\documentstyle[twoside,amssymb]{article} % amssymb is used for R in Real numbers \pagestyle{myheadings} \markboth{\hfil Quasi-geostrophic type equations \hfil EJDE--1998/16}% {EJDE--1998/16\hfil Jiahong Wu \hfil} \begin{document} \title{\vspace{-1in}\parbox{\linewidth}{\footnotesize\noindent {\sc Electronic Journal of Differential Equations}, Vol.\ {\bf 1998}(1998), No.~16, pp. 1--10. \newline ISSN: 1072-6691. URL: http://ejde.math.swt.edu or http://ejde.math.unt.edu \newline ftp (login: ftp) 147.26.103.110 or 129.120.3.113} \vspace{\bigskipamount} \\ Quasi-geostrophic type equations \\ with weak initial data \thanks{ {\em 1991 Mathematics Subject Classifications:} 35K22, 35Q35, 76U05. \hfil\break\indent {\em Key words and phrases:} Quasi-geostrophic equations, Weak data, Well-posedness. \hfil\break\indent \copyright 1998 Southwest Texas State University and University of North Texas. \hfil\break\indent Submitted November 26, 1996. Published June 12, 1998. \hfil\break\indent Supported by NSF grant DMS 9304580 at IAS.} } \date{} \author{Jiahong Wu} \maketitle \begin{abstract} We study the initial value problem for the quasi-geostrophic type equations $$ \frac{\partial \theta}{\partial t}+u\cdot\nabla\theta + (-\Delta)^{\lambda}\theta=0,\quad \mbox{on}\quad {\Bbb R}^n \times (0,\infty), $$ $$ \theta(x,0)=\theta_0(x), \quad x\in {\Bbb R}^n\,, $$ where $\lambda(0\le \lambda \le 1)$ is a fixed parameter and $u=(u_j)$ is divergence free and determined from $\theta$ through the Riesz transform $u_j=\pm {\cal R}_{\pi(j)}\theta$, with $\pi(j)$ a permutation of $1,2,\cdots,n$. The initial data $\theta_0$ is taken in the Sobolev space $\dot{L}_{r,p}$ with negative indices. We prove local well-posedness when $$ \frac{1}{2}<\lambda \le 1,\quad 1
0$ and $\alpha\ge 0$ are real numbers. The spaces $ C_{\alpha,s,q}$ and $\dot{C}_{\alpha,s,q}$ are defined as $$ C_{\alpha,s,q} \equiv \{f \in C((0,T), \dot{L}_{s,q}), \quad \|f\|_{\alpha,s,q} <\infty\}\,, $$ where the norm is given by $$ \|f\|_{\alpha,s,q}=\sup \{t^\alpha \|f\|_{s,q}, \quad t\in (0,T)\}\,. $$ Note that $\dot{C}_{\alpha,s,q}$ is a subspace of $C_{\alpha,s,q}$: $$ \dot{C}_{\alpha,s,q}\equiv\{f\in C_{\alpha,s,q}, \quad \lim_{t\to 0} t^\alpha\|f(t)\|_{s,q}= 0\}\,. $$ When $\alpha=0$, the spaces $\bar{C}_{s,q}$ are used for $BC([0,T),\dot{L}_{s,q})$. \end{define} These spaces are important in uniqueness and local existence problems (\cite{k2,kp1,kp2}). Notice that $f\in C_{\alpha,s,q}$ (resp. $f\in \dot{C}_{\alpha,s,q}$) implies that $\|f(t)\|_{s,q}=O(t^{-\alpha})$ (resp. $o(t^{-\alpha})$). The main result of this section is the well-posedness theorem that states \begin{thm}\label{thm:2.1} Assume that $\lambda>1/2$ and $\theta_0\in \dot{L}_{r,p}$ with $r,p$ satisfying \begin{equation}\label{res} 1
\frac{n}{q}-(2\lambda-1)}
\dot{C}_{\left(s-\frac{n}{q}+(2\lambda-1)\right)
/(2\lambda),s,q})
$$
In particular,
$$
\theta\in BC([0,T), \dot{L}_{r,p})\cap (\cap_{s>r} C((0,T), \dot{L}_{s,p}))\,.
$$
Furthermore, for some neighborhood $V$ of
$\theta_0$, the mapping
$$
{\frak P}: V\longmapsto Y_{T}:\quad \theta_0\longmapsto \theta
$$
is Lipschitz.
\end{thm}
\begin{rem}
If $\|\theta_0\|_{r,p}$ is small enough, then we can take $T=\infty$.
\end{rem}
We prove this theorem by the method of integral equations and
contraction-mapping arguments. Following standard practice (\cite{G,
GMO, k1,kp1}),
we write the QGS equation (\ref{eq1}) into the integral form:
\begin{equation}\label{int}
\theta=K\theta_0(t) -G(u,\theta)(t)\equiv e^{-\Lambda^{2\lambda}t}\theta_0
-\int_{0}^{t} e^{-\Lambda^{2\lambda}(t-\tau)}(u\cdot\nabla\theta)(\tau)d\tau\,,
\end{equation}
where $K(t)=e^{-\Lambda^{2\lambda}t}$ is the solution operator of the
linear equation
$$
\partial_t\theta +\Lambda^{2\lambda}\theta =0,\quad\mbox{with}\quad
\Lambda=(-\Delta)^{1/2}\,.
$$
We observe that $u\cdot\nabla \theta=\sum_{j}u_j\partial_j\theta=
\nabla\cdot(u\theta)$ provided that $\nabla\cdot u=0$. This provides an
alternative expression for $G$:
$$
G(u,\theta)(t)=G(u\theta)(t)=\int_{0}^{t}\nabla\cdot e^{-\Lambda^{2\lambda}(t-\tau)}
(u\theta)(\tau)d\tau\,.
$$
We shall solve (\ref{int}) in the spaces of weighted continuous functions
in time introduced in the beginning of this section. To this end we need
estimates for the operators $K$ and $G$ acting between these spaces. These
are established in the two propositions that follow.
\begin{prop}\label{U}
\begin{description}
\item{(i)} For $1\le q<\infty$ and $s\in {\Bbb R}$,
the operator $K$ maps continuously from $\dot{L}_{s,q}$ into $\bar{C}_{s,q}
\equiv BC([0,\infty), \dot{L}_{s,q})$.
\item{(ii)} If $ q_1,q_2,s_1,s_2$ and $\alpha_2$ satisfy $
q_1\le q_2, \quad s_1\le s_2$, and
$$
\alpha_2=\frac{1}{2\lambda}(s_2-s_1)+\frac{1}{2\lambda}\left(\frac{n}{q_1}
-\frac{n}{q_2}\right)\,,
$$
then $K$ maps continuously from $\dot{L}_{s_1,q_1}$ to $\dot{C}_{\alpha_2,
s_2,q_2}$ (When $\alpha_2=0$, $\dot{C}$ should be replaced by $\bar{C}$).
\end{description}
\end{prop}
\noindent{\bf Proof.} To prove Assertion (i),
it suffices to prove that for some constant $C$,
$$
\|K\phi (t)\|_{L^q} \le C\|\phi\|_{L^q},\quad\mbox{for any $t\in[0,\infty)$}\,,
$$
which can be established using the Young's inequality
$$
\|K\phi(t)\|_{L^q}\le \|K(t)\|_{L^1}\|\phi\|_{L^q}
$$
and the fact that
$$
\widehat{K}(t)(\xi)=e^{-|2\pi \xi|^{2\lambda}t},\quad \|K(t)\|_{L^1}=
\widehat{K}(t)(0)=1\,.
$$
To prove Assertion (ii), we first note that the operator $
(-\Delta)^{s_0/2}K(t)$
has the property
\begin{equation}\label{ppp}
\|(-\Delta)^{s_0/2}K(t)\|_{L^q({\Bbb R}^n)}
\le C t^{\frac{1}{2\lambda}\left(-s_0- n(1-\frac{1}{q}
)\right)}\,,
\end{equation}
where $s_0\ge 0$, $q\in [1,\infty)$ and $C$ is a constant. The proof of this
property is similar to that for the heat operator (\cite{G,GMO,kp1}).
To show (ii),it suffices show that for some constant $C$,
$$
\sup_{t\in[0,T)} t^{\alpha_2}\|(-\Delta)^{\frac{s_0}{2}}K\phi(t)\|_{L^
{q_2}} \le C\|\phi\|_{L^{q_1}}
$$
with $s_0=s_2-s_1\ge 0$.
This can be proved using the property (\ref{ppp}) and
Young's inequality
$$
\|(-\Delta)^{\frac{s_0}{2}}K\phi(t)\|_{L^{q_2}} \le C
\|(-\Delta)^{\frac{s_0}{2}}K(t)\|_{L^q} \|\phi\|_{L^{q_1}}
$$
with $\frac{1}{q}=1-\left(\frac{1}{q_1}-\frac{1}{q_2}\right)$. \qquad$\Box$
\bigskip
Now we give estimates for the operator
$$
G(g)(t)=\int_{0}^{t}\nabla\cdot K(t-\tau)g(\tau)d\tau
$$
\begin{prop}\label{G}
If $q_1,q_2,s_1,s_2, \alpha_1$ and $\alpha_2$ satisfy $q_1\le q_2$,
\begin{eqnarray*}
&s_1-1 \le s_2< s_1 +2\lambda -1 -\left(\frac{n}{q_1}-\frac{n}{q_2}\right)&\\
&\alpha_1<1,\quad\mbox{and}\quad \alpha_2=\alpha_1-1 +\frac{1}{2\lambda}\left[
s_2-s_1 +1+\frac{n}{q_1}-\frac{n}{q_2}\right]\,,&
\end{eqnarray*}
then $G$ is a continuous mapping from $\dot{C}_{\alpha_1,s_1,q_1}$
to $\dot{C}_{\alpha_2,s_2,q_2}$.
\end{prop}
\noindent{\bf Proof.}
Let $g\in \dot{C}_{\alpha_1, s_1, q_1}$. Then clearly,
$$
\|G(g)\|_{\alpha_2,s_2,q_2}=\sup_{t\in [0,T)} t^{\alpha_2}
\int_{0}^{t}\|(-\Delta)^{\frac{(1+s_0)}{2}}
K(t-\tau)\left((-\Delta)^{\frac{s_1}{2}}g(\tau)
\right)\|_{L^{q_2}}d\tau
$$
where $s_0=s_2-s_1$. Using Young's inequality,
$$
\|G(g)\|_{\alpha_2,s_2,q_2}\le \sup_{t\in [0,T)} t^{\alpha_2}
\int_{0}^{t}\|(-\Delta)^{\frac{(1+s_0)}{2}}K(t-\tau)\|_{L^q}
\|\left((-\Delta)^{\frac{s_1}{2}}g(\tau)\right)\|_{L^{q_1}}d\tau
$$
with $\frac{1}{q}=1-\left(\frac{1}{q_1}-\frac{1}{q_2}\right)$.
If $s_0+1\ge 0$, we can use
the property (\ref{ppp}) of operator $K$ and obtain
\begin{eqnarray*}
\|G(g)\|_{\alpha_2,s_2,q_2}&\leq& C \|g\|_{\alpha_1,s_1,
q_1} \sup_{t\in [0,T)} t^{\alpha_2}\int_{0}^{t}(t-\tau)^{-\frac{1}{2\lambda}
\left(s_0+1 +n(1-\frac{1}{q})\right)}\tau^{-\alpha_1}d\tau \\
&\leq& C \|g\|_{\alpha_1,s_1,q_1}
\sup_{t\in [0,T)} t^{\alpha_2-\alpha_1 +1 -\frac{1}{2\lambda}\left(
s_0+1 +n(1-\frac{1}{q})\right)} \times \\
&& B\left(1-\frac{1}{2\lambda}\left[s_0+1+n(1-\frac
{1}{q})\right], 1-\alpha_1\right)\,,
\end{eqnarray*}
where $C$ is a constant and $B(a,b)$ is the Beta function
$$
B(a,b)=\int_{0}^{1}(1-x)^{a-1} x^{b-1}\,dx\,.
$$
By noticing that $B(a,b)$ is finite when $a>0$, $b>0$ and that
$$
s_0=s_2-s_1,\quad 1-\frac{1}{q}=\frac{1}{q_1}-\frac{1}{q_2}
$$
we obtain
$$
\|G(g)\|_{\alpha_2,s_2,q_2}\le C \|g\|_{\alpha_1,s_1,q_1}\,,
$$
if the indices satisfy $
0\le s_2-s_1+1< 2\lambda -\frac{n}{q_1}-\frac{n}{q_2}$,
$\alpha_1<1$, and
$$\alpha_2=\alpha_1-1 +\frac{1}{2\lambda}\left[
s_2-s_1+1+\frac{n}{q_1}-\frac{n}{q_2}\right]\,.
$$
\hfill$\Box$
To prove Theorem \ref{thm:2.1}, we also need the following
singular integral operator estimate whose proof can be found in \cite{St}.
\begin{lemma}\label{uo}
For $u=(u_j)$ with $u_j=\pm{\cal R}_{\pi(j)}\theta$( $j=1,2,\cdots,n)$,
where ${\cal R}_j$ are the Riesz transforms, we have the estimate
$$
\|u\|_{L^q}\le C_q \|\theta\|_{L^q}, \quad 1\frac{n}{q}-(2\lambda-1)$. To show the
second part
\begin{equation}\label{2nd}
G(u\theta)\in \bar{C}_{\frac{n}{q}-(2\lambda-1),q},
\quad p\le q<\infty
\end{equation}
we use
Proposition \ref{G} with
$$
q_1=\frac{p}{2},\quad q_2=q,\quad s_1=0,\quad s_2=\frac{n}{q}-(2\lambda-1),
\quad \alpha_1=-\frac{r}{\lambda},\quad \alpha_2=0
$$
and obtain
$$
\|G(u\theta)\|_{0, \frac{n}{q}-(2\lambda-1),q}\le C\|u\theta\|_
{-\frac{r}{\lambda},0,\frac{p}{2}}\le C\|u\|_{-\frac{r}{2\lambda},0 ,p}
\|\theta\|_{-\frac{r}{2\lambda},0 ,p}\,.
$$
The asserted property (\ref{2nd})
is established after we apply Lemma \ref{uo} to $u$.
Once again, we apply Proposition \ref{G} with
\begin{eqnarray*}
&q_1=\frac{p}{2},\quad q_2=q,\quad s_1=0,\quad s_2=s, & \\
&\alpha_1=-\frac{r}{\lambda},\quad \alpha_2=\frac{1}{2\lambda}\left[
s-\left(\frac{n}{q}-(2\lambda-1)\right)\right] &
\end{eqnarray*}
to show that
\begin{equation}\label{3rd}
G(u\theta)\in \dot{C}_{\left(s-\frac{n}{q}+(2\lambda-1)\right)
/(2\lambda),s,q}
,\quad\mbox{for $s>\frac{n}{q}-(2\lambda-1)$},
\end{equation}
but $s$ should also satisfy
$$
s< 2\lambda -1 -\left(\frac{2n}{p} -\frac{n}{q}\right)
$$
as required by Proposition \ref{G}. For large $s$, (\ref{3rd})
can be shown by
an induction process (see an analogous argument in \cite{k2}).
We now deal with the case $r=0$. Define
$$
X=\bar{C}_{0,p}\cap \dot{C}_{\frac{1}{4}, 0, \frac{4\lambda-2}{3\lambda-2}p}
$$
with the norm
$$
\|\theta\|_X =\|\theta- K\theta_0\|_{0,0,p} + \|\theta\|_{
\frac{1}{4}, 0, \frac{4\lambda-2}{3\lambda-2}p}\,.
$$
For $\theta\in X_R$, we have by Proposition \ref{G},
\begin{eqnarray*}
\|G(u\theta)\|_X &=&\|G(u\theta)\|_{0,0,p} +\|G(u\theta)\|_{
\frac{1}{4}, 0, \frac{4\lambda-2}{3\lambda-2}p} \\
& \le& c\|u\theta\|_{\frac{1}{2}, 0, \frac{2\lambda-1}{3\lambda-2}p}\\
&\le & c\|u\|_{\frac{1}{4}, 0, \frac{4\lambda-2}{3\lambda-2}p}\|\theta\|_
{\frac{1}{4}, 0, \frac{4\lambda-2}{3\lambda-2}p}\,.
\end{eqnarray*}
Here $c$ is a constant which may depend on the indices $\lambda$, $p$, and $n$.
Using Lemma \ref{uo} again, we obtain a constant $C$ such that
$$
\|G(u\theta)\|_X \le C \|\theta\|_{X}^{2} \le C R^2\,.
$$
Once the above estimates have been established, the rest of
the proof in this case is similar to that described in the case $r<0$.
\qquad$\Box$
\paragraph{Acknowledgments}
I would like to thank Professor P. Constantin for teaching me the
quasi-geostrophic equations and Professor C. Kenig for his helpful suggestions.
\begin{thebibliography}{99}
\bibitem{CP} J. Charney, N. Phillips, {\em Numerical integrations of the
quasi-geostrophic equations for barotropic and simple baroclinic
flows}, J. Meteorol., {\bf 10}(1953), 71-99.
\bibitem{CMT} P. Constantin, A. Majda, E. Tabak, {\em
Formation of strong fronts in the 2-D quasi-geostrophic thermal
active scalar}, Nonlinearity, {\bf 7}(1994), 1495-1533
\bibitem{FT} C. Foias, R. Temam, {\em Gevrey class regularity for
the solutions.
of the Navier-Stokes equations}, J. Funct. Anal., {\bf 87}(1989), 359-369.
\bibitem{G} Y. Giga, {\em Solutions for semilinear parabolic equations
in $L^p$ and regularity of weak solutions of the Navier-Stokes system},
J. Diff. Eq., {\bf 62}(1986), 186-212.
\bibitem{GMO} Y. Giga, T. Miyakawa, H. Osada, {\em Two dimensional
Navier-Stokes flow with measures as initial vorticity}, Arch. Rational
Mech. Anal., {\bf 104}(1988), 223-250.
\bibitem{HPGS} I. Held, R. Pierrehumbert, S. Garner, K. Swanson, {\em
Surface quasi-geostrophic dynamics}, J. Fluid Mech., {\bf 282}(1995), 1-20.
\bibitem{k1} T. Kato, {\em Strong $L^p-$ solutions of the Navier-Stokes
equation in ${\Bbb R}^m$ with applications to weak solutions},
Math. Z., {\bf 187}(1984), 471-480.
\bibitem{k2} T. Kato, {\em The Navier-Stokes solutions for an incompressible fluid in ${\Bbb R}^2$ with measure as the initial vorticity},
Diff. Integral Eq., {\bf 7}(1994), 949-966.
\bibitem{kf} T. Kato, H. Fujita, {\em On the nonstationary
Navier-Stokes equations}, Rend. Sem. mat. Univ. Padova, {\bf 32}(1962),
243-260.
\bibitem{kp1} T. Kato, G. Ponce, {\em The Navier-Stokes equations with
weak initial data}, Int. Math. Research Notices, {\bf 10}(1994), 435-444.
\bibitem{kp2} T. Kato, G. Ponce, {\em Well-posedness of the Euler and the
Navier-Stokes equations in the Lebesgue spaces $L^{p}_{s}({\Bbb R}^2)$},
Rev. Mat. Iber. {\bf 2}(1986), 73-88.
\bibitem{P} J. Pedlosky, ``Geophysical Fluid Dynamics", Springer, New York,
1987.
\bibitem{Re} S. Resnick, ``Dynamical Problems in Non-linear Advective
Partial Differential Equations", Ph.D. thesis, University of Chicago, 1995
\bibitem{St} E.M. Stein, ``Singular Integrals
and Differentiability Properties
of Functions", NJ: Princeton University Press, 1970
\bibitem{Wu} J. Wu, {\em Inviscid limits and regularity estimates
for the solutions of the 2-D dissipative quasi-geostrophic equations},
Indiana Univ. Math. J., {\bf 46}(1997), in press.
\end{thebibliography}
{\sc Jiahong Wu} \\
School of Mathematics, Institute for Advanced Study\\
Princeton, NJ 08540. USA\\
E-mail address: jiahong@math.utexas.edu
\end{document}