\input amstex \documentstyle{amsppt} \loadmsbm \magnification=\magstephalf \hcorrection{1cm} \vcorrection{-6mm} \nologo \TagsOnRight \NoBlackBoxes \headline={\ifnum\pageno=1 \hfill\else% {\tenrm\ifodd\pageno\rightheadline \else \leftheadline\fi}\fi} \def\rightheadline{EJDE--1999/37\hfil Dini-Campanato spaces \hfil\folio} \def\leftheadline{\folio\hfil Jay Kovats \hfil EJDE--1999/37} \def\pretitle{\vbox{\eightrm\noindent\baselineskip 9pt % Electronic Journal of Differential Equations, Vol. {\eightbf 1999}(1999), No.~37, pp.~1--20.\hfil\break ISSN: 1072-6691. URL: http://ejde.math.swt.edu or http://ejde.math.unt.edu \hfill\break ftp ejde.math.swt.edu (login: ftp)\bigskip} } \topmatter \title Dini-Campanato spaces and applications to nonlinear elliptic equations \endtitle \thanks {\it 1991 Mathematics Subject Classifications:} 35B65, 41A10. \hfil\break\indent {\it Key words and phrases:} Fully nonlinear elliptic equations, polynomial approximation, \hfil\break\indent Dini condition. \hfil\break\indent \copyright 1999 Southwest Texas State University and University of North Texas.\hfil\break\indent Submitted January 6, 1999. Revised July 19, 1999. Published September 25, 1999. \endthanks \author Jay Kovats \endauthor \address Jay Kovats \hfil\break Department of Mathematical Sciences \hfil\break Florida Institute of Technology \hfil\break Melbourne, FL 32901, USA \endaddress \email jkovats\@zach.fit.edu \endemail \abstract We generalize a result due to Campanato [C] and use this to obtain regularity results for classical solutions of fully nonlinear elliptic equations. We demonstrate this technique in two settings. First, in the simplest setting of Poisson's equation $\Delta u=f$ in $B$, where $f$ is Dini continuous in $B$, we obtain known estimates on the modulus of continuity of second derivatives $D^2u$ in a way that does not depend on either differentiating the equation or appealing to integral representations of solutions. Second, we use this result in the concave, fully nonlinear setting $F(D^2u,x)=f(x)$ to obtain estimates on the modulus of continuity of $D^2u$ when the $L^n$ averages of $f$ satisfy the Dini condition. \endabstract \endtopmatter \document \head 0. Introduction \endhead Let $1\le q\le \infty$ and let $\Omega$ be a domain in $\Bbb R^n$. For any Dini modulus of continuity $\omega(t)$ and $u \in L^q(\Omega)$, we define the seminorm $$[u]'_{k,\omega}=[u]'_{q,k,\omega;\Omega}=\sup\Sb x_0 \in \overline{\Omega} \\ 00$. The special case $k=0,\, q=1$ was proved by Spanne [Sp]. In [C1],[CC], L. Caffarelli uses polynomial approximation to obtain {\it pointwise} H\"older estimates for derivatives of viscosity solutions to fully nonlinear elliptic equations. In the special case $\omega (t) \sim t^\alpha,\, C^{1,\alpha}$ estimates involve approximation by affine functions ($q=\infty, k=1$), while $C^{2,\alpha}$ estimates involve approximation by paraboloids ($q=\infty,k=2$). Using a generalization of the argument in Chapter 8 of [CC], we use the Dini Campanato inclusion to obtain regularity results for solutions of fully nonlinear elliptic equations. We illustrate this technique in two settings. In Chapter 2, in the simplest setting of Poisson's equation $\Delta u=f$ in $B$, where $f$ is Dini continuous in $B$, we obtain known estimates on the modulus of continuity of second derivatives $D^2u$ in a way that does not depend on either differentiating the equation or appealing to integral representations of solutions. In Chapter 3, we use this technique in the concave, fully nonlinear setting $F(D^2u,x)=f(x)$ to obtain estimates on the modulus of continuity of $D^2u$, when $f$ and the oscillations of $F$ in $x$ are Dini continuous. Here, Dini continuity is measured in the weaker setting of $L^n$ averages instead of the usual $L^\infty$ norm. This condition was proposed by Wang (see his closing remark of Section 1.1) in [W]. Finally, we remark that even in the simplest setting of Poisson's equation, second derivatives of $C^2$ solutions will not, in general, be Dini continuous even when $f$ is. For example, direct calculation shows that the function $$u(x)=u(x_1,x_2)=x_1x_2\left(\ln\frac1{|x|}\right)^{-1},\quad x \in B =B_{1/2}(0)$$ satisfies $$\Delta u(x)=\frac{x_1x_2\left( \ln\frac1{|x|} \right)^{-2}}{|x|^2} \left( \frac{2}{\ln\frac1{|x|}} +4\right):=f(x)$$ in $B$, where $f(x)=O\bigg(\big(\ln\frac1{|x|}\big)^{-2}\bigg)$ is Dini continuous in $B$ with Dini modulus of continuity $\omega(t)\sim \left(\ln\frac1{t}\right)^{-2}$. However direct calculation shows that $$D_{12} u(x)=\frac{\partial^2u(x)}{\partial x_1 \partial x_2} =O\bigg(\big( \ln\frac1{|x|}\big)^{-1}\bigg)$$ has modulus of continuity $\sim \left(\ln\frac1{t}\right)^{-1}$, which fails the Dini condition, since for any $\varepsilon >0$ $$\int_0^\varepsilon \frac{\left(\ln\frac1{r}\right)^{-1}}r\,dr= \int_{\ln\frac1{\varepsilon}}^{\infty} u^{-1}\,du= +\infty\,.$$ It is well known, (see [GT] Chapter 4) that if $u \in C^2(B_r)$ satisfies $\Delta u = f$ in $B_r$, where $f \in C^\alpha(B_r)$, then $D^2u \in C^\alpha(B_{r/2})$. This ``reproducing'' regularity occurs not only for $\omega(t)=t^\alpha$ but more generally, for $\omega(t)=t^\alpha\left(\ln\frac1{t}\right)^{\beta},\alpha \in (0,1)$. This can be seen by noting that both integrals in (13) are $\sim t^\alpha\left(\ln\frac1{t}\right)^{\beta}$, when $\omega(t)=t^\alpha\left(\ln\frac1{t}\right)^{\beta}$. See also [B],[K]. We recall that any modulus of continuity $\omega(t)$ is non-decreasing, subadditive, continuous and satisfies $\omega(0)=0.$ Hence any modulus of continuity $\omega(t)$ satisfies $$ \frac{\omega(r)}r\leq 2\frac{\omega(h)}h, \qquad 00$, we have $\omega(mh)\le\ m \omega(h)$. Thus for $00,\omega_1(t) =\int_0^t\frac{\omega(r)}r \,dr \ge \frac{\omega(t)}{2t}\int_0^t\,dr =\frac{\omega(t)}{2}$. \head 1. The Dini-Campanato Inclusion ${\Cal M}_q^{k,\omega} \subset C^{k,\omega_1}$ \endhead We restrict ourselves to domains $\Omega \subset \Bbb R^n$ which satisfy the following property (this includes Lipschitz domains). \proclaim{Definition 1.0} We say that $\Omega$ satisfies property (I) if there exists a constant $A>0$ such that $\forall x_0 \in \Omega,\forall r\in [0,d(\Omega)]$, the Lebesque measure of $\Omega_r(x_0),\,|\Omega_r(x_0)|$ satisfies $$|\Omega_r(x_0)|\ge A r^n.$$ \endproclaim \proclaim{Main Theorem} Let $1\le q \le \infty$. If $u\in {\Cal M}_q^{k,\omega} (\Omega)$, where $\Omega$ satisfies property (I), then $u \in C^{k,\omega_1}(\Omega)$, where $\omega_1(t)=\int_0^t\frac{\omega(r)}r \,dr$. That is, the $k$th order derivatives of $u$ satisfy $$|D^ku(x)-D^ku(y)|\le C(n,k,q,A) \omega_1(|x-y|)\qquad \forall x,y \in \Omega.$$ \endproclaim We begin the proof of the main theorem for the case $1\le q < \infty$ with a lemma due to De Giorgi. \proclaim{Lemma 1.1 (De Giorgi)} If $P(x) \in {\Cal P}_k$, $q\ge 1$ and $E$ is any measurable subset of $\overline B_r(x_0)$ satisfying $$ |E|\ge A r^n,$$ then $\exists$ constant $c_1(k,q,n,A)$ such that $\forall$ n-tuple $p$ of non-negative integers, we have $$\left|\left[D^p P(x)\right]_{x=x_0}\right|^q \leq {c_1 \over {r^{n+|p|q}}} \int_E |P(x)|^q\,dx.$$ \endproclaim If $u \in {\Cal M}_q^{k,\omega}(\Omega)$, one can show that $\forall x_0 \in \Omega,\forall r \in [0,d(\Omega)],\exists P_k(x,x_0,r,u) \in {\Cal P}_k$ such that $$\int\limits_{\Omega_r(x_0)}|u(x)-P_k(x,x_0,r,u)|^q\,dx =\inf_{P \in {\Cal P}_k} \int\limits_{\Omega_r(x_0)}|u(x)-P(x)|^q\,dx.\eqno (1)$$ If $P(x)$ is an arbitrary polynomial in ${\Cal P}_k$, then for convenience we write it in the form $$P(x)=\sum_{|p|\leq k}{{a_p} \over {p!}} (x-x_0)^p$$ and henceforth put $P_k(x,x_0,r)$ for $P_k(x,x_0,r,u)$ and set $$a_p(x_0,r) ={[D^p P_k(x,x_0,r)]}_{x=x_0}.\eqno(2)$$ \proclaim{Lemma 1.2} If $u \in {\Cal M}_q^{k,\omega}(\Omega)$, then $\forall x_0 \in \overline \Omega, \forall \,0i$, then by Lemma 1.4 we have $$\left|a_p\left(x_0,{r \over {2^j}}\right)-a_p\left(x_0,{r \over {2^i}}\right) \right| \leq c_3 [u]' \sum_{h=i}^{j-1} \omega\left({r \over {2^h}}\right)\left({r \over {2^h}} \right)^{k-|p|}.$$ But since $\omega(t)$ is a Dini modulus of continuity, the integral test, applied to the non-negative, non-increasing sequence $\{\omega({r \over {2^h}}) \}_{h=0}^{\infty}$ yields that the series $\sum_{h=0}^{\infty} \omega({r \over {2^h}})$ converges. Indeed, by the integral test $$\sum_{h=0}^{\infty} \omega\left({r \over {2^h}}\right) \le \omega(r) +\int_1^{\infty}\omega\left({r \over {2^{x-1}}}\right)\,dx=\omega(r) + {1 \over {\ln2}}\int_0^r {{\omega(t)} \over t}\,dt\leq \Bigl(2+{1 \over {\ln2}}\Bigr)\omega_1(r).$$ Thus, $\{a_p(x_0,{r \over {2^i}} )\}$ is a Cauchy sequence, and hence convergent. Moreover the limit will be independent of our choice of $r \in [0,d(\Omega)].$ Indeed, if $r_1, r_2$ satisfy $00$. \medskip \noindent {\bf Example.} Let $k=n=1,\,q=\infty$. Consider the function $$u(x)=x \left( \ln\frac1{|x|} \right)^{-1}, \qquad x \in \Omega =B_{1/2}(0).$$ Note that $$u'(x)=\left( \ln\frac1{|x|} \right)^{-1} +\left( \ln\frac1{|x|} \right)^{-2},$$ and hence $u'(x)$ has modulus of continuity $\sim \left( \ln\frac1{t} \right)^{-1}$, while $u \in {\Cal M}_\infty^{1,\omega}(B_{1/2}(0))$ for $\omega(t)= \left( \ln\frac1{t} \right)^{-2}$. But $$\omega_1(t)=\int_0^t\frac{\left( \ln\frac1{r} \right)^{-2}}r\,dr=\left( \ln\frac1{t} \right)^{-1}.$$ That is, $Du=u'$ has modulus of continuity $\sim \omega_1(t)$, hence our inclusion above is sharp. To verify that $u \in {\Cal M}_\infty^{1,\omega}$, i.e. that $[u]'_{\infty,1,\omega}<+\infty$, fix $x \in \Omega= B_{1/2}(0)$ and take $r>0$. For any $y \in B_r(x)$, set $p(y)=T_{1,x}u(y) \in {\Cal P}_1$. Of course, $u''(x)\le 3\left( \ln\frac1{|x|}\right)^{-2} / |x|$, for all $x \in \Omega$. Now if $|x|\ge 2r$, by Taylor's Theorem, for some $z \in (y,x)$, we have $$\eqalign{ |u(y)-p(y)|=&|\frac{u''(z)}2 (y-x)^2| \le \frac{3\left( \ln\frac1{|z|} \right)^{-2}|y-x|^2}{2|z|} \cr \le& \frac{3\left( \ln\frac1{r} \right)^{-2}r^2}{2r} = \frac{3r\left( \ln\frac1{r}\right)^{-2}}2 =\frac32 r \omega(r).\cr }$$ On the other hand, if $|x|<2r$, choose $p(y)=y\left( \ln\frac1{r} \right)^{-1}\in {\Cal P}_1$. Without loss of generality, since $u$ is an odd function, we may consider $x>0$. By the Mean Value Theorem, we have, for some $z \in (y,r)$ $$\eqalign{ \sup_{y \in B_r(x)}|u(y)-p(y)|&\le \sup_{y \in B_{3r}(0)}|u(y)-p(y)| =\sup_{|y|\le 3r} \textstyle{\left|y\left( \ln\frac1{|y|} \right)^{-1}-y\left( \ln\frac1{|r|} \right)^{-1}\right| }\cr &\le \sup_{|y|\le 3r}|y| \tsize\left| \frac{\left( \ln\frac1{|z|} \right)^{-2}}{|z|}(y-r)\right| \cr &\le 3r \left( \ln\frac1{r}\right)^{-2} =3r \omega(r),\cr }$$ hence $[u]'_{\infty,1,\omega}\le 3$, since $x \in B_{1/2},\,r>0$ were arbitrary. Thus $u \in {\Cal M}_\infty^{1,\omega}(B_{1/2})$. Note however that $u \notin C^{1,\omega}(B_{1/2})$, since $$ \eqalign{ \sup_{x \not= y \in B_{1/2}(0)} \frac{|u'(x)-u'(y)|}{\omega(|x-y|)} \ge & \sup_{x \not= 0 \in B_{1/2}(0)} \frac{|u'(x)|}{\omega(|x|)} \cr =& \sup_{x \not=0 \in B_{1/2}(0)}\tsize\frac{\left( \ln\frac1{|x|} \right)^{-1} +\left(\ln\frac1{|x|}\right)^{-2}}{\left( \ln\frac1{|x|}\right)^{-2}} =+\infty\,. \cr }$$ Thus, $[u]'_{\infty,1,\omega}< +\infty$, while $[u]_{1,\omega} = + \infty$ and so in general, even if $\omega(t)$ is a Dini modulus of continuity, the seminorms $[u]'_{q,k,\omega;\Omega}$ and $[u]_{k,\omega;\Omega}$ are not equivalent. Moreover, $u \notin C^{1,\alpha}(B_{1/2}(0))$ for {\it any} $\alpha >0$. Since $u'(0)=0$, we have $$ \eqalign{ \sup_{x \not= y \in B_{1/2}(0)} \frac{|u'(x)-u'(y)|}{|x-y|^\alpha} \ge & \sup_{x \not= 0 \in B_{1/2}(0)} \frac{|u'(x)|}{|x|^\alpha} \cr =& \sup_{x \not=0 \in B_{1/2}(0)} \tsize\frac{\left( \ln\frac1{|x|} \right)^{-1} +\left(\ln\frac1{|x|}\right)^{-2}}{|x|^\alpha} =+\infty\,. \cr }$$ \head 2. Interior regularity for $\Delta u=f$ \endhead In this section, we give an application of the inclusion ${\Cal M}_\infty^{2,\omega}(B)\subset C^{2,\omega_1}(B)$ in the simplest setting. We use this inclusion to obtain estimates on the modulus of continuity of second derivatives of classical solutions of Poisson's equation $\Delta u=f$ in $B$, where $f$ is Dini continuous in $B$, i.e. $f \in C^{0,\omega}(B)$. Using potential theory, various authors (see [ME], [B], [HW]) have shown that if $u \in C^2(\overline B_{2}(x_0))$ satisfies $\Delta u=f$ in $B_{2}(x_0)$, then for all $00$, such that if $|u|_{0;B_1}\le 1$ and $|f|_{0,\omega} \le \delta$, then $u \in {\Cal M}_\infty^{2,\varphi}(B_{1/2}(0)$. The estimate (2.0) will follow by rescaling. For our solution $u$, consider the function $$\tilde u(x)=\frac{u(x)}{|u|_{0;B_{1}} + \delta^{-1}|f|_{\omega;B_{1}} }:=\frac{u(x)}K, \quad\hbox{ if } K\ge 1$$ (Otherwise, consider $\tilde u=u$.) Note that $\tilde u$ satisfies $|\tilde u|_{0;B_1}\le 1$ and $\Delta \tilde u=\frac{f}{K} := \tilde f$ in $B_1$, where $\tilde f$ is Dini continuous in $B_1$ and $|\tilde f|_{\omega;B_1}\le \frac{|f|_{\omega;B_1}}K\le \delta$. That $u \in {\Cal M}_\infty^{2,\varphi} (B_{1/2}(0)$ follows from the following lemma. \proclaim{Lemma 2.1} Take any $x_0\in B_{1/2}(0)$. There exists $0<\mu<1$ depending only on $n,\omega$ and a sequence of paraboloids $$P_k(x)=P_{k, x_0}(x)= a_k + b_k\cdot (x-x_0) + \frac{(x-x_0)^tC_k(x-x_0)}{2}$$ such that $\forall k \in \Bbb N^+$ $$ \eqalign{ tr(C_k)&=0 \cr {\left| u-P_k\right|}_{0;B_{\mu^k}(x_0)} &\le \mu^{2k}\varphi(\mu^k),\cr }$$ where $P_0\equiv 0$ and $\varphi(t)=\dsize t\int_t^c \frac{\omega(r)}{r^2}\,dr ,\quad t\in (0,c/2]$. \endproclaim \demo{Proof} In the upper limit of the integral defining $\varphi$, we usually take $c\le 1$, depending on the domain of definition of $\omega$. (e.g. if $\omega(t)=t^\alpha \left(\ln\frac1t\right)^\beta,\alpha \in (0,1)$, we can take $c=1$.) Note since $\omega$ is nondecreasing, by the definition of $\varphi(t)$, we always have $$\omega(t) \le \left(\frac{c}{c-t}\right)\varphi(t)\le 2\varphi(t).$$ We may assume $x_0=0$ and $f(0)=0$. First choose $\mu$ so small, depending on $\omega$, so that $$N_1 81 \mu c_e\le \frac12, \qquad \mu \leq {7 \over 16},\qquad \omega(\mu)\le \frac12$$ and then choose $\delta = \frac{\mu^3}{4N_2}$, where $c_e,N_1,N_2$ are constants depending only on $n$. Observe that by considering $\varphi(Kt)$ instead of $\varphi(t)$ (and considering smaller values of $t$) we may assume $\varphi(1)\ge 1$ and hence the claim holds for $k=0$, since $P_0\equiv 0, \,tr(0)=0$ and ${| u|}_{0;B_1(0)} \leq 1$. Assume it holds for $k=i$. We now show it holds for $k=i+1$. So for this fixed $i$, consider the function $$v(x)=\frac{(u-P_i)(\mu^ix)}{\mu^{2i}\varphi(\mu^i)} \qquad x\in B_1(0),$$ which, by inductive hypothesis, satisfies $$\Delta v(x)=\frac{\Delta u(\mu^ix)-tr(C_i)}{\varphi(\mu^i)} =\frac{f(\mu^ix)}{\varphi(\mu^i)} :=f_i(x) \quad\hbox{ in } B_1(0), \quad {| v|}_{0;B_1(0)} \le 1.$$ Let $h \in C^{\infty}(\overline B_{7/8}(0))$ be the solution to the Dirichlet problem $$ \gather \Delta h =0 \text{ in } B_{7/8}(0) \\ h=v \text{ on } \partial B_{7/8}(0) \endgather $$ with $$[h]_{4,0;B_{\frac{7}{16}}(0)} \le \left(\tsize{16 \over 7}\right)^{4}c_e |v|_{0;\partial B_{7/8}(0)} \le 81 c_e |v|_{0;B_1 (0)} \le 81c_e,$$ for some constant $c_e=c_e(n)$. By Taylor's formula, for $$T_{2,0}h(x)=h(0) + Dh(0) x + \frac12 x^t D^2h(0) x \quad \in {\Cal P}_2,$$ we have $$|h-T_{2,0}h|_{0;B_\mu(0)}\le N_1(n) [h]_{4,0;B_{\mu}(0)}\mu^{4} \le N_1 [h]_{4,0;B_{\frac{7}{16}}(0)} \mu^{4} \le N_1 81 \mu^{4} c_e\,. $$ Since $f(0)=0$, the classical a priori estimates yield, for some constant $N_2=N_2(n)$ $$\eqalign{ |v -h|_{0; B_{7/8}(0)} \le & |v -h|_{0; \partial B_{7/8}(0)} +N_2\left(\tsize\frac78\right)^2 |\Delta v -\Delta h |_{0;B_{7/8}(0)} \cr \le & N_2 | f_i|_{0;B_{7/8}(0)} \le N_2 [f]_{\omega}\frac{\omega(\mu^i)}{\varphi(\mu^{i})} \le 2 N_2 [f]_{0,\omega} \cr }$$ Thus $$|v-T_{2,0}h|_{0; B_\mu(0)} \le |v-h|_{0; B_\mu(0)} +|h-T_{2,0}h|_{0;B_\mu(0)}\le 2 N_2 [f]_{0,\omega} + N_1 81 \mu^{4} c_e.$$ So for $x \in B_{\mu^{i+1}}(0)$, set $P_{i+1}(x)=P_i(x)+ \mu^{2i}\varphi(\mu^i) T_{2,0}h\left (\frac{x}{\mu^i} \right) \in {\Cal P}_2$. Rescaling back, plugging in the definition of $v$, recalling that $\mu,\delta$ are small and that $\mu \varphi(\mu^i) \le \varphi(\mu^{i+1})$ we get, $\forall x \in \overline B_{\mu^{i+1}}(0)$ $$\eqalign{ |u(x)-P_{i+1}(x)|&=\tsize\left|u(x)-P_i(x)-\mu^{2i}\varphi(\mu^i) T_{2,0}h\left(\frac{x}{\mu^i}\right) \right| \cr &=\tsize\mu^{2i}\varphi(\mu^i)\left| v\left(\frac{x}{\mu^i}\right) -T_{2,0}h\left(\frac{x}{\mu^i} \right )\right| \cr &\le \mu^{2i}\varphi(\mu^i)|v-T_{2,0}h|_{0; B_\mu(0)}\cr &\le \mu^{2i}\varphi(\mu^i)\Bigl\{ 2 N_2 [f]_{\omega} + N_1 81 \mu^{4} c_e \Bigr\} \cr &= \mu^{2(i+1)}\Bigl\{ 2 N_2 [f]_{\omega}\frac{\varphi(\mu^i)}{\mu^2} + N_1 81 \varphi(\mu^i)\mu^{2} c_e\Bigr\} \cr &\le \mu^{2(i+1)}\Bigl\{ 2 N_2 [f]_{\omega}\frac{\varphi(\mu^{i+1})}{\mu^3} + N_1 81 \varphi(\mu^{i+1})\mu c_e\Bigr\} \cr &\le \mu^{2(i+1)} \varphi(\mu^{i+1}) \Bigl\{ \frac{2 N_2 \delta}{\mu^3} + N_1 81 \mu c_e\Bigr\} \cr &\le \mu^{2(i+1)} \varphi(\mu^{i+1}),\cr }$$ and hence $|u-P_{i+1}|_{0;B_{\mu^{i+1}(0)}} \le \mu^{2(i+1)}\varphi(\mu^{i+1})$. Moreover, by definition of $P_{i+1}$, \break $C_{i+1} = C_i +\varphi(\mu^{i})D^2h(0)$ from which it follows $$tr(C_{i+1})=tr(C_i) + \varphi(\mu^{i}) \Delta h(0)=0, $$ which completes the proof of Lemma 2.1. \qed \enddemo By Lemma 2.1, we know that $\forall\,x_0 \in B_{1/2}(0),\exists \,0< \mu <1$ (depending only on $n,\omega$) and a sequence $\{P_{k}\}=\{P_{k,x_0}\} \subset {\Cal P}_2$ such that $${| u-P_k|}_{0;B_{\mu^k}(x_0)} \leq \mu^{2k} \varphi(\mu^k)\quad\forall k\geq 0.$$ So, $\forall \, 0 0$. (See Example 3.1 below.) Property (14) fails for Dini moduli of continuity which are ``nice'' compared to $t^{\overline\alpha}$. Indeed (14) implies that $\lim\limits_{t \to 0+}\frac{t^{\overline\alpha}}{\omega(t)}=0$, which generalizes the $0 <\alpha <\overline \alpha\,$ condition. Hence (14) fails for $\omega(t)= t^{\overline\alpha}$, $\omega(t)= t\left( \ln \frac1t \right)^\beta, \beta \ge 0$ and most notably for $\omega \equiv 0$. But if $\omega \equiv 0$, then $f$ is constant and by the Evans-Krylov theorem, $D^2u \in C^{0,\overline \alpha}$. Furthermore, for sufficiently small $t>0$, $\,t\left( \ln \frac1t \right)^\beta \le t^\alpha, \forall \alpha \in (0,1)$. Hence any $f$ whose $L^n$ averages are $\sim t\left( \ln \frac1t \right)^\beta,\beta \ge 0$ will automatically have $L^n$ averages belonging to $C^{0,\alpha}(B), \forall \alpha \in (0,\overline \alpha)$ and hence by Safonov's result (see [S1]), $D^2u \in C_{loc}^{0,\alpha}(B)$. We cannot conclude however, that if $\omega(t)$ fails (14) then $\omega(t)\le C t^{\overline\alpha}$, since for example, $\omega(t)= t^{\overline\alpha} \ln \frac1t$, has limit 1 in (14). Even in this case, the regularity of second derivatives is covered by known results, since for sufficiently small $t>0$, $t^{\overline\alpha} \ln \frac1t \le t^\alpha \,\forall \alpha \in (0,\overline \alpha)$. Thus, property (14) enables us to generalize well-known regularity results for H\"older continuous $f$ (subject to the restriction $0 <\alpha <\overline \alpha$) and extend these results to a large class of functions whose $L^n$ averages are Dini, yet non-H\"older continuous. \medskip \noindent{\bf Example 3.1.} Consider the uniformly elliptic, concave equation $$F(D^2u,x)=f(x):=\left( \ln \frac1{|x|} \right)^{-2} \hbox { in } B=B_{1/2}(0).$$ Taking $x_0=0$ (since $f(0)=0$), the inequalities $$ \eqalign{ C(n) \left( \ln \frac1{r} \right)^{-2} \le & \big\{ \frac{n}{r^n} \int_0^r \rho^{n-1} \left( \ln \frac1{\rho} \right) ^{-2n} d\rho \big\}^{1/n} =\big\{\int\limits_{B_r(0)}\kern -.6cm \diagup \left( \ln \frac1{|x|} \right)^{-2n} dx \big\}^{1/n} \cr \le& \left( \ln \frac1{r} \right)^{-2} \cr \cr}$$ show that $f$ is not H\"older continuous at $x_0=0$ in the $L^n$ sense for {\it any} $\alpha \in (0,1)$. Here, $\int \kern -.4cm \diagup\,$ denotes average. Yet clearly, $f$ is Dini continuous in $B$ in the $L^n$ sense, since for $x_0 \in B$, by the subadditivity of the function $\left( \ln \frac1{t} \right)^{-2}$ for $t>0$ small, we have $$\eqalign{ \Big\{\int\limits_{B_r(x_0)} \kern -.675cm \diagup \left| \left( \ln \frac1{|x|} \right)^{-2} - \left( \ln \frac1{|x_0|} \right)^{-2} \right|^n dx \Big\}^{1/n} \le& \Big\{\int\limits_{B_r(x_0)} \kern -.675cm \diagup \left( \ln \frac1{|x-x_0|} \right)^{-2n} dx \Big\}^{1/n} \cr \le& \left( \ln \frac1r \right)^{-2} \cr }$$ and $\omega(r)=\left( \ln \frac1r \right)^{-2}$ is a Dini modulus of continuity which satisfies (14). Hence by our Theorem 3.1 below, locally, $D^2u$ has modulus of continuity $\le C\psi(t)$, where for sufficiently small $t>0$ $$\psi(t)=t^{\overline \alpha} +\int_0^t\frac{\left( \ln \frac1{r} \right)^{-2}}r\,dr=t^{\overline \alpha} +\left( \ln \frac1{t} \right)^{-1}\le C_1\left( \ln \frac1{t} \right)^{-1}. $$ Observe that $\psi(t)$ is not a Dini modulus of continuity. Now consider the function $$\tilde \beta(x,x_0)=\tilde \beta_F (x,x_0)=\sup_{M \in S} {|F(M,x)-F(M,x_0)| \over {\|M \| +1}},$$ which measures the oscillation of $F$ in $x$ near the point $x=x_0 \in B$. For our Theorem 3.1, we must impose some sort of continuity restriction on $\tilde \beta(\cdot, x_0)$, since even in the linear case $Lu=tr\left[A(x) D^2u \right]=a_{ij}(x)D_{ij}u=f(x)$ (for H\"older continuity) we require that $f$ and $a_{ij}$ belong to $C^{0,\alpha}$. Hence we require that both $f$ and all $\tilde \beta(\cdot,x_0)$ belong to $C^{0,\omega}(B)$ in the $L^n$ sense. The following is a generalization of the argument used by Caffarelli in [C1],[CC] to prove pointwise $C^{2,\alpha}$ estimates for viscosity solutions of $F(D^2u,x)=f(x)$. \proclaim{Theorem 3.1} Let $F$ be concave, uniformly elliptic (with ellipticity constants $\lambda$ and $\Lambda$), $F$ and $f$ are continuous in $x$. Suppose that $f$, as well as all the oscillations of $F$ in $x$, belong to $C^{0,\omega}(B_{1})$ in the $L^n$ sense, where $\omega(t)$ is a Dini modulus of continuity satisfying property (14). If $u \in C^2(B_{1})$ is a solution of $F(D^2u,x)=f(x)$ in $B_{1}(0)$, then $u \in C^{2,\psi}(B_{1/2}(0))$, where for $0\le t \le 1/2$ $$\psi(t)=t^{\overline \alpha}+\int_0^t\frac{\omega(r)}r \,dr,$$ where $\overline \alpha=\overline \alpha (n,\lambda,\Lambda) \in (0,1)$ is the H\"older exponent given in the Evans-Krylov theorem. \endproclaim \demo{Proof.} Since $\omega(t)$ is a Dini modulus of continuity, assume for definiteness that $\int_0^1\frac{\omega(r)}r \,dr <+\infty$. Following routine normalizations (see [CC] p.75), we may assume ${| u |}_{0;B_1}\le 1$. It suffices to prove $\exists\delta >0$ (small enough) depending only on $n, \lambda,\Lambda,\omega$ such that if $u\in C^2(B_1)$ is a solution of $F(D^2u,x)=f(x)$ in $B_1 =B_1(0)$ and if $\forall x_0 \in B_{1/2}(0)$ $$\big\{\int\limits_{B_r(x_0)}\kern -.675cm \diagup \tilde \beta(x,x_0)^n \,dx \big\}^{1/n} \le \delta \omega(r),\quad \big\{\int\limits_{B_r(x_0)}\kern -.675cm \diagup |f(x)-f(x_0)|^n \,dx \big\}^{1/n} \le\delta \omega(r)\quad\forall r\le 1,$$ then $u \in C^{2,\psi}(\overline {B_{1/2}(0)})$. It suffices to prove the following lemma. \enddemo \proclaim{Lemma 3.2} Take any $x_0 \in B_{1/2}(0)$. There exists $0<\mu<1$ depending only on $n,\lambda,\Lambda,\omega$ and a sequence of polynomials $$P_k(x)=a_k+ b_k\cdot (x-x_0) + {1\over 2}(x-x_0)^tC_k(x-x_0)$$ such that $ F(C_k,x_0)=0$ for all $k\geq 0$, ${| u-P_k|}_{0;B_{\mu^k}(x_0)} \leq \mu^{2k} \varphi(\mu^k)$ for all $k\geq 0$ and $$|a_k-a_{k-1}| +\mu^{k-1}|b_k-b_{k-1}| +\mu^{2(k-1)}\| C_k-C_{k-1}\| \leq 13 c_e \mu^{2(k-1)}\varphi(\mu^{k-1}),$$ where $P_0\equiv P_{-1}\equiv 0, \,c_e$ is a universal constant and $\varphi(t)=t^{\overline\alpha} +\omega(t).$ \endproclaim \demo{Proof} As before, we assume that $x_0=0$ and that $F(0,0)=0=f(0)$. First choose $\mu$ small enough (depending only on $n, \omega,\lambda,\Lambda$) such that (14) holds and $\omega(\mu)\leq {1/2}$, $\mu \leq {7/16}$. Then choose $\delta$ such that $$2N_1 \omega_n^{1/n}\delta (52c_e\varphi_1(1)\,+1) (9c_e +2) \le c_e \mu^{2+\overline \alpha},$$ where $c_e=c_e(n,\lambda,\Lambda)$ is the constant in the Evans-Krylov theorem, $N_1=N_1(n,\lambda,\Lambda)$ is from the Alexandrov estimates and $\omega_n$ is the volume of the unit ball. Note that $\delta$ depends only on $n,\lambda,\Lambda,\omega$. The claim holds for $k=0$ since $P_0\equiv P_{-1} \equiv 0, \,F(0,0)=0$ and $ {| u|}_{0;B_1(0)}\leq 1$. Assume it holds for $k=i$. We now show it holds for $k=i+1$. So for this fixed $i$, consider the function $$ v(x)=\,{(u-P_i)(\mu^i x) \over {\mu^{2i}\varphi(\mu^i)}} \quad x\in B_1(0),$$ which satisfies $F\bigl(\varphi(\mu^i)\,D^2v(x)+C_i,\mu^ix\bigr) = f(\mu^ix)$ and hence $F_i(D^2v, x)=f_i (x)$ in $B_1(0)$, where $$F_i(M,x) ={ {F(\varphi(\mu^i)M+C_i, \mu^ix) - F(C_i,\mu^i x}) \over {\varphi(\mu^i)}}, \quad f_i(x) ={ {f(\mu^ix)- F(C_i, \mu^ix)} \over {\varphi(\mu^i)}}.$$ Now $F_i(M,x)$ is concave in $M$ and has ellipticity constants $\lambda, \Lambda$ (since $F$ does), and $F_i(0,x)=0$. By the Evans-Krylov theorem, $\exists\, h \in C_{loc}^{2, \overline \alpha}(\overline B_{7/8}(0))$ solving $$ \gather F_i(D^2h,0)=0 \text{ in } B_{7/8}(0) \\ h=v \text{ on } \partial B_{7/8}(0) \endgather $$ and $${\| h\|}_{C^{2,\overline \alpha} (B_{7/16}(0))} ^* \leq c_e {| v |}_{0;\partial B_{7/8}(0)} \leq c_e {| v |}_{0;B_1(0)} \leq c_e\,$$ where $c_e=c_e(n,\lambda,\Lambda)$. By Taylor's formula, for $$T_{2,0}h(x)=h(0) \,+ Dh(0) x + {1 \over 2}\,x^tD^2h(0)x \in {\Cal P}_2, $$ we have $$\eqalign{ {| h-T_{2,0}h |}_{0;B_{\mu}(0)} \leq& [h]_{2,\overline\alpha;B_{\mu}(0)}\mu^{2+\overline\alpha} \leq [h]_{2,\overline\alpha;{B_{\frac7{16}(0)}}}\mu^{2+\overline\alpha} \cr \leq& \tsize\left({16 \over 7}\right)^{2+\overline\alpha}c_e {\mu}^{2+\overline\alpha}\leq c_e 27\mu^{2+\overline\alpha}. \cr }$$ By the classical Alexandrov estimates, we have, for some constant $N_1=N_1(n,\lambda,\Lambda)$ $$\eqalign{ | v-h |_{0;B_{7/8}(0)} &\le | v-h |_{0;\partial B_{7/8}(0)} +N_1 \| F_i(D^2h, \cdot)-F_i(D^2v,\cdot )\|_{L^n(B_{7/8})} \cr & = N_1 \| F_i(D^2h,\cdot)-f_i\|_{L^n(B_{7/8})} \cr & \le N_1 \biggl\{ \| F_i(D^2h,\cdot)-F_i(D^2h,0)\|_{L^n(B_{7/8})} +\|f_i\|_{L^n(B_{7/8})} \biggr\} \cr & \le N_1 \biggl\{ \|\tilde{\beta}_{F_i}(\cdot,0)\|_{L^n(B_1)} (9c_e +1) + \|f_i\|_{L^n(B_1)} \biggr\} \cr }$$ We need to estimate both $\|\tilde{\beta}_{F_i}(\cdot,0)\|_{L^n(B_1)}$ and $\|f_i\|_{L^n(B_1)}$. For $x \in B_1(0)$, $$\eqalign{ &\tilde{\beta}_{F_i}(x,0) =\sup_{M \in \Cal S} {{|F_i(M,x)-F_i(M,0)|} \over {\| M\| +1}}\cr &=\sup_{M \in \Cal S}\Bigg|{ {{\left[F(\varphi(\mu^i)M+C_i , \mu^ix)-F(\varphi(\mu^i)M+C_i,0)\right]} -{\left[F(C_i, \mu^ix)-F(C_i,0)\right]}} \over {\varphi(\mu^i)(\| M \| +1)}}\Biggr| \cr &\leq \sup_{M \in \Cal S}\Biggl( { {\| \varphi(\mu^i)M+C_i \| +1 +\| C_i \| +1} \over {\| M \| + 1}}\Biggr) { {\widetilde {\beta} (\mu^ix,0)} \over {\varphi(\mu^i)}} \cr &\leq \sup_{M \in \Cal S} \Biggl( {{\varphi(\mu^i)\| M \| +2(\| C_i \| +1)} \over { \| M\| +1}} \Biggr) { {\widetilde {\beta} (\mu^ix,0)} \over {\varphi(\mu^i)}} \cr }$$ Since $\omega$ (hence $\varphi$) is a Dini modulus of continuity, the integral test yields $$\eqalign{ \| C_i \| \leq& \sum_{k=1}^i \| C_k -C_{k-1}\| \le 13c_e \sum_{k=1}^{\infty} \varphi(\mu^{k-1}) \cr \le& 13c_e\left( \varphi(1) + \ln\left(\tsize{\frac1{\mu}}\right)^{-1} \int_0^1 \frac{\varphi(r)}r\,dr \right) \le 52 c_e \varphi_1(1). \cr }$$ Hence for $x \in B_1(0)$ $$\eqalign{ \widetilde {\beta_{F_i}} (x,0) \le& \sup_{M \in \Cal S} \Biggl( {\varphi(\mu^i)\| M \| +2\bigl(52c_e\varphi_1(1)+1 \bigr) \over { \| M\| +1} } \Biggr) { {\widetilde {\beta} (\mu^ix,0)} \over {\varphi(\mu^i)}} \cr \le& 2\left( 52 c_e \varphi_1(1)+1 \right) { {\widetilde {\beta} (\mu^ix,0)} \over {\varphi(\mu^i)}}\,, \cr }$$ and thus since $\omega \le \varphi$ and the $L^n$ average of $\tilde\beta(\cdot,0)$ is small, we get $$\eqalign{ \|\tilde{\beta_{F_i}}(\cdot,0)\|_{L^n(B_1)}\le&2\left( 52 c_e \varphi_1(1)+1 \right) \frac{\| {\widetilde{\beta}}(\mu^i\cdot,0) \|_{L^n(B_1)}}{\varphi(\mu^i)} \cr \le& 2\left( 52 c_e \varphi_1(1)+1 \right) \frac{ \omega_n^{1/n} \delta \omega(\mu^i)} {\varphi(\mu^i)} \le 2\omega_n^{1/n} \delta \left( 52 c_e \varphi_1(1)+1 \right).\cr }$$ Similarly, for $x \in B_1(0)$ $$\eqalign{ |f_i(x)| = \frac{|f(\mu^ix)-F(C_i, \mu^ix)|}{\varphi(\mu^i)} &\le \frac{|f(\mu^i x)| +|F(C_i,0)-F(C_i,\mu^ix)|}{\varphi(\mu^i)}\cr &\le \frac{ |f(\mu^i x)|+ \widetilde{\beta}(\mu^ix,0) (\| C_i\| +1)} {\varphi(\mu^i)} \cr &\le \frac{ |f(\mu^i x)| + \widetilde{\beta}(\mu^ix,0)\left( 52 c_e \varphi_1(1) +1 \right) }{{\varphi(\mu^i)}}, \cr }$$ which implies, since the $L^n$ average of $f$ is small $$\eqalign{ \|f_i\|_{L^n(B_1)} &\le \frac{ \|f(\mu^i \cdot)\|_{L^n(B_1)} + \| \widetilde{\beta}(\mu^i \cdot,0)\|_{L^n(B_1)} \left( 52 c_e \varphi_1(1) +1 \right) }{{\varphi(\mu^i)}} \cr &\le \frac{\omega_n^{1/n} \delta \omega(\mu^i) + \omega_n^{1/n} \delta \omega(\mu^i) \cdot ( 52 c_e \varphi_1(1) +1) }{\varphi(\mu^i)} \cr &\le 2\omega_n^{1/n} \delta \left( 52 c_e \varphi_1(1)+1 \right). \cr }$$ Returning to our a priori estimates and recalling that $\delta$ is small, we get $$\eqalign{ | v-h |_{0;B_{7/8}} & \le N_1 \biggl\{ \|\tilde{\beta}_{F_i}(\cdot,0)\|_ {L^n(B_1)} (9c_e +1) + \|f_i\|_{L^n(B_1)} \biggr\} \cr &\le N_1 \Bigl\{ 2\delta \omega_n^{1/n}\left( 52 c_e \varphi_1(1) + 1\right) \left(9c_e +1 \right) +2\delta\omega_n^{1/n} \left( 52 c_e \varphi_1(1)+ 1\right)\Bigr\} \cr &\le N_1 2\delta \omega_n^{1/n} \left( 52 c_e \varphi_1(1)+ 1\right)\left(9c_e +2 \right) \cr &\le c_e \mu^{2+\overline\alpha}, \cr }$$ and hence, since $\mu \le \frac7{16}$, we have $${| v-T_{2,0}h |}_{0;B_{\mu}(0)} \leq {| v-h |}_{0;B_{\mu}(0)} +{| h-T_{2,0}h |}_{0;B_{\mu}(0)} \le 28c_e\mu^{2+\overline\alpha}.$$ Now, for $x \in B_{\mu^{i+1}}(0)$, set $P_{i+1}(x)=P_i(x) +\mu^{2i}\varphi(\mu^i)T_{2,0}h\left({x \over {\mu^i}}\right) \in {\Cal P}_2$. Rescaling back, plugging in the definition of $v$ and recalling that $\omega(t)$ satisfies (14), we get $$\eqalign{ |u(x)-P_{i+1}(x)|&=\Big|u(x)-P_i(x)-\mu^{2i} \varphi(\mu^i) T_{2,0} h \tsize\left({x \over {\mu^i}}\right)\Big| \cr &=\mu^{2i} \varphi(\mu^i)\Big|\tsize v\left({ x \over {\mu^i}}\right) -T_{2,0}h \left({x \over {\mu^i}} \right)\Big| \cr &\le \mu^{2i} \varphi(\mu^i) 28c_e \mu^{2+\overline\alpha} \cr & \le \mu^{2(i+1)} \varphi(\mu^{i+1}),\cr }$$ i.e. $|u-P_{i+1}|_{0;B_{\mu^{i+1}}(0)} \le \mu^{2(i+1)} \varphi(\mu^{i+1})$, completing the induction step. Note that $P_{i+1}$'s coefficients satisfy $$C_{i+1}=C_i +\varphi(\mu^i) D^2h(0),\quad b_{i+1}=b_i +\mu^i \varphi(\mu^i)Dh(0),\quad a_{i+1} =a_i + \mu^{2i}\varphi(\mu^i)h(0).$$ Hence $F(C_{i+1},0)=F(\varphi(\mu^i) D^2h(0)+C_i,0) =\varphi(\mu^i)F_i(D^2h(0),0) +F(C_{i},0)=0$. Since ${\| h\|}_ {C^{2,\overline\alpha}({B_{\frac7{16}}(0)})}^*\leq c_e$, we have $$\eqalign{ &|a_{i+1} -a_i| + \mu^i |b_{i+1}-b_i| + \mu^{2i} \| C_{i+1}-C_i\| \cr &\leq \mu^{2i}\varphi(\mu^i)\Bigl( |h(0)| +|Dh(0)| +\| D^2h(0)\| \Bigr) \cr &\leq \mu^{2i}\varphi(\mu^i)\Bigl( c_e +{16 \over 7}c_e +\left( {16 \over 7} \right )^2\ c_e \Bigr) \cr &\leq 13c_e \mu^{2i}\varphi(\mu^i).\cr }$$ This completes the proof of Lemma 3.2. \qed \enddemo The above argument holds at any fixed $x_0 \in B_{1/2}(0)$ since for concave $F$, the Evans-Krylov theorem guarantees the solvability of the Dirichlet problem for $F(D^2h,x_0)=0$, with universal constant $c_e$. The same argument which follows Lemma 2.1 now gives us that $u \in {\Cal M}_\infty^{2,\varphi}(B_{1/2}(0)) \subset C^{2,\varphi_1}(B_{1/2}(0))$. But by definition of $\varphi(t)$, we have $$\varphi_1(t) =\int_0^t \frac{\varphi(r)}r \,dr = \int_0^t r^{\overline \alpha-1}\,dr + \int_0^t \frac{\omega(r)}{r}\,dr\sim \psi(t),$$ which completes the proof of Theorem 3.1. \bigskip \Refs\nofrills{REFERENCES} \widestnumber\key{ME} \ref \key B \by C. Burch \pages 308--323 \paper The Dini Condition and Regularity of Weak Solutions of Elliptic Equations \yr1978 \vol 30 \jour J. Diff. Eq. \endref \ref \key C \by S. Campanato \pages 137--160 \paper Propriet\`a di una Famiglia di Spazi Functionali \yr1964 \vol 18 \jour Ann. Scuola Norm. Sup. Pisa (3)\endref \ref \key C1 \by L. Caffarelli \pages 189--213 \paper Interior a priori Estimates for Solutions of Fully Nonlinear Equations \yr 1989 \vol 130 \jour Annals of Mathematics \endref \ref \key CC \by L. Caffarelli and X. Cabre \book Fully Nonlinear Elliptic Equations \publ Amer. Math. Soc. \publaddr Providence, R.I. \yr1995 \endref \ref \key E \by L.C. Evans \pages 333--363 \paper Classical Solutions of Fully Nonlinear, Convex, Second Order Elliptic Equations \yr1982 \vol 35 \jour Comm. Pure and Applied Math.\endref \ref \key Esc \by L. Escauriaza \pages 413--423 \paper $W^{2,n}$ a priori Estimates for Solutions to Fully Nonlinear Equations \yr 1993 \vol 42 (2) \jour Indiana J. Math. \endref \ref \key G1 \by M. Giaquinta \book Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems \publ Princeton Univ. Press \publaddr Princeton, N.J. \yr 1983 \endref \ref \key G2 \bysame \book Introduction to Regularity Theory for Nonlinear Elliptic Systems \publ Birkh\"auser Verlag \publaddr Basel \yr 1993 \endref \ref \key GT \by D. Gilbarg and N. Trudinger \book Elliptic Partial Differential Equations of Second Order, 2nd ed. \publ Springer-Verlag \publaddr Berlin-Heidelberg-New York-Tokyo \yr1983 \endref \ref \key HW \by P. Hartman and A. Wintner \pages 329--354 \paper On Uniform Dini Conditions in the Theory of Linear Partial Differential Equations of Elliptic Type \yr 1954 \vol 77 \jour Amer. J. Math \endref \ref \key K \by J. Kovats \paper Fully Nonlinear Elliptic Equations and the Dini Condition \jour Communications in PDE \vol 22 (11-12) \yr1997 \pages 1911-1927 \endref \ref \key K1 \by N.V. Krylov \pages 67--97 \paper Boundedly Nonhomogeneous Elliptic and Parabolic Equations \yr1984 \vol 22 \jour Math. USSR Izv.\endref \ref \key K2 \bysame \paper On the General Notion of Fully Nonlinear Second Order Elliptic Equations\yr1995 \vol 347 (3) \jour Transactions of the AMS \endref \ref \key K3 \bysame \book Lectures on Elliptic and Parabolic Equations in H\"older Spaces \publ Amer. Math. Soc. \publaddr Providence, R.I. \yr1996 \endref \ref \key ME \by M.I. Mati\u ichuk and S.D. \'Eidel'man \pages 18--30 \paper The Cauchy Problem for Parabolic Systems whose Coefficients Have Slight Smoothness \yr1970 \vol 22 \jour Ukrainian Math. Journal \endref \ref \key S1 \by M.V. Safonov \pages 482--485 \paper On the Classical Solutions of Bellman's Elliptic Equation \yr1984 \vol 30 \jour Soviet Math. Doklady \endref \ref \key S2 \bysame \pages 597--612 \paper On the Classical Solutions of Nonlinear Elliptic Equations of Second Order \yr1989 \vol 33 \jour Math. USSR Izv. \endref \ref \key Sp \by S. Spanne \pages 593--608 \paper Some Function Spaces Defined Using the Mean Oscillation over Cubes \yr1965 \vol (3) 19 \jour Ann. Scuola Norm. Sup. Pisa \endref \ref \key Tr \by N. Trudinger \book Lectures on Nonlinear Elliptic Equations of Second Order \publ Univ. Tokyo \publaddr Tokyo \yr1995 \pages 34--35 \endref \ref \key W \by L. Wang \pages 141--178 \paper On the Regularity of Fully Nonlinear Parabolic Equations II \yr1992 \vol 45 \jour Comm. Pure and Applied Math. \endref \endRefs \enddocument