\documentclass[twoside]{article} \usepackage{amssymb} % font used for R in Real numbers \pagestyle{myheadings} \markboth{\hfil Exact multiplicity results \hfil EJDE--2000/01} {EJDE--2000/01\hfil Idris Addou \hfil} \begin{document} \title{\vspace{-1in}\parbox{\linewidth}{\footnotesize\noindent {\sc Electronic Journal of Differential Equations}, Vol. {\bf 2000}(2000), No.~01, pp. 1--26. \newline ISSN: 1072-6691. URL: http://ejde.math.swt.edu or http://ejde.math.unt.edu \newline ftp ejde.math.swt.edu \quad ftp ejde.math.unt.edu (login: ftp)} \vspace{\bigskipamount} \\ % Exact multiplicity results for quasilinear boundary-value problems with cubic-like nonlinearities \thanks{ {\em 1991 Mathematics Subject Classifications:} 34B15. \hfil\break\indent {\em Key words and phrases:} One dimensional p-Laplacian, multiplicity results, time-maps. \hfil\break\indent \copyright 2000 Southwest Texas State University and University of North Texas. \hfil\break\indent Submitted May 26, 1999. Revised October 1, 1999. Published January 1, 2000.} } \date{} % \author{Idris Addou} \maketitle \begin{abstract} We consider the boundary-value problem $$\displaylines{ -(\varphi_p (u'))' =\lambda f(u) \mbox{ in }(0,1) \cr u(0) = u(1) =0\,, }$$ where $p>1$, $\lambda >0$ and $\varphi_p (x) =| x|^{p-2}x$. The nonlinearity $f$ is cubic-like with three distinct roots $0=a0$. This way we extend a recent result, for $p=2$, by Korman et al. \cite{KormanLiOuyang} to the general case $p>1$. We shall prove that when $1
2$. \end{abstract} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}{Lemma} \section{Introduction}\label{sec1} We consider the question of determining the exact number of solutions of the quasilinear boundary-value problem \begin{eqnarray} &-(\varphi_p (u'))' =g( \lambda ,u) ,\mbox{ in }(0,1)& \label{P1} \\ &u(0) = u(1) =0\,,& \nonumber \end{eqnarray} where $p>1$, $\lambda >0$ and $\varphi_p (u) =| u|^{p-2}u$ for all $u\in{\mathbb R}$ and $g(\lambda ,u) =\lambda f(u) $. Here the nonlinearity $f\in C^{2}({\mathbb R},{\mathbb R}) $ is cubic-like satisfying \begin{eqnarray} &f(0) =f(b) =f(c) =0 \mbox{ for some constants } 0 0\mbox{ for } x\in (-\infty ,0) \cup (b,c) & \label{Austine2} \\ &f(x) < 0\mbox{ for } x\in (0,b) \cup (c,+\infty)\,, \nonumber\\ &f''(u) \mbox{ changes sign exactly once when } u\in (0,c)\,,& \label{Austine3}\\ &F(c) >0, \mbox{ where } F(s) =\int_0^{s}f(u) du,\ s\in{\mathbb R}\,. & \label{Austine4} \end{eqnarray} Beside conditions (\ref{Austine1})-(\ref{Austine4}) we shall assume in the case where $p\neq 2$, the following additional conditions: There exists $u_0\in (0,c) $ such that \begin{equation} (p-2) f'(u) -uf''(u) \leq 0 \mbox{ for } u\in (0,u_0] \label{E1} \end{equation} with strict inequality in an open interval $I \subset (0,u_0)$, and \begin{equation} (p-2) f'(u) -uf''(u) \geq 0\mbox{ for }u\in [ u_0,c) \,. \label{E2} \end{equation} When $p=2$, we prove in Section \ref{sec3}, that (\ref{E1}) and (\ref{E2}) are consequences of (\ref{Austine1})-(\ref{Austine3}). During this last decade, many articles dealing with boundary-value problems with cubic-like nonlinearities have been published. (See for instance; \cite{Korman97}-\cite{Wei}). However, all the related results have been obtained for the case $p=2$; that is, for the Laplacian operator. The case of cubic-like nonlinearities when the differential operator is the $p $-Laplacian with $p\neq 2$ has yet to be studied. When $p=2$ and $f$ satisfies conditions (\ref{Austine1})-(\ref{Austine4}), the solution set of problem (\ref{P1}) was studied recently by Korman et al. \cite{KormanLiOuyang}. They provide exactness results. They show (among other interesting things) that there exists a critical number $\lambda_0>0 $ such that problem (\ref{P1}) has no nontrivial solution for $0<\lambda <\lambda_0$, has a unique nontrivial solution for $\lambda =\lambda_0$ and has exactly two nontrivial solutions for all $\lambda >\lambda_0$. So, a natural question arises; how does the solution set of (\ref{P1}) look like when $p\neq 2$? The purpose of this work is to answer this question. We shall give an exactness result with respect to $p>1$; we prove, in particular, that when $1
2$.
It is known that exactness results are more difficult to derive than a lower
bound of the number of solutions to boundary value problems such as (\ref{P1}).
The main tool used here is the so-called quadrature method. The delicate
part in the process of the proof corresponding to the exactness part of the
main results is the study of the exact variations of the time map under
consideration over its {\em entire} definition domain (Lemma \ref{Lemma3}).
Notice that here, the cubic-like nonlinearity $f$ has three distinct roots
$a1$. Also, we have considered in \cite
{HalfOdd} a more general case where $a1$, and $f$ is not
necessary odd; there we have defined a new kind of functions we called:
half-odd. However, the main results of the present paper are directly
related to those of Korman et al. \cite{KormanLiOuyang} and not to those of
\cite{Addou2} and \cite{HalfOdd}. That is why we do not describe them here.
(Also, this would require a large space).
The paper is organized as follows. The main results are stated in Section
\ref{sec2}. Next, in Section \ref{sec3} we shall state and prove some
properties of the nonlinearity $f$. These are of importance in the sequel.
Some preliminary lemmas are the aim of Section \ref{sec4}; the first lemma
(Lemma \ref{Lemma1}) is technical and in the second one (Lemma \ref{Lemmasup})
we locate all the eventual nontrivial solutions of problem (\ref{P1}). The
proof of Lemma \ref{Lemmasup} is postponed to the appendix. After describing
the quadrature method used in order to look for the solutions, we devote two
lemmas (Lemmas \ref{Lemma2}, \ref{Lemma3}) to study the limits and
variations of the time-map. In Section \ref{sec5}, the main results are
proved. Finally, in Section \ref{sec6} we ask two questions.
\section{Notation and main results}\label{sec2}
In order to state the main results, let us first define the
subsets of $C^{1}([ 0,1]) $ which contain the
solutions of the problem (\ref{P1}).
\noindent Let $A_1^{+}$ be the subset of $C^1([ 0,1]) $
consisting of the functions $u$ satisfying
\begin{itemize}
\item $u(x) >0$, for all $x\in (0,1) $, $u(0) =u(1) =00$, for all $x\in (0,1) $, $u(0) =u(1) =0 0\mbox{ in }(b_{i},a_{i+1}) ,\mbox{ for all }i\in
\{ 0,\cdots ,k-1\} \\
&u \equiv 0\mbox{ in }[ a_{i},b_{i}] ,\mbox{ for all }i\in
\{ 0,\cdots ,k-1\}\, .&
\end{eqnarray*}
\item Every hump of $u$ is symmetrical with respect to the center of the
interval of its definition.
\item The derivative of each hump of $u$ vanishes once and only once.
\item Each hump is a translated copy of the first one.
\end{itemize}
\noindent Let $B_k^{+}$ be the subset of $B^{+}(k) $ consisting of the
functions $u$ satisfying
\[
a_i(u) =b_i(u) \mbox{ for all }i\in \{0,\cdots ,k\} .
\]
If there exists $i_0\in \{ 0,\cdots ,k\} $ such that
$a_{i_0}(u) 2$
we can define $\nu =(2S_{+}(c)) ^{p}/p'$,
where $p'=p/(p-1) $, and for all integer $k\geq 0$ we
define $\lambda_k=(2kS_{+}(r)) ^{p}/p'$
and notice that
\[
0=\lambda_0<\lambda_1<\cdots <\lambda_k=k^{p}\lambda_1\dots
\mbox{ for all }k\geq 1,\mbox{ and }\lim_{k\to +\infty }\lambda
_k=+\infty \,.
\]
For $\lambda >0$, denote $S_\lambda $ the solution set of problem (\ref
{P1}).
% fig1.tex
\begin{figure}[t]
\setlength{\unitlength}{1mm}
\begin{picture}(90,40)(-15,0)
\linethickness{1pt}
\qbezier(80,30)(-40,20)(80,10)
\qbezier[20](20,0)(20,10)(20,20)
\thinlines
\put(10,0){\vector(0,1){40}}
\put(10,0){\vector(1,0){80}}
\put(18,-5){$\lambda_0$}
\put(90,-5){$\lambda$}
\put(38,28){$A_1^+$}
\end{picture}
\caption{$1< p \leq 2$.}
\end{figure}
The main results are worth being described by means of diagrams.
The first result (Theorem \ref{wmdjkgfh}) concerns the case where $1 \lambda_0$. All
these solutions are in $A_1^+$.
% fig2.tex
\begin{figure}[t]
\setlength{\unitlength}{1.3mm}
\begin{picture}(90,40)(4,-2)
\linethickness{1pt}
\qbezier(25,0)(-8,12)(57,31)
\qbezier[15](13.8,0)(13.8,5)(13.8,9)
\qbezier[50](57,0)(57,16)(57,31)
\put(38,28){$A_1^+$}
\qbezier(57,31)(70,35)(80,37)
\put(82,37){$\widetilde{A}_1^+$}
\qbezier(25,0)(25,16)(80,28)
\put(82,28){$\widetilde{B}_1^+$}
\qbezier(38,0)(38,12)(80,21)
\put(82,21){$\widetilde{B}_2^+$}
\qbezier(51,0)(51,8)(80,14)
\put(82,14){$\widetilde{B}_{n-1}^+$}
\qbezier(64,0)(64,4)(80,7)
\put(82,7){$\widetilde{B}_n^+$}
\thinlines
\put(10,0){\vector(0,1){40}}
\put(10,0){\vector(1,0){76}}
\put(13,-3){$\mu$}
\put(25,-3){$\lambda_1$}
\put(38,-3){$\lambda_2$}
\put(49,-3){$\lambda_{n-1}$}
\put(57,-3){$\nu$}
\put(64,-3){$\lambda_n$}
\put(85,-3){$\lambda$}
\end{picture}
\caption{$p>2$, $\lambda_{n-1}<\nu<\lambda_n$, $1< n$.}
\end{figure}
% fig3.tex
\begin{figure}[t]
\setlength{\unitlength}{1.3mm}
\begin{picture}(90,42)(8,-3)
\linethickness{1pt}
\qbezier(25,0)(25,20)(57,31)
\qbezier[50](57,0)(57,16)(57,31)
\put(38,26){$A_1^+$}
\qbezier(57,31)(70,35)(80,37)
\put(82,37){$\widetilde{A}_1^+$}
\qbezier(25,0)(25,16)(80,28)
\put(82,28){$\widetilde{B}_1^+$}
\qbezier(38,0)(38,12)(80,21)
\put(82,21){$\widetilde{B}_2^+$}
\qbezier(51,0)(51,8)(80,14)
\put(82,14){$\widetilde{B}_{n-1}^+$}
\qbezier(64,0)(64,4)(80,7)
\put(82,7){$\widetilde{B}_n^+$}
\thinlines
\put(15,0){\vector(0,1){40}}
\put(15,0){\vector(1,0){75}}
\put(25,-3){$\lambda_1$}
\put(38,-3){$\lambda_2$}
\put(49,-3){$\lambda_{n-1}$}
\put(57,-3){$\nu$}
\put(64,-3){$\lambda_n$}
\put(85,-3){$\lambda$}
\end{picture}
\caption{$p>2$, $\lambda_{n-1}<\nu<\lambda_n$, $1< n$.}
\end{figure}
When $p>2$, we have to consider the sequence $(\lambda_k)_{k\geq 0}$
and the number $\nu >0$. This number maybe smaller than $\lambda_1$,
equal to $\lambda_1$, or greater than $\lambda_1$.
In this later case, it may lie between two consecutive points of the
sequence: $\lambda_{n-1}<\nu <\lambda_{n}$, with $n>1$ (Figures 2 and 3),
or it maybe equal to some $\lambda_{n}$ with $n>1$.
An immediate examination of these bifurcation diagrams, shows that when
$\nu$ moves from zero to infinity, the upper branch changes but not the others,
i.e., beside the upper branch which is different from a diagram to an other,
the remaining branches are the same in all these diagrams.
Now consider any one of figures 2 or 3 and let us describe each kind of its
branches. The $\lambda $-axis designates the trivial solutions, and at each
$\lambda_k$, $k\geq 1$, there is a bifurcation point which indicates a
pair $(u_k,\lambda_k)$ such that $u_k\in B_k^+$.
The upper branch contains a point which indicates a pair
$(u_1,\nu)$ such that $u_1\in A_1^+$. All points lying on this
branch which are on the left of $(u_1,\nu)$ are in $A_1^+$, and
those lying at the right are in $\tilde{A}_1^+$.
The remaining branches are in some sense ''singular''. Usually a point
$(u,\lambda)$ lying on any branch designates a couple where $u$ is a
solution of some kind and $\lambda $ is a real number. This is the case in
our diagrams as far as the upper branch or the lower one ($\lambda $-axis)
are concerned. However, a point on the remaining branches indicates
$(\mathop{\rm Cl}(u),\lambda)$, i.e., the equivalence class of a certain solution $u$
lying in some $\tilde{B}_k^+$, $k\geq 1$, and $\lambda $ is a real
number. So, if $u$ is a solution in some $\tilde{B}_k^+$, with $k\geq 1
$, for some $\lambda >0$ then any $v\in \mathop{\rm Cl}(u)$ is also a solution in the same
$\tilde{B}_k^+$.
The singularity of these branches maybe removed. In fact, consider the same
equivalence relation but defined on $B_k^+$, (for all $k\geq 1$). Then
it is clear that
\[
\mathop{\rm Cl}(u)=\{u\}, \mbox{ for all } u\in B_k^+\,.
\]
So, the bifurcation points on the $\lambda $-axis maybe considered as
indicating \\
$(\mathop{\rm Cl}(u_k),\lambda_k)=(\{u_k\},\lambda_k)$ instead of
$(u_k,\lambda_k)$. Also, consider on
$A_1^+\cup \tilde{A}_1^+$ the same equivalence relation in essence (which maybe formulated
differently). It is clear that
\[
\mathop{\rm Cl}(u)=\{u\}, \mbox{ for all } u\in A_1^+\cup \tilde{A}_1^+\,.
\]
This way, any point on any branch shall designates a couple
$(\mathop{\rm Cl}(u),\lambda)$ and the elements in $\mathop{\rm Cl}(u)$ are solutions of the
problem (\ref{P1}) for the same $\lambda $. Therefore, there is coherence in
the diagrams and the singularity mentioned above is removed.
The statements of the main results below indicate that for
$\nu \leq \lambda_1$ the upper branch contains a turning point, but when
$\nu >\lambda_1$, either it still contains a turning point (Figure 2) or
there is no such point (Figure 3). \smallskip
The main results read as follows
\begin{theorem}
\label{wmdjkgfh} Assume that $1 0$ such that
\begin{description}
\item[(i)] If $0<\lambda <\lambda_0$, $S_\lambda =\{ 0\} $.
\item[(ii)] If $\lambda =\lambda_0$, there exists $v_\lambda \in
A_1^+$ such that $S_\lambda =\{ 0\} \cup \{ v_\lambda\} $.
\item[(iii)] If $\lambda >\lambda_0$, there exists $v_\lambda $,
$w_\lambda \in A_1^+$ such that $v_\lambda \neq w_\lambda $ and
$S_\lambda =\{ 0\} \cup \{ v_\lambda ,w_{\lambda
}\} $.
\end{description}
\end{theorem}
\begin{theorem}
\label{wmdjkgfh2}Assume that $p>2$ and $f$ satisfies conditions (\ref
{Austine1})-(\ref{Austine4}), and (\ref{E1}), (\ref{E2}). Moreover, assume
that $\nu <\lambda_1$. Then there exists $\mu \in (0,\nu)
$ such that
\begin{description}
\item[(i)] If $0<\lambda <\mu $, $S_\lambda =\{ 0\} $.
\item[(ii)] If $\lambda =\mu $, there exists $v_\lambda \in A_1^+$
such that $S_\lambda =\{ 0\} \cup \{ v_\lambda \} $.
\item[(iii)] If $\mu <\lambda \leq \nu $, there exists $v_\lambda $,
$w_\lambda \in A_1^+$ such that $v_\lambda \neq w_\lambda $ and
$S_\lambda =\{ 0\} \cup \{ v_\lambda ,w_{\lambda}\} $.
\item[(iv)] If $\nu <\lambda <\lambda_1$, there exists $v_\lambda \in
A_1^+$ and $u_\lambda \in \tilde{A}_1^+$ such that $S_{\lambda
}=\{ 0\} \cup \{ v_\lambda \} \cup \{u_\lambda \} $.
\item[(v)] If $\lambda =\lambda_1$, there exists $u_\lambda \in \tilde{
A}_1^+$ and $u_{\lambda ,1}\in B_1^+$ such that $S_{\lambda
}=\{ 0\} \cup \{ u_\lambda \} \cup \{u_{\lambda ,1}\} $.
\item[(vi)] If $\lambda_k<\lambda <\lambda_{k+1}$, $k\geq 1$, there
exists $u_\lambda \in \tilde{A}_1^+$ and $u_{\lambda ,1},\cdots
,u_{\lambda ,k}$ such that $u_{\lambda ,i}\in \tilde{B}_{i}^{+}$ for
all $i=1,\cdots ,k$ and $S_\lambda =\{ 0\} \cup \{
u_\lambda \} \cup \mathop{\rm Cl}(u_{\lambda ,1}) \cup \cdots \cup
\mathop{\rm Cl}(u_{\lambda ,k}) $.
\item[(vii)] If $\lambda =\lambda_{k+1},k\geq 1$, there exists
$u_\lambda \in \tilde{A}_1^+$and $u_{\lambda ,1},\cdots
u_{\lambda ,k+1}$ such that $u_{\lambda ,i}\in \tilde{B}_{i}^{+}$ for
all $i=1,\cdots ,k$, $u_{\lambda ,k+1}\in B_{k+1}^{+}$ and $S_{\lambda
}=\{ 0\} \cup \{ u_\lambda \} \cup \mathop{\rm Cl}(
u_{\lambda ,1}) \cup \cdots \cup \mathop{\rm Cl}(u_{\lambda ,k})
\cup \{ u_{\lambda ,k+1}\} $.
\end{description}
\end{theorem}
\begin{theorem}
\label{wmdjkgfh3}Assume that $p>2$ and $f$ satisfies conditions (\ref
{Austine1})-(\ref{Austine4}), and (\ref{E1}), (\ref{E2}). Moreover, assume
that $\nu =\lambda_1$. Then there exists $\mu \in (0,\lambda_1) $ such that
\begin{description}
\item[(i)] If $0<\lambda <\mu $, $S_\lambda =\{ 0\} $.
\item[(ii)] If $\lambda =\mu $, there exists $v_\lambda \in A_1^+$
such that $S_\lambda =\{ 0\} \cup \{ v_\lambda \}$.
\item[(iii)] If $\mu <\lambda <\lambda_1$, there exists $v_\lambda $,
$w_\lambda \in A_1^+$ such that $v_\lambda \neq w_\lambda $ and
$S_\lambda =\{ 0\} \cup \{ v_\lambda ,w_{\lambda
}\} $.
\item[(iv)] If $\lambda =\lambda_1$, there exists $v_\lambda \in
A_1^+$ and $u_{\lambda ,1}\in B_1^+$ such that $S_{\lambda
}=\{ 0\} \cup \{ v_\lambda \} \cup \{
u_{\lambda ,1}\} $.
\item[(v)] If $\lambda_k<\lambda <\lambda_{k+1}$, $k\geq 1$, there
exists $u_\lambda \in \tilde{A}_1^+$ and $u_{\lambda ,1},\cdots
,u_{\lambda ,k}$ such that $u_{\lambda ,i}\in \tilde{B}_{i}^{+}$ for
all $i=1,\cdots ,k$ and $S_\lambda =\{ 0\} \cup \{
u_\lambda \} \cup \mathop{\rm Cl}(u_{\lambda ,1}) \cup \cdots \cup
\mathop{\rm Cl}(u_{\lambda ,k}) $.
\item[(vi)] If $\lambda =\lambda_{k+1},k\geq 1$, there exists
$u_\lambda \in \tilde{A}_1^+$and $u_{\lambda ,1},\cdots
,\;u_{\lambda ,k+1}$ such that $u_{\lambda ,i}\in \tilde{B}_{i}^{+}$
for all $i=1,\cdots ,k$, $u_{\lambda ,k+1}\in B_{k+1}^{+}$ and
$S_\lambda =\{ 0\} \cup \{ u_\lambda \} \cup
\mathop{\rm Cl}(u_{\lambda ,1}) \cup \cdots \cup \mathop{\rm Cl}(u_{\lambda
,k}) \cup \{ u_{\lambda ,k+1}\} $.
\end{description}
\end{theorem}
\begin{theorem}
\label{wmdjkgfh4}Assume that $p>2$ and $f$ satisfies conditions (\ref
{Austine1})-(\ref{Austine4}), and (\ref{E1}), (\ref{E2}). Moreover, assume
that there exists $n>1$ such that $\lambda_{n-1}<\nu <\lambda_{n}$. Then
one and only one of the following possibilities occurs:
Possibility {\bf A}. There exists $\mu \in (0,\lambda_1) $
such that
\begin{description}
\item[(i)] If $0<\lambda <\mu $, $S_\lambda =\{ 0\} $.
\item[(ii)] If $\lambda =\mu $, there exists $v_\lambda \in A_1^+$
such that $S_\lambda =\{ 0\} \cup \{ v_\lambda \} $.
\item[(iii)] If $\mu <\lambda <\lambda_1$, there exist $v_\lambda $,
$w_\lambda \in A_1^+$ such that $v_\lambda \neq w_\lambda $ and
$S_\lambda =\{ 0\} \cup \{ v_\lambda ,w_{\lambda}\} $.
\item[(iv)] If $\lambda =\lambda_1$, there exist $v_\lambda \in
A_1^+$ and $u_{\lambda ,1}\in B_1^+$ such that $S_{\lambda
}=\{ 0\} \cup \{ v_\lambda \} \cup \{
u_{\lambda ,1}\} $.
\item[(v)] If $\lambda_k<\lambda <\min \{ \lambda_{k+1},\nu
\} $, $1\leq k\leq n-1$, there exist $v_\lambda \in A_1^+$ and
$u_{\lambda ,1},\cdots ,u_{\lambda ,k}$ such that $u_{\lambda
,i}\in \tilde{B}_{i}^{+}$ for all $i=1,\cdots ,k$ and $S_{\lambda
}=\{ 0\} \cup \{ v_\lambda \} \cup \mathop{\rm Cl}(
u_{\lambda ,1}) \cup \cdots \cup \mathop{\rm Cl}(u_{\lambda ,k}) $.
\item[(vi)] If $\lambda =\lambda_{k+1},1\leq k\leq n-2$, there exist
$v_\lambda \in A_1^+$ and $u_{\lambda ,1},\cdots ,
u_{\lambda ,k+1}$ such that $u_{\lambda ,i}\in \tilde{B}_{i}^{+}$ for
all $i=1,\cdots ,k$, $u_{\lambda ,k+1}\in B_{k+1}^{+}$ and $S_{\lambda
}=\{ 0\} \cup \{ v_\lambda \} \cup \mathop{\rm Cl}(
u_{\lambda ,1}) \cup \cdots \cup \mathop{\rm Cl}(u_{\lambda ,k})
\cup \{ u_{\lambda ,k+1}\} $.
\item[(vii)] If $\lambda =\nu $, there exist $v_\lambda \in A_1^+$
and $u_{\lambda ,1},\cdots ,u_{\lambda ,n-1}$ such that $u_{\lambda
,i}\in \tilde{B}_{i}^{+}$ for all $i=1,\cdots ,n-1$, and $S_{\lambda
}=\{ 0\} \cup \{ v_\lambda \} \cup \mathop{\rm Cl}(
u_{\lambda ,1}) \cup \cdots \cup \mathop{\rm Cl}(u_{\lambda ,n-1})$.
\item[(viii)] If $\max \{ \lambda_k,\nu \} <\lambda
<\lambda_{k+1}$, $k\geq n-1$, there exist $u_\lambda \in \tilde{A}
_1^+$ and $u_{\lambda ,1},\cdots ,u_{\lambda ,k}$ such that
$u_{\lambda ,i}\in \tilde{B}_{i}^{+}$ for all $i=1,\cdots ,k$, and
$S_\lambda =\{ 0\} \cup \{ u_\lambda \} \cup
\mathop{\rm Cl}(u_{\lambda ,1}) \cup \cdots \cup \mathop{\rm Cl}(
u_{\lambda,k}) $.
\item[(ix)] If $\lambda =\lambda_{k+1}$, $k\geq n-1$, there exist
$u_\lambda \in \tilde{A}_1^+$ and $u_{\lambda ,1},\cdots
,u_{\lambda ,k+1}$ such that $u_{\lambda ,i}\in \tilde{B}_{i}^{+}$ for
all $i=1,\cdots ,k$, $u_{\lambda ,k+1}\in B_{k+1}^{+}$and $S_{\lambda
}=\{ 0\} \cup \{ u_\lambda \} \cup \mathop{\rm Cl}(
u_{\lambda ,1}) \cup \cdots \cup \mathop{\rm Cl}(u_{\lambda ,k})
\cup \{ u_{\lambda ,k+1}\} $.
\end{description}
Possibility {\bf B}.
\begin{description}
\item[(i)] If $0<\lambda <\lambda_1$, $S_\lambda =\{ 0\} $.
\item[(ii)] If $\lambda =\lambda_1$, there exists $u_{\lambda ,1}\in
B_1^+$ such that $S_\lambda =\{ 0\} \cup \{ u_{\lambda,1}\} $.
\item[(iii)] If $\lambda_k<\lambda <\min \{ \lambda_{k+1},\nu
\} $, $1\leq k\leq n-1$, there exist $v_\lambda \in A_1^+$ and
$u_{\lambda ,1},\cdots ,u_{\lambda ,k}$ such that $u_{\lambda
,i}\in \tilde{B}_{i}^{+}$ for all $i=1,\cdots ,k$ and $S_{\lambda
}=\{ 0\} \cup \{ v_\lambda \} \cup \mathop{\rm Cl}(
u_{\lambda ,1}) \cup \cdots \cup \mathop{\rm Cl}(u_{\lambda ,k}) $.
\item[(iv)] If $\lambda =\lambda_{k+1},1\leq k\leq n-2$, there exist
$v_\lambda \in A_1^+$ and $u_{\lambda ,1},\cdots ,
u_{\lambda ,k+1}$ such that $u_{\lambda ,i}\in \tilde{B}_{i}^{+}$ for
all $i=1,\cdots ,k$, $u_{\lambda ,k+1}\in B_{k+1}^{+}$ and $S_{\lambda
}=\{ 0\} \cup \{ v_\lambda \} \cup \mathop{\rm Cl}(
u_{\lambda ,1}) \cup \cdots \cup \mathop{\rm Cl}(u_{\lambda ,k})
\cup \{ u_{\lambda ,k+1}\} $.
\item[(v)] If $\lambda =\nu $, there exist $v_\lambda \in A_1^+$ and
$u_{\lambda ,1},\cdots ,u_{\lambda ,n-1}$ such that $u_{\lambda
,i}\in \tilde{B}_{i}^{+}$ for all $i=1,\cdots ,n-1$, and $S_{\lambda
}=\{ 0\} \cup \{ v_\lambda \} \cup \mathop{\rm Cl}(
u_{\lambda ,1}) \cup \cdots \cup \mathop{\rm Cl}(u_{\lambda ,n-1})$.
\item[(vi)] If $\max \{ \lambda_k,\nu \} <\lambda <\lambda
_{k+1}$, $k\geq n-1$, there exist $u_\lambda \in \tilde{A}_1^+$ and
$u_{\lambda ,1},\cdots ,u_{\lambda ,k}$ such that $u_{\lambda
,i}\in \tilde{B}_{i}^{+}$ for all $i=1,\cdots ,k$, and $S_{\lambda
}=\{ 0\} \cup \{ u_\lambda \} \cup \mathop{\rm Cl}(
u_{\lambda ,1}) \cup \cdots \cup \mathop{\rm Cl}(u_{\lambda ,k}) $.
\item[(vii)] If $\lambda =\lambda_{k+1}$, $k\geq n-1$, there exist
$u_\lambda \in \tilde{A}_1^+$ and $u_{\lambda ,1},\cdots
,u_{\lambda ,k+1}$ such that $u_{\lambda ,i}\in \tilde{B}_{i}^{+}$ for
all $i=1,\cdots ,k$, $u_{\lambda ,k+1}\in B_{k+1}^{+}$and $S_{\lambda
}=\{ 0\} \cup \{ u_\lambda \} \cup \mathop{\rm Cl}(
u_{\lambda ,1}) \cup \cdots \cup \mathop{\rm Cl}(u_{\lambda ,k})
\cup \{ u_{\lambda ,k+1}\} $.
\end{description}
\end{theorem}
\begin{theorem}
\label{wmdjkgfh5}Assume that $p>2$ and $f$ satisfies conditions (\ref
{Austine1})-(\ref{Austine4}), and (\ref{E1}), (\ref{E2}). Moreover, assume
that there exists $n>1$ such that $\nu =\lambda_{n}$. Then one and only
one of the following possibilities occurs:
Possibility {\bf C}. There exists $\mu \in (0,\lambda_1) $
such that
\begin{description}
\item[(i)] If $0<\lambda <\mu $, $S_\lambda =\{ 0\} $.
\item[(ii)] If $\lambda =\mu $, there exists $v_\lambda \in A_1^+$
such that $S_\lambda =\{ 0\} \cup \{ v_\lambda \}$.
\item[(iii)] If $\mu <\lambda <\lambda_1$, there exist $v_\lambda $,
$w_\lambda \in A_1^+$ such that $v_\lambda \neq w_\lambda $ and
$S_\lambda =\{ 0\} \cup \{ v_\lambda ,w_{\lambda
}\} $.
\item[(iv)] If $\lambda =\lambda_1$, there exist $v_\lambda \in
A_1^+$ and $u_{\lambda ,1}\in B_1^+$ such that $S_{\lambda
}=\{ 0\} \cup \{ v_\lambda \} \cup \{u_{\lambda ,1}\} $.
\item[(v)] If $\lambda_k<\lambda <\lambda_{k+1}$, $1\leq k\leq n-1$,
there exist $v_\lambda \in A_1^+$ and $u_{\lambda ,1},\cdots
,u_{\lambda ,k}$ such that $u_{\lambda ,i}\in \tilde{B}_{i}^{+}$ for
all $i=1,\cdots ,k$ and $S_\lambda =\{ 0\} \cup \{
v_\lambda \} \cup \mathop{\rm Cl}(u_{\lambda ,1}) \cup \cdots \cup
\mathop{\rm Cl}(u_{\lambda ,k}) $.
\item[(vi)] If $\lambda =\lambda_{k+1},1\leq k\leq n-1$, there exist
$v_\lambda \in A_1^+$ and $u_{\lambda ,1},\cdots ,
u_{\lambda ,k+1}$ such that $u_{\lambda ,i}\in \tilde{B}_{i}^{+}$ for
all $i=1,\cdots ,k$, $u_{\lambda ,k+1}\in B_{k+1}^{+}$ and $S_{\lambda
}=\{ 0\} \cup \{ v_\lambda \} \cup \mathop{\rm Cl}(
u_{\lambda ,1}) \cup \cdots \cup \mathop{\rm Cl}(u_{\lambda ,k})
\cup \{ u_{\lambda ,k+1}\} $.
\item[(vii)] If $\lambda_k<\lambda <\lambda_{k+1}$, $k\geq n$, there
exists $u_\lambda \in \tilde{A}_1^+$ and $u_{\lambda ,1},\cdots
,u_{\lambda ,k}$ such that $u_{\lambda ,i}\in \tilde{B}_{i}^{+}$ for
all $i=1,\cdots ,k$, and $S_\lambda =\{ 0\} \cup \{
u_\lambda \} \cup \mathop{\rm Cl}(u_{\lambda ,1}) \cup \cdots \cup
\mathop{\rm Cl}(u_{\lambda ,k}) $.
\item[(viii)] If $\lambda =\lambda_{k+1}$, $k\geq n$, there exist
$u_\lambda \in \tilde{A}_1^+$ and $u_{\lambda ,1},\cdots
,u_{\lambda ,k+1}$ such that $u_{\lambda ,i}\in \tilde{B}_{i}^{+}$ for
all $i=1,\cdots ,k$, $u_{\lambda ,k+1}\in B_{k+1}^{+}$ and $S_{\lambda
}=\{ 0\} \cup \{ u_\lambda \} \cup \mathop{\rm Cl}(
u_{\lambda ,1}) \cup \cdots \cup \mathop{\rm Cl}(u_{\lambda ,k})
\cup \{ u_{\lambda ,k+1}\} $.
\end{description}
Possibility {\bf D}.
\begin{description}
\item[(i)] If $0<\lambda <\lambda_1$, $S_\lambda =\{ 0\} $.
\item[(ii)] If $\lambda =\lambda_1$, there exists $u_{\lambda ,1}\in
B_1^+$ such that $S_\lambda =\{ 0\} \cup \{ u_{\lambda,1}\} $.
\item[(iii)] If $\lambda_k<\lambda <\lambda_{k+1}$, $1\leq k\leq n-1$,
there exist $v_\lambda \in A_1^+$ and $u_{\lambda ,1},\cdots
,u_{\lambda ,k}$ such that $u_{\lambda ,i}\in \tilde{B}_{i}^{+}$ for
all $i=1,\cdots ,k$ and $S_\lambda =\{ 0\} \cup \{
v_\lambda \} \cup \mathop{\rm Cl}(u_{\lambda ,1}) \cup \cdots \cup
\mathop{\rm Cl}(u_{\lambda ,k}) $.
\item[(iv)] If $\lambda =\lambda_{k+1},1\leq k\leq n-1$, there exist
$v_\lambda \in A_1^+$ and $u_{\lambda ,1},\cdots ,
u_{\lambda ,k+1}$ such that $u_{\lambda ,i}\in \tilde{B}_{i}^{+}$ for
all $i=1,\cdots ,k$, $u_{\lambda ,k+1}\in B_{k+1}^{+}$ and $S_{\lambda
}=\{ 0\} \cup \{ v_\lambda \} \cup \mathop{\rm Cl}(
u_{\lambda ,1}) \cup \cdots \cup \mathop{\rm Cl}(u_{\lambda ,k})
\cup \{ u_{\lambda ,k+1}\} $.
\item[(v)] If $\lambda_k<\lambda <\lambda_{k+1}$, $k\geq n$, there
exists $u_\lambda \in \tilde{A}_1^+$ and $u_{\lambda ,1},\cdots
,u_{\lambda ,k}$ such that $u_{\lambda ,i}\in \tilde{B}_{i}^{+}$ for
all $i=1,\cdots ,k$, and $S_\lambda =\{ 0\} \cup \{
u_\lambda \} \cup \mathop{\rm Cl}(u_{\lambda ,1}) \cup \cdots \cup
\mathop{\rm Cl}(u_{\lambda ,k}) $.
\item[(vi)] If $\lambda =\lambda_{k+1}$, $k\geq n$, there exist
$u_\lambda \in \tilde{A}_1^+$ and $u_{\lambda ,1},\cdots
,u_{\lambda ,k+1}$ such that $u_{\lambda ,i}\in \tilde{B}_{i}^{+}$ for
all $i=1,\cdots ,k$, $u_{\lambda ,k+1}\in B_{k+1}^{+}$ and $S_{\lambda
}=\{ 0\} \cup \{ u_\lambda \} \cup \mathop{\rm Cl}(
u_{\lambda ,1}) \cup \cdots \cup \mathop{\rm Cl}(u_{\lambda ,k})
\cup \{ u_{\lambda ,k+1}\} $.
\end{description}
\end{theorem}
The novelty in these results concerns the cases $p>1$ with $p\neq 2$. The
case $p=2$ was proved by Korman et al. \cite{KormanLiOuyang}. Of course, the
case $p=2$ is also studied here.
\section{Some properties of the nonlinearity $f$}\label{sec3}
In this section we establish some properties of $f$. These are
used in the sequel and are of importance in our analysis. We first state the
properties and next we give the proofs.
\subsection*{Statement of properties}
Assume that $f$ satisfies (\ref{Austine1})-(\ref{Austine3}), then there
exists $u_0\in (0,c) $ such that
\begin{eqnarray}
&f''\geq 0\mbox{ in }(0,u_0]\,, &\label{A1}\\
&f''\leq 0\mbox{ in }[ u_0,c) \,. &\label{A2}
\end{eqnarray}
Moreover, there exist two open intervals $I$ and $J$ with $I\subset (
0,u_0) $ and $J\subset (u_0,c) $ such that
\begin{eqnarray}
&f''>0\mbox{ in }I \,,& \label{A3}\\
&f''<0\mbox{ in }J\,.& \label{A4}
\end{eqnarray}
Hence
\begin{eqnarray}
&f'\mbox{ is increasing in }(0,u_0], \mbox{ and strictly increasing in }
I\,, &\label{A5} \\
&f'\mbox{ is decreasing in }[ u_0,c) ,\mbox{ and
strictly decreasing in }J\,. & \label{A6}
\end{eqnarray}
Furthermore,
\begin{equation}
f'(0) <0,f'(u_0)>0,f'(c) <0. \label{A7}
\end{equation}
Hence, there exist $u_0^{-}\in (0,u_0) $ and
$u_0^{+}\in (u_0,c) $ such that
\begin{eqnarray}
&f'\leq 0\mbox{ in }[ 0,u_0^{-}) \cup (u_0^{+},c] & \label{A8} \\
&f'(u_0^{-}) =f'(u_0^{+}) =0 &\label{A9}\\
& f'>0\mbox{ in }(u_0^{-},u_0^{+})\, .&\label{A10}
\end{eqnarray}
Moreover,
\begin{equation}
f'(b) >0\,. \label{A11} \end{equation}
So,
\begin{eqnarray}
&0 0\,.
\]
Thus, there exist $\delta >0$ and $M>0$ such that
\[
F(r) -F(x) >M(r-x) ,\mbox{ for all } x\in (r-\delta ,r) \,.
\]
Therefore,
\[
\int_{r-\delta }^{r}\frac{dx}{(F(r) -F(x)
) ^{1/p}} 0$ the time map
$T_{+}(\lambda ,\cdot) $ admits a unique critical point; a
minimum.
If $p>2$, for all $\lambda >0$ {\em either} the time map $T_{+}(
\lambda ,\cdot) $ is strictly increasing {\em or} admits a unique
critical point; a minimum in $(0,E_*(\lambda))$.
\end{lemma}
\paragraph{Proof}
By (\ref{a16}), recall that for all $\lambda >0$ and $E\in (
0,E_*(\lambda))$.
\[
T_{+}(\lambda ,E) =(\lambda p')^{-1/p}S_{+}(r_{+}(\lambda ,E)) .
\]
On the other hand, by (\ref{eq11}) and (\ref{abhu}), for each fixed $\lambda
>0$, the function $E\mapsto r_{+}(\lambda ,E) $ is an
increasing $C^{1}-$diffeomorphism from $(0,E_*(\lambda
)) $ onto $(r,c) $, where $r$ is the unique zero
of $F$ in $(b,c) $. A differentiation yields
\[
\frac{\partial T_{+}}{\partial E}(\lambda ,E) =(\lambda
p') ^{-1/p}\times \frac{\partial r_{+}}{\partial E}(
\lambda ,E) \times S_{+}'(r_{+}(\lambda,E)) .
\]
Thus, to study the variations of $T_{+}(\lambda ,\cdot) $ in
$(0,E_*(\lambda)) $ it suffices to study those
of $S_{+}(\cdot) $ in $(r,c) $.
One has
\[
S_{+}(\rho) =\int_0^\rho \{ F(\rho) -F(u) \} ^{-1/p}du,\;\rho \in (r,c)
\]
and
\begin{equation}
S_{+}'(\rho) =\frac 1{p\rho }\int_0^\rho \frac{%
H_p(\rho) -H_p(u) }{\{ F(\rho)
-F(u) \} ^{(p+1)/p}}du,\;\rho \in (r,c)\,,
\label{Dop}
\end{equation}
where
\begin{equation}
H_p(u) =pF(u) -uf(u) ,\mbox{ for all }
u\in [ 0,c] \mbox{ and }p>1\,. \label{B1}
\end{equation}
To study the sign of the derivative $S_{+}'(\cdot) $ we need to study that
of expression
\[
H_p(\rho) -H_p(u) \;\mbox{ for all }01 \label{B2}
\end{equation}
and
\begin{equation}
H_p''(u) =(p-2) f'(
u) -uf''(u) ,\mbox{ for all }u\in [0,c] \mbox{ and }p>1\,. \label{B3}
\end{equation}
By (\ref{Austine1}) it follows that
\begin{equation}
H_p(0) =H_p'(0) =0, \mbox{ for all }p>1\,,
\label{B4}
\end{equation}
and by (\ref{Austine1}) and (\ref{Austine3}), it follows that
\begin{equation}
H_p(c) >0, \mbox{ for all }p>1, \label{B5}
\end{equation}
and by (\ref{A7}),
\begin{equation}
H_p'(c) >0, \mbox{ for all }p>1. \label{B6}
\end{equation}
Now, let us look closely to the special case where $p=2$. By (\ref{A1}), it
follows that
\[
H_2''(u) \leq 0,\mbox{ for all }u\in (0,u_0] \,,
\]
and by (\ref{B4}) it follows that
\begin{equation}
H_2'(u) \leq 0,\mbox{ for all }u\in [0,u_0]\, . \label{krs}
\end{equation}
By (\ref{A3}) it follows that there exists a unique $\alpha \in [0,u_0) $
such that
\begin{eqnarray}
&H_2(u) =H_2'(u) =0\mbox{ for all } u\in [ 0,\alpha ] & \label{B7} \\
&H_2(u) < 0\mbox{ and }H_2'(u) <0 \mbox{ for all }
u\in (\alpha ,u_0]\,.& \nonumber
\end{eqnarray}
On the other hand, by (\ref{A2}) it follows that
$H_2''(u) \geq 0$, for all $u\in [u_0,c)$,
and by (\ref{B6}) and (\ref{B7}) there exist $\beta $ and $\gamma $ in
$(u_0,c) $ such that
$$\displaylines{
u_0<\beta \leq \gamma 0$, the time map $T_{+}(\lambda ,\cdot
) $ admits a unique critical point which is a minimum in $(
0,E_*(\lambda)) $ and satisfies
\[
\lim_{E\to 0^{+}}T_{+}(\lambda ,E) =\lim_{E\to
E_*}T_{+}(\lambda ,E) =+\infty .
\]
Also, by Lemma \ref{Lemma2}
\[
\lim_{\rho \to r^{+}}S_{+}(\rho) =\lim_{\rho
\to c^{-}}S_{+}(\rho) =+\infty ,
\]
and by the proof of Lemma \ref{Lemma3}, $S_{+}$ admits a unique critical
point, a minimum in $(r,c) $ at $r_*$, say. Therefore,
based upon the fact that for all $\lambda >0$, $r_{+}(\lambda ,\cdot
) $ is strictly increasing from $(0,E_*(\lambda
)) $ onto $(r,c) $, it follows that there exists
a unique $\tilde E=\tilde E(\lambda) \in (0,E_*(
\lambda)) $ such that $r_*=r_{+}(\lambda ,\tilde
E(\lambda)) $. Thus, by (\ref{a16}), for all $E\in
(0,E_*(\lambda)) $
\begin{eqnarray*}
T_{+}(\lambda ,\tilde E(\lambda)) &=&(
p'\lambda) ^{-1/p}S_{+}(r_*) \\
&\leq &(p'\lambda) ^{-1/p}S_{+}(r_{+}(
\lambda ,E)) =T_{+}(\lambda ,E) ,
\end{eqnarray*}
hence, $T_{+}(\lambda ,\cdot) $ attains its unique global
minimum value at $\tilde E(\lambda) \in (0,E_*(
\lambda)) $. It follows that
\begin{itemize}
\item If $(p'\lambda) ^{-1/p}S_{+}(r_*)
>(1/2) $, the equation $T_{+}(\lambda ,E) =(1/2)$
in the variable $E\in (0,E_*(\lambda)) $
admits no solution.
\item If $(p'\lambda) ^{-1/p}S_{+}(r_*)
=(1/2) $, the equation $T_{+}(\lambda ,E) =(1/2)$
in the variable $E\in (0,E_*(\lambda)) $
admits a unique solution; $\tilde{E}(\lambda) $.
\item If $(p'\lambda) ^{-1/p}S_{+}(r_*)
<(1/2) $, the equation $T_{+}(\lambda ,E) =(1/2)$
in the variable $E\in (0,E_*(\lambda)) $
admits exactly two solutions.
\end{itemize}
Hence, Theorem \ref{wmdjkgfh} is proved if we let $\lambda_0=(
2S_{+}(r_*)) ^p/p'$. \hfill$\diamondsuit$\medskip
Now, assume that $p>2$ and let us prove Theorem \ref{wmdjkgfh2}. By the
assumption
\[
\nu =(2S_{+}(c)) ^p/p'<(2S_{+}(
r)) ^p/p'=\lambda_1,
\]
it follows that, for all fixed $\lambda >0,
$\[
\lim_{E\to E_*}T_{+}(\lambda ,E) <\lim_{E\to 0}T_{+}(\lambda ,E) .
\]
According to Lemma \ref{Lemma3}, it follows that $T_{+}(\lambda
,\cdot) $ admits a unique critical point; a minimum. Thus, as in
the case where $1 1/2$, the equation $T_{+}(\lambda ,E) =1/2$ in the variable
$E\in (0,E_*(\lambda)) $ admits no solution.
Thus, if $0<\lambda <\mu :=(2S_{+}(r_*))
^{p}/p'$, problem (\ref{P1}) admits no solution in $J_1(
\lambda) $.
\item If $(p'\lambda) ^{-1/p}S_{+}(r_*)
=1/2$, the equation $T_{+}(\lambda ,E) =1/2$ in the variable
$E\in (0,E_*(\lambda)) $ admits a unique
solution; $\tilde{E}(\lambda) $. Thus, if $\lambda =\mu $,
problem (\ref{P1}) admits a unique solution $v_\lambda $ in $J_1(
\lambda) $, and this solution belongs to $A_1^+$.
\item If $(p'\lambda) ^{-1/p}S_{+}(r_*)
<1/2<(p'\lambda) ^{-1/p}S_{+}(c) $, the
equation $T_{+}(\lambda ,E) =1/2$ in the variable $E\in (
0,E_*(\lambda)) $ admits exactly two solutions.
Thus, if $\mu <\lambda <\nu $, problem (\ref{P1}) admits exactly two
solutions $v_\lambda $, $w_\lambda $ in $J_1(\lambda) ,$
and they belong to $A_1^+$.
\item If $(p'\lambda) ^{-1/p}S_{+}(c)
=1/2 $, the equation $T_{+}(\lambda ,E) =1/2$ in the variable
$E\in (0,E_*(\lambda)) $ admits a unique
solution; $E_1<\tilde{E}(\lambda) $. Thus, if $\lambda =\nu
$, problem (\ref{P1}) admits a unique solution $v_\lambda $ in $J_1(
\lambda) $, and it belongs to $A_1^+$.
\item If $(p'\lambda) ^{-1/p}S_{+}(c)
<1/2<(p'\lambda) ^{-1/p}S_{+}(r) $, the
equation $T_{+}(\lambda ,E) =1/2$ in the variable $E\in (
0,E_*(\lambda)) $ admits a unique solution; $E_1<%
\tilde{E}(\lambda) $. Thus, if $\nu <\lambda <\lambda_1$,
problem (\ref{P1}) admits a unique solution $v_\lambda $ in $J_1(
\lambda) $, and it belongs to $A_1^+$.
\item If $(p'\lambda) ^{-1/p}S_{+}(r)
\geq 1/2$, the equation $T_{+}(\lambda ,E) =1/2$ in the
variable $E\in (0,E_*(\lambda)) $ admits no
solution. Thus, if $\lambda \geq \lambda_1$, problem (\ref{P1}) admits no
solution in $J_1(\lambda) $.
\end{itemize}
Now, let us look for the nontrivial solutions in $J_2(\lambda)$.
For all $\lambda >0$,
\[
T_{+}(\lambda ,E_*(\lambda)) =1/2\mbox{ if
and only if }(p'\lambda) ^{-1/p}S_{+}(c)=1/2\,.
\]
Thus, problem (\ref{P1}) admits a solution in $J_2(\lambda)
\cap A_1^{+}$ if and only if $\lambda =\nu $, and in this case the solution
is unique. For all $\lambda >0$,
\[
T_{+}(\lambda ,E_*(\lambda)) <1/2\mbox{ if
and only if }(p'\lambda) ^{-1/p}S_{+}(c)<1/2\,.
\]
Thus, problem (\ref{P1}) admits a solution in $J_2(\lambda)
\cap \tilde A_1^{+}$ if and only if $\lambda >\nu $, and in this case the
solution is unique.
Now let us look for the nontrivial solutions in $J_0$. Let $n\in {\mathbb N}^*$.
For all $\lambda >0$,
\[
nT_{+}(\lambda ,0) =1/2\mbox{ if and only if }n(
p'\lambda) ^{-1/p}S_{+}(r) =1/2\,.
\]
Thus, problem (\ref{P1}) admits a solution in $J_0\cap B_n^{+}$ if and only
if $\lambda =\lambda_n$, and in this case the solution is unique.
For all $\lambda >0$,
\[
nT_{+}(\lambda ,0) <1/2\mbox{ if and only if }n(
p'\lambda) ^{-1/p}S_{+}(r) <1/2\,.
\]
Thus, problem (\ref{P1}) admits a solution $u_{\lambda ,n}$ in $J_0\cap
\tilde B_n^{+}$ if and only if $\lambda >\lambda_n$, and in this case each
function $u$ in $\mathop{\rm Cl}(u_{\lambda ,n}) $ is a solution to (\ref
{P1}).
Therefore, Theorem \ref{wmdjkgfh2} is proved. \hfill$\diamondsuit$\smallskip
To prove Theorems \ref{wmdjkgfh3}, \ref{wmdjkgfh4} and \ref{wmdjkgfh5}, the
same reasoning works. However, for Theorems \ref{wmdjkgfh4} and \ref
{wmdjkgfh5}, one has
\[
\lim_{E\to 0}T_{+}(\lambda ,E) <\lim_{E\to
E_*}T_{+}(\lambda ,E) .
\]
Thus, according to Lemma \ref{Lemma3}, $T_{+}(\lambda ,\cdot)
$ may have a unique critical point; a minimum, or may be strictly
increasing. These two alternatives lead for Theorem \ref{wmdjkgfh4} to the
possibilities {\bf A} and {\bf B}, and for Theorem \ref{wmdjkgfh5} to the
possibilities {\bf C} and {\bf D}. \hfill$\diamondsuit$
\section{Open questions}\label{sec6}
\begin{enumerate}
\item For $p>2$, Theorems \ref{wmdjkgfh4} and \ref{wmdjkgfh5} provide
alternative results. Do there exist some sufficient conditions ensuring
that possibility {\bf A} (resp. {\bf B}, {\bf C}, {\bf D}) holds? Can one
find an example of $f$ such that possibility {\bf A} (resp. {\bf B}, {\bf C},
{\bf D}) holds? Or maybe among the two alternatives Theorem \ref{wmdjkgfh4}
(resp. Theorem \ref{wmdjkgfh5}) provides, the same one holds always?
\item In the literature, there are some examples of nonlinearities
$g(\lambda ,u)$ such that the structure of the solution set of (\ref{P1})
does change when $p$ varies (as that studied in this paper) but in others it
does not change; for example as that studied by Addou and Benmeza\"{\i }
\cite{Addou3} for $g(\lambda ,u)=\lambda \exp (u) $.
Thus, we ask the question of providing sufficient or necessary conditions on
$g$ insuring that the structure of (at least) the set of (positive)
solutions of problem (\ref{P1}) does not change when $p$ varies.
\end{enumerate}
\section{\bf Appendix}
In this section, we prove Lemma \ref{Lemmasup} which is a
consequence of the following two lemmas.
\begin{lemma} \label{Lemma45}
Let $u$ be a nontrivial solution of (\ref{P1}). Then
\[
u\geq 0\mbox{ in }[ 0,1] \mbox{ and }0\leq
u'(0) \leq E_*(\lambda) =(p'\lambda F(c)) ^{1/p}.
\]
Moreover,
\begin{itemize}
\item If $0\leq u'(0)