\input amstex \documentstyle{amsppt} \loadmsbm \magnification=\magstephalf \hcorrection{1cm} \vcorrection{-6mm} \nologo \TagsOnRight \NoBlackBoxes \headline={\ifnum\pageno=1 \hfill\else% {\tenrm\ifodd\pageno\rightheadline \else \leftheadline\fi}\fi} \def\rightheadline{EJDE--1998/11\hfil Barriers on cones \hfil\folio} \def\leftheadline{\folio\hfil Michail Borsuk \& Dmitriy Portnyagin \hfil EJDE--1998/11} \def\pretitle{\vbox{\eightrm\noindent\baselineskip 9pt % Electronic Journal of Differential Equations, Vol.\ {\eightbf 1998}(1998), No.~11, pp.~1--8.\hfil\break ISSN: 1072-6691. URL: http://ejde.math.swt.edu or http://ejde.math.unt.edu \hfill\break ftp (login: ftp) 147.26.103.110 or 129.120.3.113\bigskip} } \topmatter \title Barriers on cones for degenerate quasilinear elliptic operators \endtitle \thanks \noindent {\it 1991 Mathematics Subject Classifications:} 35J65, 35J70, 35B05, 35B45, 35B65.\hfil\break {\it Key words and phrases:} quasilinear elliptic equations, barrier functions, conical points. \hfil\break \copyright 1998 Southwest Texas State University and University of North Texas.\hfil\break Submitted May 15, 1997. Published April 17, 1998. \endthanks \author Michail Borsuk \\ Dmitriy Portnyagin \endauthor \address Michail Borsuk \hfil\break Department of Applied Mathematics \hfil\break Olsztyn University of Agriculture and Technology \hfil\break 10-957 Olsztyn-Kortowo, Poland \hfil\break \endaddress \email borsuk\@art.olsztyn.pl \endemail \address Dmitriy Portnyagin \hfil\break Department of Physics \hfil\break Lvov State University \hfil\break 290602 Lvov, Ukraine \endaddress \abstract Barrier functions $w=|x|^\lambda \Phi(\omega)$ are constructed for the first boundary value problem as well as for the mixed boundary value problem for quasilinear elliptic second order equation of divergent form with triple degeneracy on the $n$-dimensional convex circular cone: $$ \frac{d}{dx_i}(|x|^\tau|u|^q|\nabla u|^{m-2}u_{x_i})= \mu |x|^\tau{|u|}^{q-1}\text{sgn }{u}{|\nabla u|}^{m}\,,$$ where $-1<\mu \leq 0$, $q\geq 0$, $m>1$, $\tau>m-n$. \endabstract \endtopmatter \document \head Introduction \endhead Lately many mathematicians have been considering nonlinear problems for elliptic degenerate equations; see e.g.\ [1] and its extensive bibliography. In the present paper, we take a first step on the investigation of the behaviour of solutions of boundary value problems for quasilinear elliptic second-order equations with triple degeneracy. We study the problem $$\gathered Lu\equiv\frac{d}{dx_i}(|x|^\tau|u|^q|\nabla u|^{m-2}u_{x_i})= \mu |x|^\tau{|u|}^{q-1}\text{sgn }{u}{|\nabla u|}^{m},\quad x\in G_0\,,\\ -1<\mu \le0,\quad q\ge0,\quad m>1,\quad\tau>m-n\,, \endgathered\tag1 $$ where $G_0$ is an $n$-dimensional {\it convex} circular cone with its vertex at the origin $O$, having $\Gamma_0$ as lateral area; and $\Omega $ is a domain, on the unit sphere, with a smooth boundary $\partial \Omega$. We shall construct functions playing a fundamental role in the study of the behaviour of solutions to elliptic boundary value problems in the neighbourhood of the irregular boundary point; see e.g.\ [2--6]. The special structure of the solution near a conical point is of particular interest in physical applications, [7--9]. It is also used for improving numerical algorithms, [10--12]. The proof of the estimates for the solution is based on the observation that the function $r^{\lambda}\Phi(\omega)$ is usable as barrier in the above problem. By the weak comparison principle in [2, chapt.\ 10], it is possible to verify that the assumptions of this principle are fulfilled. Since (1) is equivalent to $$\gathered \frac{d}{dx_i}\left({|\nabla u|}^{m-2}u_{x_i}\right)+\tau |x|^{-2}{|\nabla u|}^{m-2} (x \nabla u)+(q- \mu){|u|}^{-1}\text{sgn }{u}{|\nabla u|}^{m}=0,\\ x\in G_0, \quad -1<\mu \le0,\quad q\ge0,\quad m>1,\quad\tau>m-n \endgathered $$ on the set where $u \neq 0$, one can obtain the bound for solution near conical boundary point. In this setting, finding of exact value of the exponent $\lambda$ is very important and very difficult. For the case of a planar bounded domain with corner boundary points, the exact value of the exponent $\lambda$ will be calculated explicitly. Let us transfer the above problem to spherical coordinates with the pole at the point $O$. $$\align x_1&=r\cos\omega_1, \\ x_2&=r\cos\omega_2 \sin\omega_1, \\ &\quad\vdots \\ x_{n-1}&=r\cos\omega_{n-1} \sin\omega_{n-2}\dots\sin\omega_1, \\ x_{n}&=r\sin\omega_{n-1}\dots \sin \omega_1, \endalign $$ where $r=|x|>0$, $0<\omega_i<\pi$ for $i=1,\dots,n-2$, and $0<\omega_{n-1}<2\pi$. The differential operator $L$ takes the form $$ Lu=\frac{1}{J}\sum_{i=1}^{n}\frac{d}{d \xi_i}\left(r^\tau |u|^q|\nabla u|^ {m-2}\frac{J}{H_i^2}\frac{\partial u}{\partial \xi_i}\right),$$ where $ J=r^{n-1}\sin^{n-2}\omega_1,\dots,\sin\omega_{n-2}$; $H_1=1$; $\xi_1=r$; $\xi_{i+1}=\omega_{i}$ and $H_{i+1}=r\sqrt{q_i}$, for $i=\{\overline{1,n-1}\}$; $q_1=1$; $q_i=(\sin\omega_1\dots\sin\omega_{i-1})^2$ for $i=\{\overline{2,n-1}\}$. We shall seek the solution of (1) as a function of the form $u=r^\lambda\Phi(\omega)$ with $\Phi(\omega) \ge0$. Then $\Phi(\omega)$ satisfies the equation $$\multline \frac{1}{j(\omega)}\sum_{k=1}^{n-1} \frac{d}{d \omega_k}\left( \frac{j(\omega)}{q_k}(\lambda^2 \Phi^2 +|\nabla_{\omega} \Phi|^2)^{(m-2)/2}|\Phi|^q \frac{\partial \Phi}{\partial \omega_k}\right)\\ +\lambda[\lambda(q+m-1)+ \tau+n-m](\lambda^2 \Phi^2+|\nabla_{\omega} \Phi|^2)^{(m-2)/2}\Phi|\Phi|^q\\ =\mu \Phi|\Phi|^{q-2}(\lambda^2 \Phi^2+|\nabla_{\omega} \Phi|^2) ^{m/2}, \omega\in \Omega, \endmultline\tag2 $$ where $|\nabla_{\omega}\Phi|^2=\sum_{j=1}^{n-1}\frac{1}{q_j} (\frac{\partial \Phi}{\partial \omega_j})^2$, and $j(\omega)=\sin^{n-2}\omega_1\dots\sin\omega_{n-2}$. \head The Dirichlet problem\endhead First we consider the Dirichlet problem for (1) when $u|_{\Gamma_0}=0$. On multiplying (2) by $\Phi(\omega)$ and integrating by parts over $\Omega$ we obtain $$\align &\int\limits_{\Omega}\left(\lambda^2\Phi^2+|\nabla_\omega\Phi|^2 \right)^{(m-2)/2}|\Phi|^q|\nabla_\omega\Phi|^2d\Omega\\ &=\lambda[\lambda(q+m-1)+\tau+n-m]\int\limits_{\Omega} \left(\lambda^2\Phi^2+|\nabla_\omega\Phi|^2\right)^{(m-2)/2} |\Phi|^{q+2}d\Omega\\ &\quad -\mu\int\limits_{\Omega} |\Phi|^q\left(\lambda^2\Phi^2+|\nabla_\omega\Phi|^2\right)^{m/2} d\Omega\\ &\equiv\int\limits_{\Omega}\left(\lambda^2\Phi^2 +|\nabla_\omega\Phi|^2\right)^{(m-2)/2}|\Phi|^q \times \\ &\quad\left\{\lambda[\lambda(q+m-1)+\tau+n-m]\Phi^2 -\mu(\lambda^2\Phi^2+|\nabla_\omega\Phi|^2)\right\} d\Omega\,.\endalign $$ Hence, it follows that $$\multline (1+\mu)\int\limits_{\Omega}\left(\lambda^2\Phi^2+|\nabla_\omega\Phi|^2 \right)^{(m-2)/2}|\Phi|^q|\nabla_\omega\Phi|^2d\Omega\\ =\lambda[\lambda(q+m-1-\mu)+\tau+n-m]\int\limits_{\Omega} \left(\lambda^2\Phi^2+|\nabla_\omega\Phi|^2\right)^{(m-2)/2} |\Phi|^{q+2}d\Omega\,.\endmultline $$ Since $\Phi(\omega)\not \equiv 0$ and $\mu>-1$, we have $$\lambda[\lambda(q+m-1-\mu)+\tau+n-m]>0\,.\tag *$$ We shall consider the case of $\Phi(\omega)$ not depending on $\omega_2,\dots ,\omega_{n-1}$; so that $\Phi$ is a function of a single angular coordinate $\omega_1=\omega\in(-\omega_0/2,\omega_0/2)$, $0<\omega_0<\pi$. Such function $\Phi(\omega)$ satisfies the boundary value problem for ordinary differential equation $$\aligned &[(m-1){\Phi'}^2+\lambda^2 \Phi^2] \Phi \Phi'' +(\lambda^2 \Phi^2+{\Phi'}^2) \times \\ & \left\{ (q-\mu){\Phi'}^2+\lambda[\lambda(q+m-1-\mu)+\tau+n-m]\Phi^2 +(n-2)\Phi\Phi' \cot \omega \right\}\\ & +(m-2)\lambda^2\Phi^2{\Phi'}^2=0, \qquad \omega\in (-\omega_0/2,\omega_0/2) \\ & \Phi(-\omega_0/2)=\Phi(\omega_0/2)=0\,.\endaligned \tag ODE $$ By making the substitution $y=\Phi'/\Phi$ and $y'+y^2=\Phi''/\Phi$, we arrive to $$\multline [(m-1)y^2+\lambda^2]y'+(m-1+q-\mu)(y^2+\lambda^2)^2\\ +[\lambda(\tau+n-m)+(n-2)y\cot \o](y^2+\lambda^2)=0; \quad \omega\in (-\frac{\omega_0}{2},\frac{\omega_0}{2}). \endmultline \tag3 $$ Let us now verify that $$\gather \Phi(-\omega)=\Phi(\omega),\quad y(-\omega)=-y(\omega),\quad y'(-\omega)=y'(\omega), \\ \Phi'(-\omega)=-\Phi'(\omega),\quad\forall \omega\in (-\frac{\omega_0}{2},\frac{\omega_0}{2})\,. \endgather$$ Putting $\omega=0$ we obtain $y(0)=0$. Therefore, it is sufficient to consider the equation only on the interval $(0,\omega_0/2)$. Since $\cot \omega>0$ on $(0,\omega_0/2)$, from (3) and (*) it follows that $$[(m-1)y^2+\lambda^2]y'+(n-2) y(y^2+\lambda^2)\cot \omega<0\,, \quad \omega\in (0,\frac{\omega_0}{2})\,. \tag4$$ Let us solve the Cauchy problem $$\gather [(m-1)\overline{y}^2+\lambda^2]\overline{y}'+(n-2)\overline{y}(\overline{y}^2 +\lambda^2)\cot \omega=0 ,\quad \omega\in (0,\frac{\omega_0}{2});\\ \overline{y}(0)=0\,. \endgather $$ We obtain $$\int \frac{(m-1)\overline{y}^2+\lambda^2}{\overline{y}(\overline{y}^2+ \lambda^2)}d\overline{y}= -(n-2)\int \cot \omega d \omega + \text{const}$$ which implies $$\gather \overline{y}(\overline{y}^2+\lambda^2)^{(m-2)/2}=C {\text{sin }}^{2-n}\omega \\ \overline{y}(0)=0\,. \endgather $$ This, in turn, implies $C=0$ and $\overline{y}\equiv 0$. Comparing the solution of (4) with that of the Cauchy problem, we deduce that $y(\omega)\le 0$. Since $\cot \omega >0$ \text{and} $y\le0$ on our interval, by (3) we have $$ \multline [(m-1)y^2+\lambda^2]y'+[(m-1+q-\mu)(\lambda^2+y^2)+ \lambda(\tau+n-m)](\lambda^2+y^2)\\ = -(n-2) y(y^2+\lambda^2)\cot \omega\ge0, \quad \omega\in (0,\frac{\omega_0}{2})\,.\endmultline $$ Thus, for $(0,\omega_0/2)$ we have, $$ \gather [(m-1)y^2+\lambda^2]y' \ge -[(m-1+q-\mu)(\lambda^2+y^2)+ \lambda(\tau+n-m)](\lambda^2+y^2) \\ y(0)=0\,. \endgather $$ Similarly by the comparison theorem, we obtain $y(\omega)\ge z(\omega)$, where $z(\omega)$ with $\omega \in (0,\omega_0/2)$ is the solution to Cauchy problem $$\gather [(m-1)z^2+\lambda^2]z'= -[(m-1+q-\mu)(\lambda^2+z^2)+ \lambda(\tau+n-m)](\lambda^2+z^2),\\ z(0)=0\,.\endgather$$ On solving the latter, we obtain the expression for $z$ in the implicit form $$\gathered \frac{\frac{m-1}{m-1+q-\mu}+\lambda \frac{m-2}{\tau+n-m}} {\sqrt{\lambda^2+\lambda\frac{\tau+n-m}{m-1+q-\mu}}} \arctan \frac{z}{\sqrt{\lambda^2+\lambda\frac{\tau+n-m} {m-1+q-\mu}}}\\ +\omega+\frac{m-2}{m-n-\tau}\arctan (\frac{z}{\lambda})=0\,. \endgathered \tag5$$ By combining the obtained results, we conclude that $$0\ge y(\omega)\ge z(\omega)\,.\tag6$$ Let us now return to the equation for $y(\omega)$. On making the substitution $\varphi = \ln \Phi$, $w(\varphi)=y^2(\varphi)$, $$ w'(\varphi)=2yy'(\varphi)=2y\frac{d \omega}{d \varphi}y'(\omega)=2y'(\omega)\,,$$ we obtain $$\gather \frac{1}{2}[(m-1)w+\lambda^2]w'+[(m-1+q-\mu)(\lambda^2+w)+ \lambda(\tau+n-m)](\lambda^2+w)\\ -(n-2) \sqrt{ w}(w+\lambda^2)\cot \omega=0\,, \endgather $$ where we have used $y=\pm\sqrt{ w}$ and $y<0$. As we did above, we obtain a differential inequality for $w$, $$ \frac{1}{2}[(m-1)w+\lambda^2]w'+[(m-1+q-\mu)(\lambda^2+w)+ \lambda(\tau+n-m)](\lambda^2+w)>0\,.$$ Integrating the respective differential equation $$ \frac{1}{2}[(m-1)\overline{w}+\lambda^2]\overline{w}'+ [(m-1+q-\mu)(\lambda^2+\overline{w})+ \lambda(\tau+n-m)](\lambda^2+\overline{w})=0$$ we obtain $$\multline \lambda\frac{m-2}{m-n-\tau}\ln (\lambda^2+\overline{w})\\ +\left(\frac{m-1}{m-1+q-\mu}+ \lambda \frac{m-2}{\tau+n-m}\right)\ln ((m-1+q-\mu)(\lambda^2+\overline{w})+ \lambda(\tau+n-m))\\ +2\ln \Phi=\ln C\,.\endmultline$$ Solving the latter expression with the respect to $\Phi$ we obtain $$\gather {\Phi}^2(\omega)=C^2\left(\frac{(m-1+q-\mu)(\lambda^2+\overline{w}) +\lambda(\tau+n-m)}{\lambda^2+\overline{w}}\right)^ {\lambda(m-2)/(m-n-\tau)}\times\\ [(m-1+q-\mu)(\lambda^2+\overline{w})+\lambda(\tau+n-m)]^{-(m-1)/(m-1+q-\mu)}. \endgather$$ Now it is evident that $\overline{w}=z^2(\varphi)$ and $w=y^2(\varphi)$. From (6) and $w\le \overline{w}$, it follows that $$\Phi^2(\omega)=C^2(z^2+\lambda^2)^{\frac{1-m}{m-1+q-\mu}}\left(m-1+q-\mu+ \frac{\lambda(\tau+n-m)}{(z^2+\lambda^2)}\right)^ {\frac{\lambda(m-2)}{m-n-\tau}-\frac{m-1}{m-1+q-\mu}}\,. $$ Whence it follows that $${\Phi}(\omega)\sim |z|^{-\frac{(m-1)}{m-1+q-\mu}} \quad\text{as}\quad |z|\to+\infty\,. $$ Since $y^2\le z^2$, it follows that $1/z^2\le 1/y^2$, and it is now clear that $$\lim_{\omega\to(\omega_0/2)-0} z(\omega)=-\infty $$ (since $\Phi(\omega_0/2)=0)$. Furthermore, since $y=\frac{\Phi'}{\Phi}<0$ and $\Phi>0$ on $(0,\omega_0/2)$, $\Phi'<0$. i.e., $\Phi(\omega)$ decreases on $(0,\omega_0/2)$ from the positive value $\Phi(0)$ to $\Phi(\omega_0/2)=0$. $\Phi$ does not vanish anywhere else in $(0,\omega_0/2)$, otherwise it should increase somewhere. From this equation we have $$\gather y'= -[(m-1+q-\mu)(y^2+\lambda^2)+\lambda(\tau+n-m)]\frac{(y^2+ \lambda^2)}{(m-1)y^2+\lambda^2}\\ -(n-2)y\frac{y^2+\lambda^2}{(m-1)y^2+\lambda^2}\cot \omega \to-\infty \quad\text{as}\quad y\to-\infty\,.\endgather $$ That is to say $y(\omega)$ decreases in the vicinity of the point $-\omega$, when $y\to-\infty$. It is possible only at $-\omega=\omega_0/2$, (when passing $\omega\to\frac{\omega_0}{2}-0)$. On performing the passage to the limit $\omega\to\frac{\omega_0}{2}-0$ in $(5)$, and taking into account that $z\to-\infty$, we obtain $$\multline \frac{\omega_0}{\pi}+\frac{m-2}{\tau+n-m} \\ =\left(\frac{m-1}{m-1+q-\mu}+\lambda \frac{m-2}{\tau+n-m}\right) \left(\frac{\lambda[\lambda(m-1+q-\mu) + \tau+n-m]}{m-1+q-\mu}\right)^{-1/2}\,.\endmultline$$ {\it Hence we obtain an explicit expression for $\lambda$, $$\gathered\lambda=\frac{\pi}{2\omega_0(m-1+q-\mu)}\times\\ \left\{\frac{m(m-2)-2(m-2)t-t^2}{t+2(m-2)}+\frac{\sqrt{[t^2+2(m-2)t+m^2] [t^2+2(m-2)t+(m-2)^2]}}{t+2(m-2)}\right\},\endgathered\tag7 $$ where $t=(\tau+n-m)\omega_0/\pi$. In the case of $n=2$, $\tau=0$ we obtain $$ \lambda=\frac{(m-1)}{(m-1-\mu+q)}+\frac{(\pi-\omega_0)[m(\pi-\omega_0) +\sqrt{(m-2)^2(\pi-\omega_0)^2+4(m-1){\pi}^2} ]} {2\omega_0(2\pi-\omega_0)(m-1-\mu+q)}.\tag8 $$ In the case of $\tau=\mu=q=0$, $n=2$ we get the result of [13]. If $m=n=2$, from (7) we get $$\lambda=\frac {\sqrt{\left(\frac{2\pi}{\omega_0}\right)^2+\tau^2}-\tau}{2(1+q-\mu)}.\tag9 $$} \medskip For the case $n=3$, we assume that $\tau=0$. We shall seek a solution of the form $u=r^{\lambda}\Phi(\omega)\sin^{\lambda}\Phi$, with $\Phi\in(0,\pi)$ and $\omega\in(-\omega_0/2,\omega_0/2)$. Then we obtain for $\Phi(\omega)$ a problem which coincides with (ODE) with $n=2$, and so for $\lambda$ we have the Expression (8). \head The mixed boundary value problem \endhead Now we consider the mixed boundary value problem in the planar domain $G_0=\{(r,\omega)\mid r>0,\;0<\omega<\omega_0<\pi\}$, with a corner boundary point, $$\gather \frac{d}{dx_i}\left({|u|}^q{|\nabla u|}^{m-2}u_{x_i}\right)= \mu {|u|}^{q-1}\text{sgn }{u}{|\nabla u|}^{m}, \quad x\in G_0\,,\\ u\big|_{\omega=\omega_0}=0\,,\quad\left.{\frac{\partial u}{\partial x_2}} \right|_{\omega=0}=0\,, \endgather $$ where $\omega_0$ is the angle with the vertex at the point $O$. By a process analogous to the one above, we come to the expression $$\multline\lambda=\frac{(m-1)}{(m-1-\mu+q)}\\ +\frac{(\pi-2\omega_0)[m(\pi-2\omega_0)+\sqrt{(m-2)^2(\pi-2\omega_0)^2+4(m-1) {\pi}^2} ]} {8\omega_0(\pi-\omega_0)(m-1-\mu+q)}\,.\endmultline\tag10 $$ Obviously, this expression coincides with (8) for the Dirichlet problem, if in the latter we put $2\omega_0$ instead of $\omega_0$. \medskip {\it Therefore, barrier functions $w=r^\lambda \Phi(\omega)$ have been constructed for the first boundary value problem for the equation (1), and for the mixed boundary value problem for (1) with $\tau=0$.} \Refs \ref \no 1 \by Dr\'abek P., Kufner A., Nicolosi F. \book Nonlinear elliptic equations \publaddr Universit\"at of West Bohemia at Pilsen \yr 1996 \endref \ref \no 2 \by Gilbarg D., Trudinger N. \book Elliptic partial differential equations of second order \publ Springer \yr 1983 \endref \ref \no 3 \by Miller K. \paper Barriers on cones for uniformly elliptic operators \jour Ann. mat. pura appl. \yr 1967 \vol 76, No. 4 \pages 93--105\endref \ref \no 4 \by Tolksdorf P. \paper On the Dirichlet problem for quasilinear elliptic equations in domains with conical boundary points \jour Comm. Part. Diff. Eqns. \yr 1983 \vol 8, No. 7 \pages 773--817\endref \ref \no 5 \by Dobrowolski M. \paper On quasilinear elliptic equations in domains with conical boundary points \jour J. Reine und Angew. Math. \yr 1989 \vol 394 \pages 186--195\endref \ref \no 6 \by Borsuk M.V. \paper Estimates of solutions of Dirichlet problem for elliptic nondivergence second-order equations in a neighbourhood of a conical boundary point \jour Differ. Uravnenija \yr 1994 \vol 30, No.1 \pages 104--108\endref \ref \no 7 \by Sommerfeld A. \paper Asymptotische Integration der Differentialgleichung der Thomas-Fermischen atoms \jour Z. f\"ur Physik \yr 1932 \vol 78 \pages 283--308\endref \ref \no 8 \by Jackson J.D. \book Classical Electrodinamics \publ John Wiley \& Sons \publaddr NY\yr 1975\endref \ref \no 9 \by Benilan Ph., Br\'ezis H. \paper Some variational problems of the Thomas-Fermi type \paperinfo in "Variational inequalities" (Cottle, Gianessi, Lions, Eds.), \publ Wiley \publaddr NY \yr 1980 \pages 53--73\endref \ref \no 10 \by Babuska J., Kellogg R.B. \paper Numerical solution of the neutron diffusion equation in the presence of corners and interfaces \paperinfo in: "Numerical reactor calculations" \publ Intern. Atomic Energy Agency \publaddr Vienna \yr 1972 \pages 473--486\endref \ref \no 11 \by Strang G. \& Fix J. \book An analysis of the finite element method \publ Prentice-Hall \publaddr Englewood Cliffs \yr 1973 \endref \ref \no 12 \by Dobrowolski M. \paper Numerical approximation of elliptic interface and corner problems \jour Habilitationsschrift, Universit\"at Bonn \yr 1981 \moreref \jour Z.A.A.M. \vol 64 \yr 1984 \pages 270--271\endref \ref \no 13 \by Borsuk M.V., Plesha M.I. \paper Estimates of generalized solutions of Dirichlet problem for quasilinear elliptic second-order equations in a domain with conical boundary point \jour Ukrainer Math. journal \toappear \endref \endRefs \enddocument