\input amstex \documentstyle{amsppt} \loadmsbm \magnification=\magstephalf \hcorrection{1cm} \vcorrection{-6mm} \nologo \TagsOnRight \NoBlackBoxes \headline={\ifnum\pageno=1 \hfill\else% {\tenrm\ifodd\pageno\rightheadline \else \leftheadline\fi}\fi} \def\rightheadline{EJDE--1999/33\hfil Uniqueness for a semilinear elliptic equation \hfil\folio} \def\leftheadline{\folio\hfil Kewei Zhang \hfil EJDE--1999/33} \def\pretitle{\vbox{\eightrm\noindent\baselineskip 9pt % Electronic Journal of Differential Equations, Vol. {\eightbf 1998}(1998), No.~33, pp.~1--10.\hfil\break ISSN: 1072-6691. URL: http://ejde.math.swt.edu or http://ejde.math.unt.edu \hfill\break ftp ejde.math.swt.edu (login: ftp)\bigskip} } \topmatter \title UNIQUENESS FOR A SEMILINEAR ELLIPTIC EQUATION\\ IN NON-CONTRACTIBLE DOMAINS\\ UNDER SUPERCRITICAL GROWTH CONDITIONS \endtitle \thanks {\it 1991 Mathematics Subject Classifications:} 35J65, 35B05, 58E05.\hfil\break\indent {\it Key words and phrases:} semilinear elliptic equation, supercritical growth, uniqueness, \hfil\break\indent non-contractible domains, Pohozaev identity. \hfil\break\indent \copyright 1999 Southwest Texas State University and University of North Texas.\hfil\break\indent Submitted May 12, 1999. Published September 15, 1999. \endthanks \author Kewei Zhang \endauthor \address Kewei Zhang \hfill\break Department of Mathematics, Macquarie University \hfill\break Sydney, Australia \endaddress \email kewei\@ics.mq.edu.au \endemail \abstract We apply the Pohozaev identity to sub-domains of a tubular neighbourhood of a closed or broken curve in $\Bbb R^n$ and establish uniqueness results for the smooth solutions of the Dirichlet problem for $-\Delta u+|u|^{p-1}u=0$. We require the domain to be in $\Bbb R^n$ with $n\geq 4$ and with $p> (n+1)/(n-3)$. \endabstract \endtopmatter \document \head 1. Introduction \endhead In this note, we consider the uniqueness of smooth solutions for the Dirichlet problem $$ \gathered -\Delta u=|u|^{p-1}u\quad \text{ in $\Omega\subset R^n$},\\ u=0\quad\text{ on $\partial\Omega.$} \endgathered\tag 1$$ in some non-starshaped and non-contractible domains. Since Pohozaev's work \cite{P}, there have been many uniqueness results for (1) and its generalizations (see, for example \cite{PS, V, M}). These results are based on Pohozaev's identity \cite{P} and are established on star-shaped domains. Under the critical growth condition $p=(n+2)/(n-2)$, it is known \cite{BC} that (1) has nontrivial solutions when the topology of the domain is nontrivial. For some simply connected domains, there are examples \cite{Da, Di} that (1) can have nontrivial solutions when $p=(n+2)/(n-2)$ is the critical Sobolev exponent. Recently, possible generalizations have been considered for `nearly star-shaped' domains \cite{DZ} and for carefully designed non-starshaped rotation domains \cite{CZ} on which (1) does not have nontrivial smooth solutions. In \cite{CZ} a special class of non-star shaped domains was constructed by rotating a two-dimensional graph designed by using inversions in Euclidean spaces. The first result of the present note is to generalize this result to domains including all rotation domains. Since there is much less restriction on the graph, we have a weaker result, that is, when $n>3$ and $p\geq (n+1)/(n-3)$, the only smooth solution is $u\equiv 0$. We also show that when $p> (n+1)/(n-3)$ the same result holds for sufficiently small tubular neighbourhood of a given closed, smooth embedded curve in $\Bbb R^n$. A simple example of such a non-contractible domain is the solid torus in $\Bbb R^4$. In general, our non-contractible domains have the same homotopic type as the unit circle $S^1$. When $p>(n+2)/(n-2)$, there are examples of non-starshaped domains \cite{CZ, DZ} on which (1) has only trivial solutions. However, for domains with nontrivial topology, examples I can find such that the same uniqueness result holds are in $\Bbb R^n$ with $n>3$ and with the growth condition $p>(n+1)/(n-3)$. The method we use is to apply the Pohozaev identity \cite{P, PS} to certain sub-domains. We carefully divide a tubular neighbourhood of a closed curve into sub-domains by using the normal planes of the central curve, such that each sub-domain is star-shaped. We apply the Pohozaev identity on each of these sub-domains. Then we collect the resulting terms and pass to the limit by using the definition of Riemann integral. In the limit, we obtain quantities which are comparable. By adjusting the thickness of the tubular domain, we can show that, at least for $n>3$ and $p > (n+1)/(n-3)$, the uniqueness result remains true. In this note all domains are open, bounded, and connected. Recall that a domain $\Omega$ is star-shaped if there is a point $x_0\in \Omega$ such that any line segment $\overline{x_0x}$ is contained in $\Omega$ when $x\in \Omega$. For convenience, we call $x_0$ a central point. We need the following Pohozaev identity \cite{P, PS}. For the Dirichlet problem (1), the equation is the Euler-Lagrange equation for the energy density $$F(u,Du)=\frac{1}{2}|Du|^2-\frac{|u|^{p+1}}{p+1}.\tag 2$$ Let $\Omega\subset \Bbb R^n$ be a piecewise smooth domain. Let $u\in C^2(\Omega)\cap C^1(\bar\Omega)$ be a smooth solution of the Euler-Lagrange equation of the variational integral $$I(u)=\int_\Omega F(u(x),Du(x))dx,\tag 3$$ Then the identity $$\aligned \int_{\partial\Omega}\bigg[&\left(\frac{1}{2}|Du|^2 -\frac{|u|^{p+1}}{p+1}\right)\sum^n_{\alpha=1}(x-x^0)_\alpha\nu_\alpha \\ &-\bigg(\sum^n_{\alpha,\,\beta=1}h_\beta\nu_\alpha\frac{\partial u} {\partial x_\beta}\frac{\partial u}{\partial x_\alpha}\bigg) -au\sum^n_{\alpha=1}\nu_\alpha \frac{\partial u}{\partial x_\alpha} \bigg] dS\\ &\qquad =\int_\Omega\left[\left(\frac{n-2}{2}-a\right)|Du|^2+\left( a-\frac{n}{p+1}\right)|u|^{p+1}\right] dx \endaligned \tag 4$$ holds, where $a$ is any fixed constant and $h(x)=x-x^0$ with $x^0\in \Bbb R^n$ is a fixed vector. We use $\langle \cdot,\cdot\rangle$ to denote the inner product in $\Bbb R^n$. Then we can write (4) as $$\aligned &\int_{\partial\Omega}\left[ F(u,Du)\langle h,\nu\rangle -\langle Du,h\rangle\langle Du,\nu\rangle -au\langle Du,\nu\rangle\right]dS\\ &=\int_{\Omega}\left[\left(\frac{n-2}{2}-a\right)|Du|^2+ \left( a-\frac{n}{p+1}\right)|u|^{p+1}\right] dx. \endaligned \tag 4'$$ If we further assume that $\Omega$ is star-shaped with $x^0\in\bar\Omega$ a central point, and $u=0$ on a portion $\Gamma$ of $\partial\Omega$, then on $\Gamma$ we have $\frac{\partial u}{\partial x_\alpha}=\frac{\partial u}{\partial\nu}\nu_\alpha$, so that $$ \int_{\Gamma}\left[ F(u,Du)\langle h,\nu\rangle -\langle Du,h\rangle\langle Du,\nu\rangle -au\langle Du,\nu\rangle\right]dS =-\frac{1}{2}\int_{\Gamma}\left|\frac{\partial u}{\partial \nu}\right|^2\langle h,\nu\rangle dS \leq 0, \tag 5$$ because $\Omega$ is star-shaped and $x^0\in\bar\Omega$ is a central point. \bigskip The following are the main results of this paper. Theorem 1 deals with general rotation-like domains while Theorem 2 treats tubular neighbourhoods of a closed or broken curve. \bigskip \proclaim{Theorem 1} Suppose $\Omega\subset \Bbb R^n$ is a smooth domain with $n\geq 4$, and suppose the orthogonal projection of the closure of the domain onto the first component is an interval $[a,b]$. We assume that there is a $\delta>0$, such that for all $a\leq t_10$ is a smooth function defined in $[a,b]$. Then the rotation in $\Bbb R^{n-1}$ around the $x_1$-axis of the two-dimensional region bounded by $f$ and the $x_1$-axis satisfies the hypotheses of Theorem 1. In particular, the domains we treat are much more general than those in \cite{CZ}. \endremark \bigskip Theorem 2 below deals with the uniqueness problem in general tubular neighbourhoods of embedded curves under a technical condition. We assume that there is a smooth orthogonal moving frame along the curve \cite{S, Ch 1}. Suppose that $\gamma:[0,l]\to \Bbb R^n$ is a smooth curve parameterized by its arc-length $s\in [0,l]$. Suppose that there is a smooth orthogonal basis $e_2(s),\dots, e_n(s)$ on the normal hyperplane of $\gamma(s)$. Let $\dot\gamma (s)=e_1(s)$. Then $$\aligned &\dot e_1(s)=-k_1(s)e_2,\\ &\dot e_j(s)=k_{j-1}(s)e_{j-1}-k_j(s)e_{j+1},\quad 2\leq j\leq n-1,\\ &\dot e_n(s)=k_{n-1}e_{n-1}. \endaligned $$ We call $k_1(s)\geq 0$ \cite{S} the first curvature of $\gamma$ and $E(s):=\{ e_1(s),\, e_2(s),\dots, e_n(s)\}$, $0\leq s\leq l$ a moving orthogonal frame along $\gamma$. Notice that if $\gamma\subset \Bbb R^2$ is a planar curve, such a moving frame always exists. Let $\gamma(s)=(x_1(s),x_2(s))$, $\alpha(s)=\dot\gamma(s)$, $\beta(s)=(-\dot x_2(s), \dot x_1(s))$, and let $e_3,\dots e_n$ be the standard Euclidean basis for $\Bbb R^{n-2}$. Then $\alpha(s),\beta(s),e_3,\dots,e_n$ form an orthogonal moving frame along $\gamma$. Let $\gamma:[0,l]\to \Bbb R^n$ be a simple, smooth and closed curve with bounded curvatures. Then it is easy to see that the $r$-neighbourhood $$\Omega_r=\{ x\in \Bbb R^n,\; \operatorname{dist}(x,\gamma)0$ small, with $(n-1)$-dimensional open balls of radius $r$ as its fibres. If $\gamma$ is a broken curve, $\Omega_r$ is the union of a tubular neighbourhood $\cup_{0(n+1)/(n-3)$. Let $\Omega_r$ be the $r$-neighbourhood of $\gamma$. Then for sufficiently small $r>0$, the only smooth solution of (1) on $\Omega_r$ is $u\equiv 0$. \endproclaim \bigskip \proclaim{Corollary 1} Let $\gamma$ be an embedded smooth ($C^2$)-planar curve (closed or broken) in $\Bbb R^2$. Let $\Omega_r$ be its $r$-neighbourhood in $\Bbb R^2\times \Bbb R^{n-2}$ with $n\geq 4$ and $p>(n+1)/(n-3)$. Then for sufficiently small $r>0$ the only smooth solution of (1) on $\Omega_r$ is $u\equiv 0$. \endproclaim \bigskip \demo{Proof of Theorem 1} We divide $[a,b]$ evenly as $a=t_0\frac{n-1}{p+1},\qquad \text{hence}\qquad p>\frac{n+1}{n-3}$$ we may find a constant $a$ such that $$\frac{n-3}{2}>a>\frac{n-1}{p+1}$$ and conclude from (14) that $u\equiv 0.$ If $$\frac{n-3}{2}=\frac{n-1}{p+1},\qquad \text{which implies}\qquad p=\frac{n+1}{n-3},$$ we can only choose $a=(n-3)/2$ and (14) is reduced to $$ \int_{\Omega}\left|\frac{\partial u}{\partial x_1}\right|^2 dx=0,$$ which gives that $\frac{\partial u}{\partial x_1}=0$ in $\Omega$. The zero boundary condition implies that $u\equiv 0$. \hfill ${\boxed\,}$ \enddemo \bigskip \demo{Proof of Theorem 2} Let $\gamma :[0,l]\to \Bbb R^n$ be a $C^2$ closed embedded curve parameterized by its arc-length, so that $\gamma(0)=\gamma(l)$. Define $k_0=\max_{0\leq s\leq l} k_1(s)$. Let $\bar\Omega_r$ be the closed $r$-neighbourhood in $\Bbb R^n=\Bbb R^2\times \Bbb R^{n-2}$ with $n\geq 4$, where $00$ small enough so that the periodic mapping (in $s$ with period $l$) $$F:(s, x_2, x_3, x_4,\dots, x_n)\to \gamma(s)+x_2e_2(s)+ x_3e_3(s)+\cdots +x_ne_n(s)$$ is one-to-one from $[0,l]\times \bar B_r(0)$ to $\bar\Omega_r$ except at $0$ and $l$ where $ F(0,\cdot)=F(l,\cdot)$, with $$\bar B_r(0)=\{ (x_2,x_3,\dots,x_n)\in \Bbb R^{n-1}, \, x_2^2+x_3^2+\cdots x_n^2\leq r^2\}$$ the closed ball in $\Bbb R^{n-1}$. The Jacobian of this mapping is $ \pm(1+x_2k_1(s))$, where $k_1(s)$ is the first curvature of $\gamma$. Now we divide $[0,l]$ evenly as $$0=s_00$, $\langle h^i,\nu\rangle\geq 0$ on $S_i$. A general point $x\in S_i$ can be written as $$x=\gamma(s)+x_2e_2(s)+x_3e_3(s)+\cdots +x_ne_n(s)$$ with $x_2^2+x_3^2+\cdots +x_n^2=r^2$, for some $s\in [s_i,s_{i+1}]$, and the outward normal vector at $x$ is $$\nu=[x_2e_2(s)+x_3e_3(s)+\cdots +x_ne_n(s)]/r.$$ We have $$\aligned &r\langle h^i,\nu\rangle =r\langle x-\gamma(s^\prime_i),\nu\rangle\\ &=\langle \gamma(s)+x_2e_2(s)+x_3e_3(s)+\cdots x_ne_n(s) -\gamma(s^\prime_i), x_2e_2(s)+x_3e_3(s)+\cdots x_ne_n(s)\rangle\\ &=\langle \gamma(s)-\gamma(s^\prime_i), x_2e_2(s)+x_3e_3(s)+\cdots +x_ne_n(s)\rangle +r^2\\ &\geq r^2-|\gamma(s)-\gamma(s^\prime_i)|r\geq r^2-r|s-s^\prime_i|>0, \endaligned $$ when $|s-s^\prime_i|\leq l/N$ is sufficiently small. Now we sum up $I_i$'s as in the proof of Theorem 1 to obtain $$\aligned &\sum^{N-1}_{i=0}I_i \leq \\ &\sum^{N-1}_{i=0} \int_{\Gamma_{i+1}}\left[F(u,Du)\langle\gamma(s^\prime_{i+1})-\gamma(s^\prime_{i}),\nu\rangle -\langle Du,\gamma(s^\prime_{i+1})-\gamma(s^\prime_{i})\rangle\langle Du,\nu\rangle\right] dS\\ &=\sum^{N-1}_{i=0}\left[\int_{\Gamma_{i+1}}\left(\frac{1}{2}|Du|^2 -\frac{|u|^{p+1}}{p+1}\right)\langle \gamma(s^\prime_{i+1})-\gamma(s^\prime_{i}) ,\, \nu\rangle dS\right.\\ &\left. -\int_{\Gamma_{i+1}} \langle Du,\, \gamma(s^\prime_{i+1})-\gamma(s^\prime_{i})\rangle\langle Du,\nu\rangle dS\right] \\ &=A_N. \endaligned \tag 17$$ Notice that $\Gamma_N=\Gamma_0$, $\nu =\dot\gamma(s_{i+1})$, $$\aligned &\langle \gamma(s^\prime_{i+1})-\gamma(s^\prime_{i}),\nu\rangle\\ &=\langle\dot \gamma(s_{i+1})(s^\prime_{i+1}-s^\prime_{i}),\dot \gamma(s_{i+1})\rangle\\ &+\langle \frac{1}{2}\ddot \gamma(\xi_{i+1})(s^\prime_{i+1}-s_{i+1})^2 -\frac{1}{2}\ddot \gamma(\eta_{i+1})(s_{i+1}-s^\prime_{i})^2,\dot \gamma(s_{i+1})\rangle, \endaligned $$ where $\xi_{i+1}$ and $\eta_{i+1}$ are two points in $(s_{i+1}, s^\prime_{i+1})$ and $(s^\prime_{i}, s_{i+1})$ respectively. Now we have $$\aligned &\langle\dot \gamma(s_{i+1})(s^\prime_{i+1}-s^\prime_{i}),\dot \gamma(s_{i+1})\rangle\\ &= s^\prime_{i+1}-s^\prime_{i}. \endaligned \tag 18$$ Since $\gamma$ is of class $C^2$, there is a constant $C_0>0$ such that $|\ddot\gamma(s)|\leq C_0$ for all $s\in [0.l]$. Therefore we also have $$\aligned &\left|\langle \frac{1}{2}\ddot \gamma(\xi_{i+1})(s^\prime_{i+1}-s_{i+1})^2 -\frac{1}{2}\ddot \gamma(\eta_{i+1})(s_{i+1}-s^\prime_{i})^2,\,\dot \gamma(s_{i+1}) \rangle\right|\\ &\leq \frac{1}{2}C_0\left[ (s^\prime_{i+1}-s_{i+1})^2+(s_{i+1}-s^\prime_{i})^2\right]\\ &\leq C_0(s^\prime_{i+1}-s^\prime_{i})^2. \endaligned \tag 19$$ Similarly, we have $$\aligned &\langle \gamma(s^\prime_{i+1})-\gamma(s^\prime_{i}),Du\rangle\\ &=\langle \dot \gamma (s_{i+1}),Du\rangle (s^\prime_{i+1}-s^\prime_{i})\\ &+\langle \frac{1}{2}\ddot \gamma(\xi^\prime_{i+1})(s^\prime_{i+1}-s_{i+1})^2 -\frac{1}{2}\ddot \gamma(\eta^\prime_{i+1})(s_{i+1}-s^\prime_{i})^2,Du\rangle, \endaligned \tag 20$$ with $$\aligned &\left| \langle \frac{1}{2}\ddot \gamma(\xi^\prime_{i+1})(s^\prime_{i+1}-s_{i+1})^2 -\frac{1}{2}\ddot \gamma_r(\eta^\prime_{i+1})(s_{i+1}-s^\prime_{i})^2,Du\rangle\right| \\ &\leq C_0|Du|(s^\prime_{i+1}-s^\prime_{i})^2. \endaligned \tag 21 $$ Now we can estimate the sum $A_N$ in (17): $$\aligned &A_N\leq\sum^{N-1}_{i=0}\int_{\Gamma_{i+1}}\left[F(u,Du)- \langle Du,\dot\gamma(s_{i+1})\rangle^2\right] dS (s^\prime_{i+1}-s^\prime_{i})\\ &+C_0\sum^{N-1}_{i=0}\frac{l}{N}\left[\int_{\Gamma_{i+1}}\left| \frac{1}{2}|Du|^2 -\frac{|u|^{p+1}}{p+1}\right|+|Du|^2dS\right](s^\prime_{i+1}-s^\prime_{i})\\ &=B_1(N)+B_2(N), \endaligned $$ where $$\aligned &B_1(N)=\sum^{N-1}_{i=0}\int_{\Gamma_{i+1}}\left[F(u,Du)- \langle Du,\dot\gamma(s_{i+1})\rangle^2\right] dS (s^\prime_{i+1}-s^\prime_{i})\\ &\to \int_0^l\int_{\Gamma_s}\left[\left(\frac{1}{2}|Du|^2 -\frac{|u|^{p+1}}{p+1}\right)- \langle Du,\dot\gamma(s)\rangle^2\right]dS ds,\endaligned $$ as $N\to\infty$, where $$\Gamma_s=\{ \gamma(s)+x_2e_2(s)+x_3e_3(s)+\cdots +x_ne_n(s),\; x_2^2+x_3^2+\cdots+x_n^2\leq r^2\} .\tag22$$ We also have $$ B_2=C_0\sum^{N-1}_{i=0}\frac{l}{N}\int_{\Gamma_{i+1}}\left[\left| \frac{1}{2}|Du|^2 -\frac{|u|^{p+1}}{p+1}\right|+|Du|^2\right]dS(s^\prime_{i+1}-s^\prime_{i}) \to 0$$ as $N\to 0$ because $$\sum^{N-1}_{i=0}\int_{\Gamma_{i+1}}\left[\left| \frac{1}{2}|Du|^2 -\frac{|u|^{p+1}}{p+1}\right|+|Du|^2\right]dS(s^\prime_{i+1}-s^\prime_{i})$$ converges to an integral. Now we sum up the right hand side of (15): $$\aligned &\sum^{N-1}_{i=0}J_i= \sum^{N-1}_{i=0}\int_{\Omega_i}\left[\left(\frac{n-2}{2}-a\right)|Du|^2+\left( a-\frac{n}{p+1}\right)|u|^{p+1}\right] dx \\ &=\int_{\Omega_r} \left[\left(\frac{n-2}{2}-a\right)|Du|^2+\left( a-\frac{n}{p+1}\right)|u|^{p+1}\right] dx. \endaligned $$ We now change variables $$x=\gamma(s)+x_2e_2(s)+x_3e_3(s)+\cdots + x_ne_n(s),$$ to obtain $$\aligned &\int_{\Omega_r} \left[\left(\frac{n-2}{2}-a\right)|Du|^2+\left( a-\frac{n}{p+1}\right)|u|^{p+1}\right] dx\\ &=\int^l_0\int_{\Gamma_s} \left[\left(\frac{n-2}{2}-a\right)|Du|^2+\left( a-\frac{n}{p+1}\right)|u|^{p+1}\right] (1+x_2k_1(s))dS \, ds, \endaligned $$ when $rk_0<1$. Finally we obtain $$\aligned &\int^l_0\int_{\Gamma_s} \left[\left(\frac{n-2}{2}-a\right)|Du|^2+\left( a-\frac{n}{p+1}\right)|u|^{p+1}\right] (1+x_2k_1(s))dS \, ds\\ &\leq \int_0^l\int_{\Gamma_s}\left[\left(\frac{1}{2}|Du|^2 -\frac{|u|^{p+1}}{p+1}\right)- \langle Du,\dot\gamma(s)\rangle^2\right]dS ds. \endaligned \tag 23$$ Now, we deduce from (23) that $$\aligned &\int^l_0\int_{\Gamma_s} \left[\left(\frac{n-2}{2}-a\right)\phi -\frac{1}{2}\right]|Du|^2+ \left[\left( a-\frac{n}{p+1}\right)\phi +\frac{1}{p+1}\right]|u|^{p+1}dS \, ds\\ &-\int^l_0\int_{\Gamma_s}\langle Du,\dot\gamma(s)\rangle^2dS ds\leq 0, \endaligned \tag 24 $$ where $\phi:=1+x_2k_1(s).$ Now, $|\phi-1|\leq rk_0\to 0$ as $r\to 0.$ Therefore $$\left(\frac{n-2}{2}-a\right)\phi-\frac{1}{2}\to \frac{n-3}{2}-a, \quad\text{and}\quad \left( a-\frac{n}{p+1}\right)\phi +\frac{1}{p+1}\to a-\frac{n-1}{p+1}$$ uniformly on $[0,\, l]\times \bar B_r(0)$ as $r\to 0$. Because $p>(n+1)/(n-3)$, it is possible to find some $a\in\Bbb R$ and $c>0$ such that $$\left(\frac{n-2}{2}-a\right)\phi-\frac{1}{2}\geq c,\qquad \left( a-\frac{n}{p+1}\right)\phi +\frac{1}{p+1}\geq c$$ on $[0,\, l]\times \bar B_r(0)$ as $r>0$ sufficiently small. Thus (24) implies that $u=0$ on $\Omega_r.$ \medskip If $\gamma$ is not a closed curve, the proof is similar. We need to extend the curve at the two end points $\gamma(0)$ and $\gamma(l)$ along the tangent directions as straight line segments so that the extended curve reaches the boundary of $\Omega_r$ at two points. Then the proof proceeds as in the case of closed curves. \hfill ${\boxed \,}$ \enddemo \bigskip {\bf Acknowledgement} I would like to thank Professor K. J. Brown and the referee for their helpful suggestions. \Refs \widestnumber\key{DZ} \ref\key{BC} \by A. Bahri and J. M. Coron\paper On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of the topology of the domain \jour Comm. Pure Appl. Math. \vol 41\yr 1988\pages 253-294\endref \ref\key{CZ} \by K.S.Chou and X.P.Zhu\paper Some constancy results for nematic liquid crystals and harmonic maps\jour Anal. Nonlin. H. Poncar\'e Inst.\ 12 \yr 1995 \pages 99-115\endref \ref\key{Da} \by E. N. Dancer \paper A note on an equation with critical growth\jour Bull. London Math. Soc.\vol 20\yr 1988\pages 600-602\endref \ref\key{Di} \by W. Y. Ding \paper Positive solutions of $\Delta u+u^{(n+2)/(n-2)}=0$ \jour J. Partial Diff. Equations\vol 2\yr 1989\pages 83-88\endref \ref\key {DZ} \by E. N. Dancer and K. Zhang\paper Uniqueness of solutions for some elliptic equations and systems in nearly star-shaped domains \paperinfo To appear in \jour Nonlin. Anal. TMA\endref \ref \key {M} \by E. Mitidieri\paper A Rellich-type identity and applications \jour Comm. PDE \vol 18\yr 1993\pages 125-151\endref \ref\key {P} \by S. I. Pohozaev \paper Eigenfunctions of the equation $\Delta u+\lambda f(u)=0$ \jour Soviet Math. Dokl.\vol 6\yr 1965\pages 1408-1411\endref \ref\key {PS} \by P. Pucci and J. Serrin \paper A general variational identity\jour Indiana Univ. Math. J. \vol 35\yr 1986\pages 681-703\endref \ref\key {S} \by M. Spivak\book Differential Geometry \vol I-II \publ Publish or Perish\yr 1979\endref \ref\key {V} \by R. C. A. M. van der Vorst \paper Variational identities and applications to differential systems \jour Arch. Rational Mech. Anal.\vol 116 \yr 1992 \pages 375-398\endref \endRefs \enddocument --Nest_of_Rabbits_932_000--