\documentstyle[twoside,amssymb]{article} % amssymb is used for R in Real numbers \pagestyle{myheadings} \markboth{\hfil Existence and multiplicity of solutions \hfil EJDE--1998/10}% {EJDE--1998/10\hfil Klaus Pf\/l\"uger \hfil} \begin{document} \title{\vspace{-1in}\parbox{\linewidth}{\footnotesize\noindent {\sc Electronic Journal of Differential Equations}, Vol.\ {\bf 1998}(1998), No.~10, pp. 1--13. \newline ISSN: 1072-6691. URL: http://ejde.math.swt.edu or http://ejde.math.unt.edu \newline ftp (login: ftp) 147.26.103.110 or 129.120.3.113} \vspace{\bigskipamount} \\ Existence and multiplicity of solutions to a $p$-Laplacian equation with nonlinear boundary condition \thanks{ {\em 1991 Mathematics Subject Classifications:} 35J65, 35J20. \hfil\break\indent {\em Key words and phrases:} p-Laplacian, nonlinear boundary condition, variational methods, \hfil\break\indent unbounded domain, weighted function space. \hfil\break\indent \copyright 1998 Southwest Texas State University and University of North Texas. \hfil\break\indent Submitted March 5, 1998. Published April 10, 1998.} } \date{} \author{Klaus Pf\/l\"uger} % Pflueger \maketitle \begin{abstract} We study the nonlinear elliptic boundary value problem \begin{eqnarray*} & A u = f(x,u) \quad \mbox{in }\Omega\,,\\ & Bu = g(x,u)\quad \mbox{on }\partial \Omega\,, \end{eqnarray*} where $A$ is an operator of $p-$Laplacian type, $\Omega$ is an unbounded domain in ${\Bbb R}^N$ with non-compact boundary, and $f$ and $g$ are subcritical nonlinearities. We show existence of a nontrivial nonnegative weak solution when both $f$ and $g$ are superlinear. Also we show existence of at least two nonnegative solutions when one of the two functions $f$, $g$ is sublinear and the other one superlinear. The proofs are based on variational methods applied to weighted function spaces. \end{abstract} \newtheorem{theo}{Theorem} \newtheorem{lemma}{Lemma} \newcommand{\bewende}{\hfill\mbox{$\Box$}\protect} \newcommand{\R}{{\Bbb R}} \newcommand{\vi}{\varphi} \newcommand{\eps}{\varepsilon} \newcommand{\n}{\mbox{\sf n}} \newcommand{\dn}{\partial_{\n}} \newcommand{\diver}{\mathop{\rm div}} \section{Introduction} The objective of this paper is to study the nonlinear elliptic boundary value problem \begin{eqnarray} &-\diver (a(x) |\nabla u|^{p-2} \nabla u) = f(x,u) \quad \mbox{ in } \quad \Omega \subset \R^N, & \label{p1} \\ &\n \cdot a(x) |\nabla u|^{p-2} \nabla u + b(x) |u|^{p-2}u = g(x,u) \quad \mbox{ on } \quad \Gamma = \partial \Omega, & \label{p2} \end{eqnarray} where $\Omega$ is an unbounded domain with noncompact, smooth boundary $\Gamma$ (for example a cylindrical domain), and $\n$ is the unit outward normal vector on $\Gamma$. We assume throughout that $1
0$ is an arbitrary real number. It follows that
$$
(N - \eps(p-1) - p)\, \int_{\Omega} \frac{1}{(1+|x|)^{p}} |u|^{p}\, dx \leq
\eps^{1-p} \, \int_{\Omega} |\nabla u |^{p}\, dx + \int_{\Gamma}
\frac{|\n \cdot x|}{(1+|x|)^p} |u|^p \, d\Gamma \, ,
$$
and for $\eps$ small enough, the desired inequality follows by standard density arguments.
\bewende
Now denote by $L^r(\Omega; w_1)$ and $L^q(\Gamma; w_2)$
the weighted Lebesgue spaces with weight functions
\begin{equation}
w_i(x) = (1+|x|)^{\alpha_i}\, , \quad i=1,2, \quad \alpha_i \in \R \label{eq1a}
\end{equation}
and norm defined by
$$
\| u \|_{r,w_1}^r = \int_{\Omega} w_1 |u(x)|^{r} \, dx \, , \qquad
\mbox{and} \qquad
\| u \|_{q,w_2}^q = \int_{\Gamma} w_2 |u(x)|^{q} \, dx \, .
$$
Then we have the following embedding and trace theorem.
\begin{theo} \label{t2}
If
\begin{equation}
p \leq r \leq \frac{pN}{N-p} \quad \mbox{and} \quad
-N < \alpha_1 \leq r\, \frac{N-p}{p} - N \, , \label{eq2}
\end{equation}
then the embedding $E \hookrightarrow L^r(\Omega; w_1)$ is continuous.
If the upper bounds for $r$ in (\ref{eq2}) are strict, then the embedding is compact.
If
\begin{equation}
p \leq q \leq \frac{p(N-1)}{N-p} \quad \mbox{and} \quad
-N < \alpha_2 \leq q\, \frac{N-p}{p} - N + 1 \, , \label{eq3}
\end{equation}
then the trace operator $E \to L^q(\Gamma; w_2)$ is continuous.
If the upper bounds for $q$ in (\ref{eq3}) are strict, then the trace is compact.
\end{theo}
This theorem is a consequence of Theorem 2 and Corollary 6 of \cite{7}.
As a corollary of Lemma \ref{t1} and Theorem \ref{t2} we obtain
\begin{lemma} \label{t3}
Let $b$ satisfy $c/(1+|x|)^{p-1} \leq b(x) \leq C/(1+|x|)^{p-1}$
for some constants $0 < c \leq C$. Then
$$
\| u \|_b^p = \int_{\Omega} a(x) |\nabla u |^p\,dx + \int_{\Gamma} b(x) |u|^p\,d\Gamma
$$
defines an equivalent norm on $E$.
\end{lemma}
\paragraph{Proof.} The inequality $\| u \|_E \leq C_1 \| u \|_b$ follows directly from
Lemma \ref{t1}, while from Theorem \ref{t2} (setting $p=q$ and $\alpha_2 = -(p-1)$)
we obtain
\begin{eqnarray*}
\| u \|_b^p
& \leq & \| a \|_{L^{\infty}} \int_{\Omega} | \nabla u |^p dx + C \int_{\Gamma}
|u|^p (1+ |x|)^{-(p-1)} d\Gamma \\
& \leq & \| a \|_{L^{\infty}} \int_{\Omega} | \nabla u |^p dx + C_2 \| u \|_E^p ,
\end{eqnarray*}
which shows the desired equivalence.
\bewende
\paragraph{ Remark.}
In special geometries the lower bound for $b$ required in Lemma \ref{t3} can be
improved. In view of Lemma \ref{t1} it is sufficient to assume
$ b(x) \geq |\n \cdot x| / (1+|x|)^{p} $, where
$\n \cdot x = |\n | | x| \cos \gamma$ and $\gamma$ is the angle between
$x$ and $\n$. For a cylindrical domain $\Omega = B \times \R$, where
$B \subset \R^{N-1}$ is bounded, we obtain $| \cos \gamma | \leq C_B / |x| $,
with a constant $C_B$ depending only on the diameter of $B$. This shows that
in cylindrical domains, Lemma \ref{t3} holds under the weaker assumption
$$
\frac{c}{(1+|x|)^{p}} \leq b(x) \leq \frac{C}{(1+|x|)^{p-1}} \, .
$$
We shall assume throughout the paper that $b$ satisfies the assumption of
Lemma~\ref{t3} so that we can use $\| \cdot \|_b$ as an equivalent norm in $E$.
\section{The superlinear case}
We make the following assumptions
\begin{description}
\item{A1 } $ f$ and $g$ are Carath\'{e}odory functions on
$\Omega \times \R$ and $\Gamma \times \R $, respectively,
$ f(\cdot ,0) = g(\cdot ,0) = 0 \, $ and
\begin{eqnarray*}
|f(x,s)| \leq f_{0}(x) + f_{1} (x)|s|^{r-1} & , & \; p\leq r 0$, such that for every
$0 < \lambda < \lambda^{*}$, there are at least two nontrivial nonnegative
solutions of (\ref{p1})$_{\lambda}$, (\ref{p2}).
\end{theo}
\paragraph{Proof.} First we show that for $\lambda \in (0, \lambda^{*})$, we can find
$\rho > 0$ such that $J(u) \geq c > 0 \, $ if $\| u \|_b = \rho $. We denote by
$C_{\Omega}, C_{\Gamma}$ the embedding and trace constants for the operators
$E \hookrightarrow L^p(\Omega; w_1)$ and $E \to L^q(\Gamma; w_2) $, respectively.
We obtain
\begin{eqnarray*}
J_{\lambda}(u)
& \geq &
\frac{1}{p} \| u \|_b^p - \frac{\lambda}{r} \int_{\Omega} f_1(x) |u|^r \, dx
- \frac{1}{q} \int_{\Gamma} g_1(x) |u|^q \, d\Gamma \\
& \geq &
\frac{1}{p} \| u \|_b^p - \frac{\lambda}{r} \left( \int_{\Omega}
f_1(x)^{p/(p-r)} w_1(x)^{r/(r-p)} dx \right)^{(p-r)/p}
\left( \int_{\Omega} |u|^p w_1 dx \right)^{r/p} \\
&&- \frac{1}{q} \int_{\Gamma} g_1(x) |u|^q \, d\Gamma \\
& \geq &
\frac{1}{p} \| u \|_b^p - \frac{\lambda}{r} C_{\Omega} \| f_1 \|_{*}
\| u \|_b^r - \frac{1}{q} C_{\Gamma} C_{g} \| u \|_b^{q} \, .
\end{eqnarray*}
If $\| u \|_b = \rho$, we obtain
\begin{equation} \label{eq32}
J_{\lambda}(u) \geq \frac{1}{p}\, \rho^p \left( 1 - \frac{p \lambda}{r} C_{\Omega}
\| f_1 \|_{*} \rho^{r - p} - \frac{p}{q}\, C_{\Gamma} C_{g} \rho^{q-p} \right)
\end{equation}
Elementary calculations show that the right hand side is maximal for
$$
\rho_m = \left( \frac{q(p-r) \lambda \, C_{\Omega} \| f_1 \|_{*}
}{r(q-p) \, C_g C_{\Gamma}} \right)^{1/(q-r)} \, .
$$
Inserting this into equation (\ref{eq32}), we find that the right hand side is
zero for
$$
\lambda = \lambda^{*} := \left[ \frac{p}{r}\, \| f_1 \|_{*} C_{\Omega}
C_0^{\frac{r-p}{q-r}} + \frac{p}{q}\, C_g C_{\Gamma}
C_0^{\frac{q-p}{q-r}} \right]^{\frac{r-q}{q-p}} \, ,
$$
where
$$
C_0 = \left( \frac{\| f_1 \|_{*} C_{\Omega} (p-r)q}{C_g
C_{\Gamma}(q-p)r} \right) \, ,
$$
and strictly greater than 0 for $\lambda < \lambda^{*}$. This shows that
for every $\lambda < \lambda^{*}$, we find $\rho_{\lambda} > 0$ such that
$J_{\lambda} \geq c_{\lambda} > 0$ for $\| u \|_b = \rho_{\lambda}$.
The existence of a function $u_0 \in E, \, \| u_0 \|_b > \rho_{\lambda}$ and
$J_{\lambda}(u_0) \leq 0$ now follows as in the proof of Theorem 2 (case A4\ b).
Then the Mountain-Pass Lemma again implies the existence of a nontrivial
solution $u_1$ with $J_{\lambda}(u_1) \geq c_{\lambda}$.
On the other hand, for $\vi \in C_0^{\infty}(O)$ and $t > 0$ we obtain
$$
J_{\lambda}(t \vi) \leq \frac{t^p}{p} \| \vi \|_b^p - \frac{t^{\bar{r}}}{\bar{r}}\,
\int_{O} f_2(x) | \vi |^{\bar{r}} dx \, .
$$
This shows that $J_{\lambda}(t \vi) < 0$ for sufficiently small $t$ and
consequently $J_{\lambda}$ attains its minimum in the ball
$B_{\rho_{\lambda}} \subset E$. We claim that there is a second solution
$u_2 \in B_{\rho_{\lambda}}$ with $J_{\lambda}(u_2) < 0$.
In addition, with the same truncation procedure as in the proof of Theorem 2,
we claim that there are two nonnegative solutions.
\bewende
Now we can prove the corresponding result for equation (\ref{p1}) with
boundary condition
$$
\n \cdot a(x) |\nabla u|^{p-2} \nabla u + b(x) |u|^{p-2}u
= \lambda g(x,u) \quad \mbox{ on } \quad \Gamma
\eqno (2)_{\lambda}
$$
if we interchange the roles of $g$ and
$f$ in Assumptions B1--B3. That is, we assume now that $f$ satisfies Assumptions
A1--A4\ a) (with $f_0 \equiv 0$) and $g$ satisfies
\begin{description}
\item{B4 }
$| g(x,s)| \leq g_1(x) |s|^{q-1}$, $1 \leq q < p$,
$g_1 \in L^{p/(p-q)}(\Gamma; w_2^{q/(q-p)})$,
$| g(x,s)| \geq g_2(x) |s|^{\bar{q}-1}$, $1 \leq \bar{q} \leq q$
and $g_2 > 0$ in some nonempty open set $ U \subset \Gamma $.
\end{description}
\begin{theo} \label{t10}
Let $f$ satisfy Assumptions A1--A4\ a) (with $f_0 \equiv 0$) and $g$ satisfy B4.
Then for every $0 < \lambda < \lambda^{*}$, there are at least two nontrivial
nonnegative solutions of (\ref{p1}), (\ref{p2})$_{\lambda}$.
\end{theo}
\paragraph{Proof.}
First we claim as in Lemma \ref{t8} that
$$
N_g : L^{p}(\Gamma; w_2) \to L^{p/(p-1)}(\Gamma; w_2^{1/(1-p)}) \; , \qquad
N_G : L^{p}(\Gamma; w_2) \to L^{1}(\Gamma)
$$
are bounded and continuous. The estimate for $J_{\lambda}$ now reads
$$
J_{\lambda}(u) \geq \frac{1}{p} \| u \|_b^p -
\frac{1}{r} C_{\Omega} C_f \| u \|_b^{r} -
\frac{\lambda}{q} C_{\Gamma} \| g_1 \|_{*} \| u \|_b^{q} ,
$$
where $\| g_1 \|_{*}$ is the norm of $g_1$ in $L^{p/(p-q)}(\Gamma; w_2^{q/(q-p)}) $.
Now $\lambda^{*}$ can be calculated as
$$
\lambda^{*} := \left[ \frac{p}{q}\, \| g_1 \|_{*} C_{\Gamma}
\bar{C}_0^{\frac{q-p}{r-q}} + \frac{p}{r}\, C_f C_{\Omega}
\bar{C}_0^{\frac{r-p}{r-q}} \right]^{\frac{q-r}{r-p}} \, , \quad
\bar{C}_0 = \left( \frac{\| g_1 \|_{*} C_{\Gamma} (p-q)r}{C_f
C_{\Omega}(r-p)q} \right) \, .
$$
The existence of $u_0$ with $\| u_0 \|_b > \rho_{\lambda}$ and $J(u_0) < 0 $
follows in the same way as in the proof of Theorem \ref{t7}, case A4\ a).
Finally, for a nonnegative $\vi \in C_{\delta}^{\infty}(\Omega)$ with
$\mbox{supp}\,\vi \cap \Gamma \subset U$ not empty, we find
$$
J_{\lambda}(t \vi) \leq \frac{t^p}{p} \| \vi \|_b^p + C \frac{t^r}{r} \| \vi \|_b^r
- \frac{t^{\bar{q}}}{\bar{q}} \int_{U} g_2(x) | \vi |^{\bar{q}} dx \, .
$$
Since $ \bar{q} < p \leq r $, $J_{\lambda}(t \vi) < 0$ for
$t$ sufficiently small and we claim that $J_{\lambda}$ attains its minimum in
$ B_{\rho_{\lambda}} \subset E$.
\bewende
We remark that, if $\Omega$ is of class $C^{1,\alpha}\, (\alpha \leq 1)$ and,
in addition to B4, $g$ satisfies
$$
| g(x,s) - g(y, t) | \leq C \Big( |x-y|^{\alpha} + |s-t|^{\alpha} \Big) , \qquad
|g(x,s)| \leq C
$$
for all $x,y \in \Gamma$, $s,t \in \R$, then the regularity result of \cite{4},
Thm.\ 2, shows that the solution $u$ belongs to $C^{1,\beta}(\overline{\Omega})$
for some $\beta > 0$.
\begin{thebibliography}{99}
\bibitem{1} A.\ Ambrosetti, H.\ Brezis and G.\ Cerami, {\em Combined effects of concave
and convex nonlinearities in some elliptic problems.} J. Funct. Anal. 122 (1994),
519--543.
\bibitem{2} J.\ Garcia Azorero and I.\ Peral Alonso, {\em Existence and non-uniqueness
for the $p-$Laplacian.} Commun. Partial Differ. Equations 12 (1987), 1389--1430.
\bibitem{2a} J.\ Garcia Azorero and I.\ Peral Alonso, {\em Some results about the
existence of a second positive solution in a quasilinear critical problem.}
Indiana Univ. Math. J. 43 (1994), 941--957.
\bibitem{2b} D.\ G.\ Costa and O.\ H.\ Miyagaki, {\em Nontrivial solutions for
perturbations of the $p-$Laplacian on unbounded domains.} J. Math. Anal. Appl.
193 (1995), 735--755.
\bibitem{3} J.\ I.\ Diaz, {\em Nonlinear partial differential equations and free
boundaries. Elliptic equations.} Pitman Adv. Publ., Boston etc., 1986.
\bibitem{3a} P. Dr\'{a}bek, {\em Nonlinear eigenvalue problems for the $p-$Laplacian
in $\R^N$.} Math. Nachr. 173 (1995), 131--139.
\bibitem{3b} P. Dr\'{a}bek and S.\ I.\ Pohozaev, {\em Positive solutions for the
$p-$Laplacian: Application of the fibrering method.} Proc. R. Soc. Edinburgh
127A (1997), 703--726.
\bibitem{4} G.\ M.\ Lieberman, {\em Boundary regularity of degenerate elliptic
equations.} Nonlinear Anal., Theory, Methods, Appl. 12 (1988), 1203--1219.
\bibitem{5} J.\ M.\ B.\ do \'{O}, {\em Solutions to perturbed eigenvalue problems
of the $p-$Laplacian in $\R^N$.} Electr. J. Diff. Eqns., Vol.\ 1997 (1997),
No. 11, 1--15.
\bibitem{6} C.\ V.\ Pao, {\em Nonlinear parabolic and elliptic equations.}
Plenum Press, New York, London, 1992.
\bibitem{7} K.\ Pf\/l\"uger, {\em Compact traces in weighted Sobolev spaces.}
Analysis 18 (1998), 65--83.
\bibitem{7a} K.\ Pf\/l\"uger, {\em Nonlinear boundary value problems in weighted
Sobolev spaces.} Proc. 2nd WCNA, Nonlinear Anal. TMA 30 (1997), 1263--1270.
\bibitem{8} P.\ H.\ Rabinowitz, {\em Minimax methods in critical
point theory with applications to differential equations.} Reg.
Conf. Ser. Math. 65 (1986), 1--100.
\bibitem{8a} P.\ Tolksdorf, {\em Regularity for a more general class of quasilinear
elliptic equations.} J. Diff. Eqns. 51 (1984), 126--150.
\bibitem{9} M.\ M.\ Vainberg, {\em Variational Methods for the
Study of Nonlinear Operators.} Holden Day, San Francisco, 1964.
\bibitem{10} Yu Lao Sen {\em Nonlinear $p$-Laplacian problems on unbounded domains.}
Proc. Am. Math. Soc. 115 (1992) , 1037--1045.
\end{thebibliography}
\bigskip
{\sc Klaus Pfl\"uger }\\
FB Mathematik, Freie Universit\"at Berlin\\
Arnimallee 3, 14195 Berlin, Germany \\
email: pflueger@math.fu-berlin.de
\end{document}