\documentclass[twoside]{article} \usepackage{amssymb} % used for R in Real numbers \pagestyle{myheadings} \markboth{\hfil Exponential stability of a Von Karman model \hfil EJDE--1998/07}% {EJDE--1998/07\hfil Assia Benabdallah \& Djamel Teniou \hfil} \begin{document} \title{\vspace{-1in}\parbox{\linewidth}{\footnotesize\noindent {\sc Electronic Journal of Differential Equations}, Vol.\ {\bf 1998}(1998), No.~07, pp. 1--13. \newline ISSN: 1072-6691. URL: http://ejde.math.swt.edu or http://ejde.math.unt.edu \newline ftp (login: ftp) 147.26.103.110 or 129.120.3.113} \vspace{\bigskipamount} \\ Exponential stability of a Von Karman model with thermal effects \thanks{ {\em 1991 Mathematics Subject Classifications:} 35M10, 73B30. \hfil\break\indent {\em Key words and phrases:} Thermoelastic systems, Von Karman, asymptotic behaviour, \hfil\break\indent exponential stability, semigroup, Lyapunov function. \hfil\break\indent \copyright 1998 Southwest Texas State University and University of North Texas. \hfil\break\indent Submitted December 29, 1997. Published February 27, 1998. \hfil\break\indent Research partially supported by the French-Algerian agreement No. 96 MDU 378.} } \date{} \author{Assia Benabdallah \& Djamel Teniou} \maketitle \begin{abstract} A one-dimensional Von Karman model with thermal effects is studied. We derive the equations that constitute the mathematical model, and prove existence and uniqueness of a global solution. Then using Lyapunov functions, we show that solutions decay exponentially. \end{abstract} \newcommand{\grad}{\mathop{\rm grad}} \newcommand{\diver}{\mathop{\rm div}} \newtheorem{theorem}{Theorem} \newtheorem{lemma}[theorem]{Lemma} \section{Introduction} In the last few years, the asymptotic behaviour of the coupling between elastic and heat phenomena has been studied by several authors. Most of their results concern the linear case, see for example \cite{Da, Ra, G.R.T, A-B, Liu} and references therein. Analysis of these articles shows that the linear thermoelastic plate models (coupling of plate and heat) and the standard linear thermoelastic system (coupling between the wave and heat equations) have different properties. The first model is always exponentially stable (namely the energy approaches zero exponentially when time approaches infinity), while the second model has this property only in certain domains. The second model consists of the system \begin{eqnarray*} &\partial _{tt}u-\Delta u-\beta \grad(\diver u)+m\grad\theta =0\quad\mbox{in }\Omega& \\ &\partial _{t}\theta -k\Delta \theta +m\diver \partial _{t}u =0\quad\mbox{in }\Omega & \\ &u = \theta =0\quad\mbox{on }\partial \Omega \,,& \end{eqnarray*} where $\beta ,m,k$ are positive constants, $u$ is the displacement and $\theta$ the temperature. For this model, D.\ B. Henry, A. Perissinitto and O. Lopes \cite{H-P-L} proved that the exponential stability is equivalent to that of the decoupled system \begin{eqnarray*} &\partial _{tt}u-\Delta u-\beta \grad(\diver u)+(m^2/k)\grad \Delta ^{-1}\diver \partial _{t}u =0\quad\mbox{in }\Omega& \\ &\partial _{t}\theta -k\Delta \theta +m\diver \partial _{t}u =0\quad\mbox{in }\Omega& \\ &u =\theta =0\quad\mbox{on }\partial \Omega\,.& \end{eqnarray*} Here the operator $\grad \Delta ^{-1}\diver $ is a projection whose range is the irrotational part of the velocity field. The question is whether the control of this part of the velocity field is sufficient to ensure uniform stability. In the one-dimensional model, in higher dimensions in the presence of symmetry properties, and in very special domains (excluding convex domains) the answer is positive. See \cite{ H-P-L,L-Z} for the one-dimensional case, \cite{B-S, Ra} for the presence of symmetry, and \cite{K, Le-Zu} for special domains. Results for various nonlinear models have been obtained in \cite{B-V-M-Z, P-Z, Ra} and their references. In particular, \cite{B-V-M-Z, P-Z} concern Von Karman models with thermal effects. In \cite{A-B}, the authors construct simple Lyapunov functions for a different thermoelastic plate model. In this paper, we use these functions to prove stability results for a Von Karman model with thermal effects. The plan of this paper is to derive the equations, then prove existence and uniqueness of a global weak solution, and finally demonstrate exponential stability of the model. Our proof of existence and uniqueness of weak solutions is directly inspired by the techniques used in \cite{La-Le}, where uniform stabilization of a nonlinear beam by a nonlinear boundary feedback is obtained. We restrict our work to the one-dimensional problem, for the following two reasons. The first one is the difficulty in obtaining uniqueness for the multi-dimensional Von Karman models in the energy space we consider. To our knowledge, there exist only partial results in this case, \cite{Pu-Tu, Ta-Tu}. In \cite{Pu-Tu}, existence and uniqueness of a global strong solution in two dimensional bounded domains is proven, but without uniqueness for finite energy solutions. In \cite{Ta-Tu}, the authors prove existence and uniqueness for finite energy solutions in ${\Bbb R}^2$, in rectangular domains, and outside a convex obstacle. These difficulties also appear in the thermal case. In fact, for (\ref{eq1}) with $\gamma >0$, it is known that the linear part has no regularization property. The second reason is the presence of planar strain in the coupling (see the first and third equation in (\ref{eq1})). Recall that exponential stability for the thermoelastic system has been proved in the one-dimensional case, and only for special domains in higher dimensions. \section{Derivation of the model} Consider the planar motion of a beam that occupies, in the reference position, the region \[ U=\{(x,y,z);\quad 0\leq x\leq L,\;-1\leq y\leq 1, \;\frac{-h}{2}\leq z\leq \frac{h}{2}\}\,. \] In this setting, $L$ is the length of the beam, and the segment \{$0\leq x\leq L,\,\,y=z=0\}$ is called the medium line of the beam. The fact that the beam is stretchable implies the existence of nonlinear terms in the equations describing the motion. In addition to the mechanical load, we assume that the body is subjected to an unknown heat distribution, $\tau $, that vanishes at the boundary of the beam. Let the displacement be denoted by $(u,w)=((u_1,u_2),w)$, and the domain by \[ \Omega =\{(x,y,0),\,00$ and all $Y_0\in B(0,R)$ there exist positive constants $M(R)$ and $\omega (R)$ such that solutions to (\ref{eq2}) satisfy \[ E(Y(t))\leq M(R)e^{-\omega (R)\,t}E(Y_0) \,. \] \end{theorem} \noindent{\bf Proof.} \thinspace Our argument is based on the choice of a suitable Lyapunov function, \begin{eqnarray*} \sigma _{\varepsilon }(t)&=&E(Y(t))+\varepsilon \left( \int_\Omega \psi (-\partial _{xx})^{-1}L_{\gamma \,}zdx+\frac{1}{2}\left( \int_{\Omega }v\,u\,dx+\frac{1}{2}\int_\Omega L_\gamma z\,w\,dx\right)\right) \\ &&-\varepsilon \ \left( \alpha \int_\Omega L_\gamma ^{\ }z\,\ (h(x)\partial_xw)\,dx-\ \frac{1}{2}\int_\Omega \varphi q\,dx\right)\,, \end{eqnarray*} where \[ (-\partial _{xx})^{-1}:L^2(\Omega )\rightarrow H^2(\Omega ) \cap H_0^1(\Omega )\,, \quad h(x)=\frac{2}{L}x-1\,, \quad q(x)=\int_0^x v(y,t)\,dy\,, \] and $\varepsilon$ and $\alpha $ are positive constants which will be chosen later. This Lyapunov function consists of two parts: One concerns the thermoelastic equations and the other the thermoplates. For the thermoelasticity, J.S. Gibson, G.Rosen and Tao \cite{G.R.T} have constructed the same multiplier, but it does not work for the thermoplates equations. For this system, we use the multiplier introduced by F.Ammar Khodja and A.Benabdallah \cite{A-B} and prove that it works for the nonlinear term. Our purpose is to show that \[ \frac{d}{dt}\sigma _{\varepsilon }(t)\leq -c\sigma _{\varepsilon }(t)\,,\quad c>0 \,, \] from which we will deduce that \begin{equation} \label{eq6} \sigma _{\varepsilon }(t)\leq \sigma _{\varepsilon }(0)e^{-ct}\,. \end{equation} Then, noticing that there exist two positive constants $a_1,a_2$ such that \[ a_1E(Y(t))\leq \sigma _{\varepsilon }(t)\leq a_2E(Y(t)) \] we conclude the theorem. Inequality (\ref{eq6}) is obtained in the following 5 steps. \paragraph{1.) Estimate for $\frac{d}{dt}\int_\Omega \psi (-\partial _{xx})^{-1}L_\gamma z\,dx$:} \[ \frac{d}{dt}\int_\Omega \psi (-\partial _{xx})^{-1} L_{\gamma}zdx=\int_\Omega \psi _{t}(-\partial _{xx})^{-1} L_{\gamma}zdx+\int_\Omega \psi (-\partial_{xx})^{-1}L_{\gamma}z_{t\,}dx\,. \] But \[ \psi _{t}=\partial _{xx}\psi -\partial _{xx}z \,. \] So \begin{eqnarray*} \int_\Omega \psi _{t}(-\partial _{xx})^{-1}L_{\gamma \,}zdx &=&\int_\Omega \psi L_\gamma z\,dx-\int_\Omega zL_\gamma z\,dx \\ &\leq &-| L_\gamma ^{1/2}z| ^2+| L_\gamma ^{1/2}\psi | | L_\gamma ^{1/2}z| \\ &\leq &-(1-\delta _1)| L_\gamma ^{1/2}z| ^2+\frac{1}{% 4\delta _1}| L_\gamma ^{1/2}\psi | ^2 \\ &\leq &-(1-\delta _1)| L_\gamma ^{1/2}z| ^2+\frac{c_1}{% \delta _1}| \partial_x\psi | ^2 \,, \end{eqnarray*} where $\delta _1$ is an arbitrary positive constant which will be chosen later. On the other hand \[ \int_\Omega \psi (-\partial _{xx})^{-1}L_\gamma z_{t}\,dx=\int_{\Omega }(-\partial _{xx})^{-1}\psi \,\,L_\gamma z_{t}\,dx\,, \] but \begin{equation} \label{eq7} L_\gamma z_{t}=-\partial _{xxxx}w+\partial_x[(\partial_xu+\frac{1}{2}% (\partial_xw)^2)\partial_xw]-\partial _{xx}\psi \end{equation} and \begin{eqnarray*} -\int_\Omega (-\partial _{xx})^{-1}\psi \,\,\partial _{xxxx}wdx &=&\int_\Omega \psi \,\partial _{xx}w\,dx-\partial_x(-\partial _{xx})^{-1}\psi (L)(\partial _{xx}w)(L) \\ &&+\partial_x(-\partial _{xx})^{-1}\psi (0)(\partial _{xx}w)(0)\,. \end{eqnarray*} So \begin{eqnarray*} -\int_\Omega (-\partial _{xx})^{-1}\psi \,\,\partial _{xxxx}w\,dx &\leq &| \psi | | \partial _{xx}w| +| \partial_x(-\partial _{xx})^{-1}\psi (L)| | \partial _{xx}w(L)| \\ && +| \partial_{x}(-\partial _{xx})^{-1}\psi (0)|\, | \partial _{xx}w(0)|\,. \end{eqnarray*} But \begin{eqnarray*} \lefteqn{ \left| \int_\Omega \partial_x(-\partial _{xx})^{-1}\psi [(\partial _{x}u+\frac{1}{2}(\partial_xw)^2)\partial_xw]\,dx\right| } \\ &\leq &\| \partial_xw\| _{L^\infty (\Omega )}| \partial_xu+\frac{1}{2}(\partial_xw)^2| | \partial _{x}(-\partial _{xx})^{-1}\psi | \\ &\leq &\delta _2R^2| \partial_xu+\frac{1}{2}(\partial _{x}w)^2| ^2+\frac{1}{4\delta _2}| \partial_x(-\partial _{xx})^{-1}\psi | ^2\,. \end{eqnarray*} So, it follows \begin{eqnarray*} \frac{d}{dt}\int_\Omega \psi (-\partial _{xx})^{-1}L_\gamma z\,dx &\leq&-(1-\delta _1)| L_\gamma ^{1/2}z| ^2+(\frac{c_1}{% \delta _1}+\frac{c_2}{\delta _2})| \partial_x\psi | ^2 \\ &&+\delta _2R^2 | \partial_xu+\frac{1}{2}(\partial_xw)^2| ^2\ +| \psi | | \partial _{xx}w| \\ &&+ | \psi | | \partial _{xx}w| +| \partial_x(-\partial _{xx})^{-1}\psi (L)| | \partial _{xx}w(L)| \\ && + |\partial_x(-\partial _{xx})^{-1}\psi (0)| | \partial_{xx}w(0)| + | \psi | ^2\,. \end{eqnarray*} \paragraph{2.) Estimate for $\frac{d}{dt}\int_\Omega vu\,dx$:} \[ \frac{d}{dt}\int_\Omega v\,u\,dx\ =\left| v\right| ^2+\int_{\Omega }v_{t}u\,dx\ \] and \begin{eqnarray*} \int_\Omega v_{t}u\,dx &=&\int_\Omega \partial_x(\partial_xu+\frac{% 1}{2}(\partial_xw)^2)u\,dx-\int_\Omega \partial_x\varphi \,u\,,dx \\ &\leq &-\int_\Omega \ (\partial_xu+\frac{1}{2}(\partial _{x}w)^2)\partial_xu\,dx+\left| \partial_x\varphi \right| \left| u\right|\,. \end{eqnarray*} Here we have used the boundary condition on $u$, $\partial_xu(L)=\partial_{x}u(0)=0$. So \[ \frac{d}{dt}\int_\Omega vu\,dx\leq \left| v\right| ^2-\int_\Omega \ (\partial_xu+\frac{1}{2}(\partial_xw)^2)\partial_xu\,dx+\left| \partial_x\varphi \right| \left| u\right|\,. \] \paragraph{3.) Estimate for $\frac{d}{dt}\int_\Omega L_\gamma w\,dx $:} One has \[ \frac{d}{dt}\int_\Omega L_\gamma z\,w\,dx=\int_\Omega L_{\gamma }z\,z\,dx+\int_\Omega L_\gamma z_{t}w=\left| L_\gamma ^{1/2}z\right|^2 +\int_\Omega L_\gamma z_{t}w\,dx\,. \] Using (\ref{eq7}) we obtain $$ \int_\Omega L_\gamma z_{t}wdx =-\left| \partial _{xx}w\right| ^2-\int_\Omega (\partial_xu+\frac{1}{2}(\partial_xw)^2)(\partial _{x}w)^2\,dx +\int_\Omega \partial_x\psi \partial_xw\,dx\,. $$ So \begin{eqnarray*} \frac{d}{dt}\int_\Omega L_\gamma z\,w\,dx- &=&-\left| \partial _{xx}w\right| ^2-\int_\Omega (\partial_xu+\frac{1}{2}(\partial _{x}w)^2)(\partial_xw)^2\,dx \\ &&+\int_\Omega \partial_x\psi \partial_xw\,dx+\left| L_\gamma ^{1/2}z\right| ^2\,. \end{eqnarray*} \paragraph{4.) Estimate for $\frac{d}{dt}\int_\Omega L_{\gamma}zh(x)\partial_xw\,dx$:} \[ -\frac{d}{dt}\int_\Omega L_\gamma z\,(h(x)\partial _{x}w)\,dx=-\int_\Omega L_\gamma z_{t}h(x)\partial _{x}w\,dx-\int_\Omega L_\gamma zh(x)\partial_xz\,dx\,. \] An integration by parts of the second term of the right member of the previous equality gives \[ \ \int_\Omega L_\gamma z\,(h(x)\partial_xz)\,dx\leq c\left| L_{\gamma }^{1/2}z\right| ^2\,. \] Furthermore, (\ref{eq7}) implies \begin{eqnarray*} \int_\Omega L_\gamma z_{t}h(x)\partial_xw\,dx &\leq &c\left| (\partial_xu+\frac{1}{2}(\partial_xw)^2)\right| \left| \partial _{xx}w\,\ \right| \| \partial_xw\,\| \ _{L^\infty (\Omega )} \\ &&+(\delta _{3}-\frac{3}{L})\left| \partial _{xx}w\,\ \right| ^2+\ c(\delta _{3})\left| \partial_x\psi \right| \ ^2 \\ &&+\frac{1}{2}\left( \left| \partial _{xx}w\,\ (0)\right| ^2+\left| \partial _{xx}w\,\ (L)\right| ^2\right)\,. \end{eqnarray*} \paragraph{5.) Estimate for $\frac{d}{dt}\int_\Omega \varphi\,q\,dx$:} \begin{eqnarray*} \frac{d}{dt}\int_\Omega \varphi q\,dx&=&\left| v\right| ^2-\int_{\Omega }\partial_x\varphi v\,dx+\int_\Omega \varphi q_{t}\,dx \\ &\leq& \left| v\right| ^2+\left| \partial_x\varphi \right| \left| v\right| +\int_\Omega \varphi q_{t}\,dx\,. \end{eqnarray*} To simplify notation, let \[ k(x,t)=\int_0^x \varphi (y,t)\,dy\,. \] So that \[ \int_\Omega \varphi q_{t}\,dx=-\int_\Omega k\partial _{x}q_{t}\,dx=-\int_\Omega kv_{t}\,dx\,. \] But \begin{eqnarray*} \int_\Omega kv_{t}dx &=&\int_\Omega \partial_x(\partial_xu+\frac{1% }{2}(\partial_xw)^2)k\,dx+\int_\Omega \partial_x\varphi k\,dx \\ &=&-\int_\Omega \ (\partial_xu+\frac{1}{2}(\partial_xw)^2)\partial _{x}k\,dx-\int_\Omega \varphi \partial_xk\,dx\,. \end{eqnarray*} So \begin{eqnarray*} -\frac{d}{dt}\int_\Omega \varphi q\,dx &\leq &-(1-2\delta _{4})\left| v\right| ^2\ +\delta _{5}\left| (\partial_xu+\frac{1}{2}(\partial _{x}w)^2)\right| ^2 \\ &&+(\frac{1}{4\delta _{4}}+\frac{1}{4\delta _{5}}+c_0)\left| \partial _{x}\varphi \right| ^2 \,. \end{eqnarray*} \subsection*{Conclusion} Gathering all the above calculations and using Cauchy-Schwarz inequality, we obtain \begin{eqnarray*} \frac{d}{dt}\sigma _{\varepsilon }(t) &\leq &-\ [1-\varepsilon (c(\delta _1)+c(\delta _2)+c_1+c(\delta _{3}))]\left| \partial_x\psi \right| ^2 \\ &&-[1-\varepsilon (c(\ \delta _{4})+c(\delta _{5})+c_2]\left| \partial _{x}\varphi \right| ^2 \\ &&-\varepsilon [(\frac{3}{4}-\delta _1)\left| L_\gamma ^{\frac{1}{2}% }z\right| ^2+(\frac{1}{2}-\delta _{4})\left| v\right| ^2] \\ &&-\varepsilon [(1-\delta _2R^2-\frac{4}{L^2}\alpha )\left| \partial _{x}u+\frac{1}{2}(\partial_xw)^2\right| ^2] \\ &&-\varepsilon [(\frac{1}{4}-((\frac{3}{L}+R^2)\alpha -\delta _{3})\left| \partial _{xx}w\right| ^2] \\ &&+\varepsilon \frac{\alpha }{2}[\ (\left| \partial _{xx}w(0)\right| ^2+\left| \partial _{xx}w(L)\right| ^2)] \\ &&\frac{\varepsilon }{2\alpha }[\left| \partial_x(\partial _{xx})^{-1}\psi (0)\right| ^2+\left| \partial_x(\partial _{xx})^{-1}\psi (L)\right| ^2] \\ &&+\varepsilon \delta _{6}\left| u\right| ^2+\frac{\varepsilon }{4\delta _{6}}\left| \partial_x\varphi \right| ^2 \\ &&-\frac{\varepsilon \alpha }{2\ }(\left| \partial _{xx}w(0)\right| ^2+\left| \partial _{xx}w(L)\right| ^2)\,. \end{eqnarray*} It remains to choose, in the above steps, the constants $\delta _i$, $\alpha$, $\varepsilon$ sufficiently small to make negative the constants before the energy. This is always possible, and then we obtain \[ \frac{d}{dt}\sigma _{\varepsilon }(t)\leq -cE(Y(t)). \] This gives (\ref{eq6}) and the theorem is proved. Notice that the previous constant $c$ depends explicitly on $R$. \paragraph{Acknowledgment} The authors are indebted to the referee for all the comments, remarks, and bibliographical suggestions. \begin{thebibliography}{99} \bibitem{A-B} Ammar Khodja F. \& Benabdallah A.; Conditions suffisantes pour la stabilisation uniforme d'\'{e}quations du second ordre par des contr% \^{o}leurs dynamiques, {\it C.R.\ Acad.Sci.} t.{\bf 323,} S\'{e}rie I, 615-620, 1996. \bibitem{B-V-M-Z} Bisognin E., Bisognin V., Perla Menzala G. \& Zuazua E.; On exponential stability for Von Karman equations in the presence of thermal effects. Preprint 1996. \bibitem{B-S} {\bf \ }Benabdallah A.\ et Soufyane A.{\bf ,} Stabilization and stability for thermoelastic systems, {\it Pr\'{e}publications de l'\'{e}% quipe de math\'{e}matiques de Besan\c{c}on, }{\bf 97/43}, 1997. \bibitem{Ca-Ha} Cazenave\ T. \& Haraux A.; {\it Introduction aux probl\`{e}% mes d'\'{e}volution semi-lin\'{e}aires, }Math\'{e}matiques et applications, S.M.A.I., Ellipses, 1990. \bibitem{Da} Dafermos C.; On the existence and the asymptotic stability of solutions to the equations of linear thermoelasticity, {\it Arch, Rational Mech. Anal., }{\bf 29}, 241-271, (1968). \bibitem{G.R.T} Gibson J.S., Rosen G. \& Tao G.;Approximation in control of thermoelasticity systems, {\it SIAM J.\ Control and Optimization, } vol. {\bf 30}, No 4, 1163-1189 (1992). \bibitem{H-P-L} Henry D.B., Perissinitto A.Jr. \& Lopes. O.; On the essential spectrum of a semigroup of thermoelasticity. {\it \ Nonlinear Anal.\ Theory Methods Appl., }{\bf 21, 1}, 65-75 (1993). \bibitem{K} Koch H., Slow decay in linear thermo-elasticity, {\it preprint }% {\bf 97-47 }(SFB 359), Universit\={a}t Heidelberg.{\bf \ } \bibitem{La-Le} Lagnese J.E. \& Leugering G.; Uniform stabilization of a nonlinear beam by nonlinear boundary feedback, {\it J. Diff. Eq., }{\bf 91, 2}, 355-388 (1991). \bibitem{La-Li} Lagnese J.E. \& Lions J.L.;{\it \ Modelling analysis and control of thin plates, }R.M.A., {\bf 6}, Masson (1988). \bibitem{Le-Zu} Lebeau G. \& Zuazua E.; Sur la d\'{e}croissance non uniforme de l'\'{e}nergie dans le syst\`{e}me de la thermo\'{e}lasticit\'{e} lin\'{e}aire{\it ,} {\it C. R. Acad. Sci.\ Paris, } {\bf I, 324, 4} (1997) 409-415. \bibitem{Li} Lions J.L.; {\it Contr\^{o}labilit\'{e} exacte, Perturbations et Stabilisation de Syst\`{e}mes Distribu\'{e}s, }{\bf 1 }et{\bf \ 2, }R.M.A. {\bf 8} et {\bf 9}, Masson (1988). \bibitem{Liu} K. Liu and Z. Liu, Exponential stability and analyticity of abstract linear thermoelastic systems, {\it Z. Angew. Math. Phys.}, {\bf 48} (1997) 6, pp. 885-904 \bibitem{L-Z} Liu Z. and Zheng S., Exponential stability of the semigroup associated with a thermoelastic system , {\it Quarterly of Applied Mathematics}, {\bf II, 3}, 535-545, (1993). \bibitem{P-Z} Perla Menzala G \& Zuazua E.; Explicit Decay Rates for Solutions of Von Karman's System of Thermoelastic Plates, {\it % C.R.Acad.Sci.\ Paris, } {\bf I, 324}, (1997). \bibitem{Pu-Tu} Puel J.P. \& Tucsnak M.; Global existence for the full Von Karman system, to appear in {\it Appl. Math. and Opt.} \bibitem{Ra} Racke. R.; {\it Existence and regularity of solutions to nonlinear thermoelastic systems.} Proceedings of the Workshop on qualitative aspects and applications of nonlinear evolution eqns. Trieste, May 1996. \bibitem{Ta-Tu} Tataru D. \& Tucsnak M.; On the Cauchy problem for the full von Karman system, preprint 1996. \end{thebibliography} \smallskip {\sc Assia Benabdallah}\\ Laboratoire de Calcul Scientifique, 16 route de Gray, 25000, Besan\c{c}on, France.\\ e-mail address: assia@math.univ-fcomte.fr\smallskip {\sc Djamel Teniou}\\ Institut de Math\'{e}matiques, Universit\'{e} Houari Boumediene, B.P.32.\\ El Alia 16111. Alg\'{e}rie \end{document}