gamma_1))&\\ &u(0)=u^0,\;\;u'(0)=u^1\quad\mbox{and}\quad\theta(0)=\theta^0\,.& \end{eqnarray*} \end{mycor} \section{Asymptotic Behavior}\setcounter{equation}{0} This section concerns the behavior of the solutions obtained in the preceding sections, as $t\to +\infty$. First note that for strong solutions and weak solutions to (\ref{eq:1.1})--(\ref{eq:1.6}), the energy \begin{equation} E(t)=\frac{1}{2}\left\{\mu(t)\|u(t)\|^2+|u'(t)|^2+|\theta(t)|^2\right\}. \label{eq:5.1} \end{equation} does not increase. In fact, we can easily see that \begin{eqnarray*} E'(t)&=&\frac{\mu'(t)}{2}\|u(t)\|^2-\mu(t)\int_{\Gamma_1}\alpha(x)(u'(t))^2\,d \Gamma-\|\theta(t)\|^2\\ &&-\beta \int_{\Gamma_1}(\theta(t))^2\,d\Gamma-\sum_{i=1}^n\int_{\Gamma_1}u'(t) \theta(t)\nu_{i}\,d\Gamma \,. \end{eqnarray*} Also observe that $$-\sum_{i=1}^n\int_{\Gamma_1}u'(t)\theta(t)\nu_i\,d\Gamma\leq\frac{\mu(t)}{2} \int_{\Gamma_1}\alpha(x)(u'(t))^2\,d\Gamma+\frac{n}{2\mu(t)}\int_{\Gamma_1}\frac{1} {\alpha(x)}(\theta(t))^2\,d\Gamma \,.$$ Because $\mu'(t)\leq 0$ and the hypothesis (2.1), we can conclude that \begin{equation} E'(t)\leq -\frac{\mu(t)}{2}\int_{\Gamma_1}\alpha(x) (u'(t))^2\,d\Gamma-\|\theta(t)\|^2. \label{eq:5.2} \end{equation} To estimate $E(t)$ we put $\alpha(x)=m(x).\nu(x)$ and use the representation $$\Gamma_0=\{x\in \Gamma;\;m(x).\nu(x)\leq 0\},\quad\Gamma_1=\{x\in \Gamma;\;\; m(x).\nu(x)>0\}\,,$$ where $m(x)$ is the vectorial function $x-x^0$, for $x\in{\mathbb R}^n$ and \lq\lq.'' denotes scalar product in ${\mathbb R}^n$. We also use \begin{equation} R(x^0)=\|m\|_{L^{\infty}(\Omega)}\,, \label{eq:5.3} \end{equation} and positive constants $\delta_0$, $\delta_1$, $k$ such that \begin{eqnarray} &|v|^2\leq \delta_0\|v\|^2,\;\;\;\mbox{for all}\;\; v\in V &\label{eq:5.4}\\ &\|v\|^2\leq \delta_1\|v\|^2_{V\cap H^2(\Omega)},\;\;\;\mbox{for all}\;\; v\in V \cap H^2(\Omega) &\label{eq:5.5}\\ &\int_{\Gamma_1}(m.\nu)v^2\,d\Gamma \leq k \|v\|^2,\;\;\;\mbox{for all}\;\; v\in V. &\label{eq:5.6} \end{eqnarray} \begin{myth} If $\{u^0,u^1,\theta^0\}\in V\times L^2(\Omega)\times V$, $\mu \in W^{1,\infty}(0,\infty)$ with $\mu'(t)\leq 0$ on $]0,\infty[$, then there exists a positive constant $\omega$ such that \begin{equation} E(t)\leq 3E(0)e^{-\omega t},\;\;\;\;\mbox{for all}\;\; t\geq 0. \label{eq:5.7} \end{equation} \end{myth} \paragraph{Proof.} As a first step, we consider the strong solution. Let \begin{equation} \rho(t)=2(u'(t),m.\nabla u(t))+(n-1)(u'(t),u(t)). \label{eq:5.8} \end{equation} Then \begin{equation} |\rho(t)|\leq (n-1)|u(t)|^2+n|u'(t)|^2+R^2(x^0)\|u(t)\|^2. \label{eq:5.9} \end{equation} Let $\varepsilon_1$, $\varepsilon_2$, $\varepsilon$ be positive real numbers such that \begin{eqnarray} &\varepsilon_1\leq \min\left\{\displaystyle \frac{1}{4n},\frac{\mu_0}{12nR^2(x^0)+ 12n^3\delta_0}\right\} &\label{eq:5.10}\\ &\varepsilon_2\leq \min\left\{\frac{1}{2\left(R^2(x^0)+\displaystyle \frac{1}{\mu_0}+ 6kn^2\right)},\displaystyle\frac{2}{\delta_0}\right\} &\label{eq:5.11}\\ &\varepsilon \leq \min\left\{\varepsilon_1,\varepsilon_2\right\}. &\label{eq:5.12} \end{eqnarray} % Also let the perturbed energy given by \begin{equation} E_{\varepsilon}(t)=E(t)+\varepsilon \rho(t). \label{eq:5.13} \end{equation} Then from (\ref{eq:5.13}), (\ref{eq:5.4}), and (\ref{eq:5.9}) we get $$E_{\varepsilon}(t)\leq E(t)+\left(\varepsilon n\delta_0+\varepsilon R^2(x^0)\right) \|u(t)\|^2+\varepsilon n|u'(t)|^2,$$ whence by (\ref{eq:5.12}) it follows that $$E_{\varepsilon}(t)\leq E(t)+\varepsilon_1\left( n\delta_0+R^2(x^0)\right)\|u(t)\|^2+ \varepsilon_1 n|u'(t)|^2.$$ By (\ref{eq:5.1}) and (\ref{eq:5.10}) we obtain $E_{\varepsilon}\leq \frac{3}{2}E(t).$ On the other hand, using similar arguments, from (\ref{eq:5.9}) and (\ref{eq:5.13}) we deduce that $\frac{1}{2}E(t)\leq E_{\varepsilon}$. In summary, \begin{equation} \frac{1}{2}E(t)\leq E_{\varepsilon}\leq \frac{3}{2}E(t),\quad\mbox{for all } t\geq 0. \label{eq:5.14} \end{equation} To estimate $E'_{\varepsilon}(t)$ we differentiate $\rho(t)$, \begin{eqnarray} \rho'(t)&=&2(u''(t),m.\nabla(t))+2(u'(t),m.\nabla u'(t))\\ &&+(n-1)(u''(t),u(t))+(n-1)|u'(t)|^2\,.\nonumber \label{eq:5.15} \end{eqnarray} Since $u''=\mu \Delta u-\sum_{i=1}^n\frac{\partial \theta}{\partial x_i}(t)$ we have \begin{eqnarray} \rho'(t)&=&2\mu(t)(\Delta u(t),m.\nabla u(t)){-2\sum_{i=1}^n}\left(\frac{\partial \theta}{\partial x_i}(t),m.\nabla u(t)\right)\nonumber\\ &&+2\left(u'(t),m.\nabla u'(t)\right)+(n-1)\mu(t)(\Delta u(t),u(t))\\ &&-(n-1)\sum_{i=1}^n\left(\frac{\partial \theta}{\partial x_i}(t),u(t)\right)+(n-1)| u'(t)|^2.\nonumber \label{eq:5.16} \end{eqnarray} our next objective is to find bounds for the right-hand-side terms of the equation above. \begin{myrem} For all $v\in V\cap H^2(\Omega)$, \begin{equation} 2\,(\Delta v,m.\nabla v)\leq (n-2)\|v\|^2 +R^2(x^0){\displaystyle\int_{\Gamma_1}}\frac{1}{m.\nu}{\left|\frac{\partial v} {\partial \nu}\right|}^2d\,\Gamma\,. \label{eq:5.17} \end{equation} \end{myrem} In fact, the Rellich's identity, see V. Komornik and E. Zuazua \cite{kom-zua}, gives \begin{equation} 2\,(\Delta v,m.\nabla v)=(n-2)\|v\|^2-\int_{\Gamma}(m.\nu)|\nabla v|^2d\,\Gamma+2\, \int_{\Gamma}\frac{\partial v}{\partial \nu}m.\nabla v\,d\,\Gamma. \label{eq:5.18} \end{equation} Note that \begin{eqnarray} -\int_{\Gamma}(m.\nu)|\nabla v|^2\,d\,\Gamma & =&-\int_{\Gamma_0}(m.\nu)\left( \frac{\partial v}{\partial \nu}\right)^2d\,\Gamma-\int_{\Gamma_1}(m.\nu)|\nabla v|^2d\, \Gamma \nonumber\\ &\leq&-\int_{\Gamma_0}(m.\nu){\left (\frac{\partial v}{\partial \nu}\right)}^2d\, \Gamma \,, \label{eq:5.19} \end{eqnarray} because $\;\frac{\partial v}{\partial x_i}=\nu_i\frac{\partial v}{\partial \nu}$ on $\Gamma_0$ and $m.\nu >0$ on $\Gamma_1$. Also note that \begin{equation} 2\int_{\Gamma}\frac{\partial v}{\partial \nu}m.\nabla v\,d\,\Gamma=2\int_{\Gamma_0} (m.\nu)\left(\frac{\partial v}{\partial \nu}\right)^2d\,\Gamma+2\int_{\Gamma_1} \frac{\partial v}{\partial \nu}m.\nabla v\,d\,\Gamma, \label{eq:5.20} \end{equation} and by (5.3) \begin{eqnarray*} 2\int_{\Gamma_1}\frac{\partial v}{\partial \nu}m.\nabla v\,d\,\Gamma &\leq &\displaystyle 2\int_{\Gamma_1}\left|\frac{\partial v}{\partial \nu} \right|R(x^0)|\nabla v|\,d\,\Gamma \\ &\leq &{R^2(x^0)\int_{\Gamma_1}}\frac{1}{m.\nu}\left(\frac{\partial v}{\partial \nu} \right)^2d\,\Gamma +\int_{\Gamma_1}(m.\nu)|\nabla v|^2d\,\Gamma. \end{eqnarray*} This inequality with (\ref{eq:5.20}) yields \begin{eqnarray}\label{eq:5.21} \lefteqn{2\int_{\Gamma}\frac{\partial v}{\partial \nu}m.\nabla v\,d\,\Gamma }\\ &\leq & 2\int_{\Gamma_0}(m.\nu){\left(\frac{\partial v}{\partial \nu}\right)}^2\,d\,\Gamma +R^2(x^0)\int_{\Gamma_1}\frac{1}{m.\nu}\left(\frac{\partial v}{\partial\nu}\right)^2d\, \Gamma+\int_{\Gamma_1}(m.\nu)|\nabla v|^2d\,\Gamma. \nonumber \end{eqnarray} Combining (\ref{eq:5.18}), (\ref{eq:5.19}), and (\ref{eq:5.21}), we come to the inequality \begin{eqnarray*} 2(\Delta v,m.\nabla v)&\leq &(n-2)\|v\|^2+\int_{\Gamma_0}(m.\nu){\left( \frac{\partial v}{\partial \nu}\right)}^2\,d\,\Gamma \\[10pt] &&+R^2(x^0)\int_{\Gamma_1}\frac{1}{m.\nu}\left(\frac{\partial v}{\partial \nu}\right)^2 d\,\Gamma . \end{eqnarray*} Recall that $ m.\nu \leq 0$ on $\Gamma_0$; therefore, (\ref{eq:5.17}) follows. Now, we shall analyze each term in (\ref{eq:5.16}). \paragraph{Analysis of $2\mu(t)(\Delta u(t),m.\nabla u(t))$:} Thanks to Remark 5.1 and (\ref{eq:3.5}) we have \begin{equation} 2\mu(t)(\Delta u(t),m.\nabla u(t))\leq \mu(t)(n-2)\|u(t)\|^2 +\mu(t)R^2(x^0)\int_{\Gamma_1}(m.\nu)(u'(t))^2d\Gamma. \label{eq:5.22} \end{equation} \paragraph{Analysis of $-2\sum_{i=1}^n\left(\frac{\partial \theta}{\partial x_i}(t), m.\nabla u(t)\right)$:} \begin{eqnarray*} -2\sum_{i=1}^n\left(\frac{\partial \theta}{\partial x_i}(t),m.\nabla u(t)\right)& \leq &2\sum_{i=1}^n\left|\frac{\partial \theta}{\partial x_i}(t)\right|R(x^0)\|u(t)\|\\ &\leq &\sum_{i=1}^n \frac{6nR^2(x^0)}{\mu_0}{\left|\frac{\partial \theta}{\partial x_i} (t)\right|}^2+\sum_{i=1}^n \frac{1}{6n}\mu_0\|u(t)\|^2. \end{eqnarray*} Thus \begin{equation} -2\sum_{i=1}^n\left(\frac{\partial \theta}{\partial x_i}(t),m.\nabla u(t)\right)\leq \frac{6nR^2(x^0)}{\mu_0}\|\theta(t)\|^2+\frac{\mu(t)}{6}\|u(t)\|^2. \label{eq:5.23} \end{equation} % \paragraph{Analysis of $2(u'(t),m.\nabla u'(t))$:} \begin{eqnarray} 2(u'(t),m.\nabla u'(t))&=& 2\int_{\Omega}u'(t)m_j\frac{\partial u'}{\partial x_j}(t) \,dx \nonumber \\ &=& \int_{\Omega}m_j\frac{\partial (u')^2}{\partial x_j}(t)\,dx \nonumber \\ &=& -\int_{\Omega}\frac{\partial m_j}{\partial x_j}(u'(t))^2dx+\int_{\Gamma_1} (m_j{\nu}_j)(u'(t))^2d\Gamma \label{eq:5.24} \\ &=&- n|u'(t)|^2+\int_{\Gamma_1}(m.\nu)(u'(t))^2d\Gamma\,.\nonumber \end{eqnarray} % \paragraph{Analysis of $\mu(t)(n-1)(\Delta u(t),u(t))$:} Applying Green's theorem and (\ref{eq:3.5}), we get $$\mu(t)(n-1)(\Delta u(t),u(t)) =-\mu(t)(n-1)\left[\|u(t)\|^2+\int_{\Gamma_1}(m.\nu)u'(t)u(t)\,d\Gamma\right].$$ By the Cauchy-Schwarz inequality \begin{eqnarray*} \mu(t)(n-1)(\Delta u(t),u(t)) &\leq& -\mu(t)(n-1)\|u(t)\|^2\\ &&+6k\mu(t)(n-1)^2\int_{\Gamma_1}(m.\nu)(u'(t))^2d\Gamma \\ &&+\frac{\mu(t)}{6k}\int_{\Gamma_1}(m.\nu)(u(t))^2d\Gamma, \end{eqnarray*} and by (\ref{eq:5.6}) \begin{eqnarray*} \mu(t)(n-1)(\Delta u(t),u(t)) &\leq& -\mu(t)(n-1)\|u(t)\|^2\\ &&+6k\mu(t)(n-1)^2\int_{\Gamma_1}(m.\nu)(u'(t))^2d\Gamma +\frac{\mu(t)}{6}\|u(t)\|^2\,. \end{eqnarray*} % Hence \begin{eqnarray} \mu(t)(n-1)(\Delta u(t),u(t))&\leq & -\mu(t)(n-\frac{7}{6})\|u(t)\|^2 \label{eq:5.25}\\ &&+6k\mu(t)(n-1)^2\int_{\Gamma_1}(m.\nu)(u'(t)^2d\Gamma\,.\nonumber \end{eqnarray} % \paragraph{Analysis of $ -(n-1)\left(\sum_{i=1}^n\frac{\partial \theta}{\partial x_i}, u(t)\right)$:} \begin{eqnarray*} -(n-1)\sum_{i=1}^n\left(\frac{\partial \theta}{\partial x_i}(t),u(t)\right)&\leq &(n-1)\sum_{i=1}^n \left|\frac{\partial \theta}{\partial x_i}(t)\right||u(t)| \\ &\leq &\frac{6n\delta_0(n-1)^2}{\mu_0}\|\theta(t)\|^2+\sum_{i=1}^n \frac{\mu_0}{6n\delta_0}|u(t)|^2, \end{eqnarray*} whence by (\ref{eq:5.4}) \begin{equation} -(n-1)\sum_{i=1}^n\left(\frac{\partial \theta}{\partial x_i}(t),u(t)\right)\leq \frac{6n\delta_0(n-1)^2}{\mu_0}\|\theta(t)\|^2+\frac{\mu(t)}{6}\|u(t)\|^2. \label{eq:5.26} \end{equation} % Using (\ref{eq:5.22})--(\ref{eq:5.6}) in (\ref{eq:5.16}) we conclude that \begin{eqnarray} \rho'(t)&\leq& -\frac{\mu(t)}{2}\|u(t)\|^2+\left[\frac{6nR^2(x^0)+6n^3\delta_0} {\mu_0}\right]\|\theta(t)\|^2-|u'(t)|^2 \nonumber \\ &&+\mu(t)\left[R^2(x^0)+\frac{1}{\mu_0}+6kn^2\right]\int_{\Gamma_1}(m.\nu)(u'(t))^2 d\Gamma\,. \label{eq:5.27} \end{eqnarray} Combining (\ref{eq:5.2}), (\ref{eq:5.13}) and (\ref{eq:5.27}), we get \begin{eqnarray*} E'_{\varepsilon}(t)&\leq& -\|\theta(t)\|^2 -\frac{\mu(t)}{2}\int_{\Gamma_1}(m.\nu)(u'(t))^2d\Gamma\\ &&-\frac{\varepsilon}{2}\mu(t)\|u(t)\|^2 +\varepsilon\left[\frac{6nR^2(x^0)+6n^3\delta_0}{\mu_0}\right]\|\theta(t)\|^2- \varepsilon|u'(t)|^2\\ &&+\varepsilon \mu(t)\left[R^2(x^0)+\frac{1}{\mu_0}+6kn^2\right]\int_{\Gamma_1} (m.\nu)(u'(t))^2d\Gamma\,. \end{eqnarray*} Then, by (\ref{eq:5.4}) and (\ref{eq:5.12}), it results that \begin{eqnarray*} E'_{\varepsilon}(t)&\leq &-\|\theta(t)\|^2 -\frac{\mu(t)}{2}\int_{\Gamma_1}(m.\nu)(u'(t))^2d\Gamma\\ &&-\frac{\varepsilon}{2}\mu(t)\|u(t)\|^2 +\varepsilon_1\left[\frac{6nR^2(x^0)+6n^3\delta_0}{\mu_0}\right]\|\theta(t)\|^2- \varepsilon|u'(t)|^2\\ &&+\varepsilon_2\mu(t)\left[R^2(x^0)+\frac{1}{\mu_0}+ 6kn^2\right]\int_{\Gamma_1}(m.\nu)(u'(t))^2d\Gamma. \end{eqnarray*} Using (\ref{eq:5.10}) and (\ref{eq:5.11}) we obtain $$E'_{\varepsilon}(t)\leq -\frac{1}{2}\|\theta(t)\|^2-\frac{\varepsilon}{2}\mu(t) \|u(t)\|^2-\frac{\varepsilon}{2}|u'(t)|^2.$$ Also, from (\ref{eq:5.4}), (\ref{eq:5.11}) and (\ref{eq:5.12}) we obtained $$E'_{\varepsilon}(t)\leq -\frac{1}{\delta_0}|\theta(t)|^2-\frac{\varepsilon}{2} \mu(t)\|u(t)\|^2-\frac{\varepsilon}{2}|u'(t)|^2.$$ By (\ref{eq:5.11}) and (\ref{eq:5.12}) we have $-\frac{\varepsilon}{2}\geq - \frac{1}{\delta_0}$, then \begin{eqnarray} E'_{\varepsilon}(t)&\leq & -\frac{\varepsilon}{2}|\theta(t)|^2-\frac{\varepsilon}{2} \mu(t)\|u(t)\|^2-\frac{\varepsilon}{2}|u'(t)|^2\nonumber \\ &=&-\frac{\varepsilon }{2}E(t)\,. \label{eq:5.28} \end{eqnarray} From (\ref{eq:5.14}), we obtain $E'_{\varepsilon}(t)\leq -\frac{2\varepsilon}{3}E_{\varepsilon}(t)$. In turn this inequality implies $E_{\varepsilon}(t)\leq E_{\varepsilon}(0)e^{-\frac{2}{3}\varepsilon t}$. From (5.14), we obtain exponential decay for strong solutions $$E(t)\leq 3E(0)e^{-\frac{2}{3}\varepsilon t},\quad \mbox{for all } t\geq 0.$$ \paragraph{Remark} Using a denseness argument, we prove the same behavior for weak solutions. \paragraph{Acknowledgments.} The authors would like to thank Professor Luiz Adauto Medeiros for his suggestions and comments. \begin{thebibliography}{99} \bibitem{bre} Brezis, H., {\it Analyse Fonctionelle (Th\'eorie et Applications)}, Masson, Paris, 1983. \bibitem{henry} Henry, D., Lopes, O., Perisinotto, A., {\it Linear thermoelasticity: asymptotic stability and essential spectrum}, Nonlinear Analysis, Theory \& Applications, vol. 21, 1(1993), 65-75. \bibitem{kom} Komornik, V., {\it Exact Controllability and Stabilization. The Multiplier Method,} John Wiley and Sons, Masson, 1994. \bibitem{kom-zua} Komornik, V., Zuazua, E., {\it A direct method for boundary stabilization of the wave equation}, J. Math. Pure et Appl., 69(1990), 33-54. \bibitem{lions} Lions, J. L., {\it Probl\`emes aux Limites dans les \'Equations aux D\'eriv\'ees Partielles}, Les Presses de l'Universit\'e de Montreal, Montreal, Canada, 1965. \bibitem{lima} Lions, J. L., Magenes, E., {\it Probl\`emes aux Limites non Homog\`{e}nes, Applications 1}, Dunod, Paris, 1968. \bibitem{milla} Milla Miranda, M., {\it Tra\c co para o Dual dos Espa\c cos de Sobolev,} Bol. Soc. Paran. Matem\'atica ($2^{\underline a}$ s\'erie), 11, 2(1990), 131-157. \bibitem{mi-me} Milla Miranda, M., Medeiros, L. A., {\it On a Boundary Value Problem for Wave Equations: Existence, Uniqueness-Asymptotic Behavior}, Revista de Matemáticas Aplicadas, Univerdidade de Chile, 17(1996), 47-73. \bibitem{rivera} Mu\~noz Rivera, J. E., {\it Energy decay rate in linear thermoelasticity}, Funkcialaj Ekvacioj, 35(1992), 19-30. \bibitem{scott} Scott Hansen, W., {\it Exponential energy decay in linear thermoelastic rod }, Journal of Math. Analysis and Applications, 167(1992), 429-442. \bibitem{vi} Visik, M. I., Ladyzhenskaia, O. A., {\it Boundary Value Problems for Partial Differential Equations and Certain Classes of Operator Equations}, A.M.S. Translations Series 2 10,(1958), 223-281. \end{thebibliography} \medskip {\sc H. R. Clark}\\ Universidade Federal Fluminense, RJ, Brazil\\ E-mail address: ganhrc@vm.uff.br\medskip {\sc L. P. San Gil Jutuca}\\ Universidade do Rio de Janeiro, RJ, Brazil\\ E-mail address: rsangil@iq.ufrj.br\medskip {\sc M. Milla Miranda}\\ Universidade Federal do Rio de Janeiro, RJ, Brazil\\ Instituto de Matem\'atica CP 68530 - CEP 21949-900 \end{document}