\documentclass[twoside]{article} \usepackage{amssymb} % font used for R in Real numbers \pagestyle{myheadings} \markboth{\hfil Diffusion equation for composite materials \hfil EJDE--2000/15} {EJDE--2000/15\hfil Mohamed El Hajji \hfil} \begin{document} \title{\vspace{-1in}\parbox{\linewidth}{\footnotesize\noindent {\sc Electronic Journal of Differential Equations}, Vol.~{\bf 2000}(2000), No.~15, pp.~1--11. \newline ISSN: 1072-6691. URL: http://ejde.math.swt.edu or http://ejde.math.unt.edu \newline ftp ejde.math.swt.edu \quad ftp ejde.math.unt.edu (login: ftp)} \vspace{\bigskipamount} \\ % A diffusion equation for composite materials \thanks{ {\em 1991 Mathematics Subject Classifications:} 31C40, 31C45, 60J50, 31C35, 31B35. \hfil\break\indent {\em Key words and phrases:} Diffusion equation, composite material, \hfil\break\indent asymptotic behavior, $H^0$-convergence. \hfil\break\indent \copyright 2000 Southwest Texas State University and University of North Texas. \hfil\break\indent Submitted October 14, 1999. Published February 22, 2000.} } \date{} % \author{Mohamed El Hajji} \maketitle \begin{abstract} In this article, we study the asymptotic behavior of solutions to the diffusion equation with non-homogeneous Neumann boundary conditions. This equation models a composite material that occupies a perforated domain, in ${\mathbb R}^N$, with small holes whose sizes are measured by a number $r_\varepsilon$. We examine the case when $r_\varepsilon < \varepsilon^{N/(N-2)}$ with zero-average data around the holes, and the case when $\lim_{\varepsilon\to 0}{r_\varepsilon/\varepsilon}=0$ with nonzero-average data. \end{abstract} \newtheorem{theorem}{Theorem} \section{Introduction} As a model for a composite material occupying a perforated domain in ${\mathbb R}^N$, the diffusion equation with non-homogeneous boundary conditions has been the object of many studies. In particular, we are interested in the properties of the solution to the equation \begin{eqnarray} &- \mathop{\rm div} \left(A^{\varepsilon} \nabla u_{\varepsilon} \right) = f\quad \hbox {in } \Omega_{\varepsilon},& \nonumber \\ &\left(A^{\varepsilon}(x) \nabla u_{\varepsilon} \right)\cdot {n} = h_\varepsilon\; \hbox { on } \partial S_{\varepsilon},& \label{I} \\ &u_{\varepsilon} = 0\;\hbox { on } \partial \Omega ,& \nonumber \end{eqnarray} where $\Omega_\varepsilon$ is the perforated domain obtained by extracting a set of holes $S_\varepsilon$ from $\Omega$, $f$ and $h_\varepsilon$ are given functions, and $A^\varepsilon$ is an operator in the space \begin{eqnarray*} M(\alpha, \beta ; \Omega)&=&\big\{ A\in [L^\infty ({\mathbb R}^N)]^{N^2} : (A(x)\lambda, \lambda)\geq \alpha |\lambda|^2,\\ &&\quad|A(x)\lambda|\leq \beta |\lambda|\, \forall \lambda\in {\mathbb R}^N, p.p\cdot x\in \Omega\big\} \end{eqnarray*} which is defined for all real numbers $\alpha$ and $\beta$. When $h_\varepsilon\in L^2(\partial S_\varepsilon)$ and the domain has holes of size $r_\varepsilon$, solutions to (\ref{I}) have been studied by D. Cioranescu and P. Donato \cite{Cio-Do} for $r_\varepsilon=\varepsilon$ and $A^\varepsilon(x)=A({x\over\varepsilon})$ with $A\in M(\alpha,\beta;\Omega)$, and by C. Conca and P. Donato \cite{Conca-Do} for $A=I$ and $r_\varepsilon\ll \varepsilon$. Using the concept of $H^0$-convergence introduced by M. Briane et al. \cite{H-conv}, P. Donato and M. El Hajji \cite{Hajji1} showed convergence of solutions in not-necessarily periodic domains. The $H^0$-convergence is proven by showing strong convergence in $H^{-1}(\Omega)$ of the distribution, concentrated on the boundary of $S_\varepsilon$, given by \begin{equation}\label{II} \langle\nu^\varepsilon_h,\varphi\rangle _{H^{-{1}}(\Omega),\;H^1_0(\Omega)} \ =\ \langle h_\varepsilon, \varphi\rangle_{H^{-{1/ 2}} (\partial S_\varepsilon),\; H^{1/ 2}(\partial S_\varepsilon)}, \quad \forall\varphi\in H^1_0(\Omega). \end{equation} This method allows the study the asymptotic behavior of solutions to (\ref{I}) for $h_\varepsilon\in L^2(\partial S_\varepsilon)$ with $r_\varepsilon >\varepsilon^{N/{N-2}}$ (see \cite{Hajji1}), and for perforated domains with double periodicity with $h_\varepsilon\in H^{-{1/2}}(\partial S_\varepsilon)$ and ${r_\varepsilon /\varepsilon}\to 0$ as $\varepsilon\to 0$ (see T. Levy \cite{Levy}). In this article, we study the perforated domains with $r_\varepsilon < \varepsilon^{N/{N-2}}$, and perforated domains such that $r_\varepsilon/ \varepsilon \to 0$ as $\varepsilon\to 0$. In these situation the distribution given by (\ref{II}) does not converge strongly in $H^{-1}(\Omega)$, and so the method described above can not be applied. In spite of this, we describe the asymptotic behavior of solutions to (\ref{I}) using oscillating test functions. This method was introduced by L. Tartar \cite{Tartar} and has been used by many authors. \section{Statement of the main result} Let $\Omega$ be a bounded open set of ${\mathbb R}^N$, $Y=[0,l_1[\times..\times[0,l_N[$ be a representative cell, and $S$ be an open set of $Y$ with smooth boundary $\partial S$ such that $\overline S\subset Y$. Let $\varepsilon$ and $r_\varepsilon$ be terms of positive sequences such that $r_\varepsilon\leq\varepsilon$. Let $c$ denote positive constants independent of $\varepsilon$. We denote by $\tau(r_\varepsilon\overline S)$ the set of translations of $r_\varepsilon\overline S$ of the form $\varepsilon k_1+r_\varepsilon\overline S$ with $k\in{\mathbb Z}^N$. Let $k_l=(k_1l_1,..,k_Nl_N)$ represent the holes in ${\mathbb R}^N$. We assume that the holes $\tau(r_\varepsilon\overline S)$ do not intersect the boundary $\partial\Omega$. If $S_\varepsilon$ is the set of the holes enclosed in $\Omega$, it follows that there exists a finite set ${\mathcal K}\in{\mathbb Z}^N$ such that $$S_\varepsilon={\bigcup_{k\in {\cal K}}}r_\varepsilon(k_l+\overline S).$$ We set \begin{equation}\label{lot1} \Omega_\varepsilon=\Omega\setminus\overline {S_\varepsilon}, \end{equation} and denote by $\chi_{\Omega_\varepsilon}$ the characteristic function of $\Omega_\varepsilon$. Let $V_\varepsilon$ denote the Hilbert space \[ V_\varepsilon=\big\{v\in H^1(\Omega_\varepsilon), v_{|_{\partial\Omega}}=0\big\} \] equipped with the $H^1$-norm. Let $A(y)=(a_{ij}(y))_{ij}$ be a matrix such that $$ A\in\left(L^\infty\left({\mathbb R}^N\right)\right)^{N^2}, $$ $A$ is Y-periodic, and there there exist $\alpha >0$ such that \begin{equation} \label{lot2} \sum_{i,j=1}^{N}a_{i j}\left(y\right)\lambda_i\lambda_j\geq\alpha \left|\lambda\right|^2, \quad\mbox{ a.e. $y$ in } {\mathbb R}^{N},\quad\forall\,\lambda\in{\mathbb R}^{N}. \end{equation} We note that for every $\varepsilon>0$, \begin{equation}\label{lot3} A^\varepsilon(x)=A(\displaystyle{x\over \varepsilon}) \quad\mbox{ a.e. $x$ in }{\mathbb R}^N. \end{equation} In this paper, we study the system \begin{eqnarray} &-\mathop{\rm div }(A^\varepsilon \nabla u_\varepsilon)=0\quad\mbox{in } \Omega_\varepsilon,\nonumber\\ &(A^\varepsilon \nabla u_\varepsilon).n=h_\varepsilon\quad\mbox{on } \partial S_\varepsilon,\label{lot4}\\ &u_\varepsilon =0,\quad\mbox{on }\partial\Omega,\nonumber \end{eqnarray} where $\Omega_\varepsilon$ is given by (\ref{lot1}), $A^\varepsilon$ is given by (\ref{lot3}), and $h_\varepsilon$ is given by \begin{equation}\label{lot5} h^\varepsilon(x)=h({x\over{r_\varepsilon}}), \end{equation} where $h\in L^2(\partial S)$ is $Y$-periodic function. Set \begin{equation}\label{lot6} I_h={1\over|Y|}\int_{\partial S}h \,d\sigma\,. \end{equation} We examine the case where $r_\varepsilon < \varepsilon^{N/(N-2)}$ with $I_h\neq 0$, and the case where $\lim_{\varepsilon\to o} r_\varepsilon/ \varepsilon = 0$ with $I_h=0$. The following result describes the asymptotic behavior of the solution to (\ref{lot4}) in the two cases. \begin{theorem} Let $u_\varepsilon$ be the solution of (\ref{lot4}). Suppose that one of the following hypotheses is satisfied \begin{equation}\label{lot7} I_h\neq 0\quad\mbox{and}\quad \left\{ \begin{array}{ll} \displaystyle\lim_{\varepsilon\to 0}{{r_\varepsilon}\over{\varepsilon ^{N/(N-2)}}}=0& \mbox{if $N>2$},\\[3pt] \displaystyle\lim_{\varepsilon\to 0}\varepsilon^{-2} (\ln (\varepsilon/r_\varepsilon))^{-1}=0 & \mbox{if $N=2$}, \end{array}\right. \end{equation} or \begin{equation}\label{lot8} I_h=0\quad\mbox{and}\quad \displaystyle\lim_{\varepsilon\to 0}{{r_\varepsilon}\over\varepsilon}=0\,. \end{equation} Then, for every $\varepsilon>0$, there exists an extension operator $P_\varepsilon$ defined from $V_\varepsilon$ to $H_0^1(\Omega)$ satisfying \begin{eqnarray} & P_\varepsilon\in{\cal L}\left(V_\varepsilon , H^1_0(\Omega)\right),& \label{lot9i}\\ & \left(P_\varepsilon v\right)_{\mid_{\Omega_\varepsilon}}=v\; \forall v\in V_\varepsilon,& \label{lot9ii}\\ & \left\Vert \nabla \left(P_\varepsilon v\right)\right\Vert_{\left(L^2 \left(\Omega\right)\right)^N}\leq C\, \left\Vert \nabla v\right\Vert_{\left(L^2\left(\Omega_\varepsilon\right) \right)^N},\;\forall v\in V_\varepsilon\,.& \label{lot9iii} \end{eqnarray} such that $$({r_\varepsilon\over \varepsilon})^{-{N/2}}P_\varepsilon u_\varepsilon \rightharpoonup u\quad\mbox{weakly in }H_0^1(\Omega),\quad\mbox{for }N>2 $$ and $$P_\varepsilon[({r_\varepsilon\over\varepsilon})^{-{1/2}} (\log {\varepsilon\over{r_\varepsilon}})^{-{1/2}}u_\varepsilon] \rightharpoonup u\quad\mbox{weakly in }H_0^1(\Omega),\quad\mbox{for }N=2, $$ where $u$ is the solution of the problem \begin{eqnarray*} &-\mathop{\rm div}(A^0.\nabla u)=0\quad\mbox{in }\Omega,&\\ &u =0\quad\mbox{on }\partial \Omega,& \end{eqnarray*} and the matrix $A^0=(a^0_{ij})_{ij}$ has entries \begin{equation}\label{lot10} a^0_{ij}={1\over{|Y|}}\int_Y(a_{ji} -\sum_{k=1}^Na_{ki}{{\partial{\chi}_j}\over{\partial y_k}} dy), \end{equation} and $\chi_j$ is a $Y$-periodic function that satisfies \begin{equation}\label{lot11} -\mathop{\rm div}(A^t\nabla(y_j-{\chi}_j))=0\quad\mbox{in }Y \end{equation} \end{theorem} \paragraph{Remark.} One can replace the first equation of system (\ref{lot4}) by $$-\mathop{\rm div}(A^\varepsilon\nabla u_\varepsilon) =f_\varepsilon\quad\mbox{in }\Omega_\varepsilon,$$ with \begin{eqnarray*} &({{r_\varepsilon}\over\varepsilon})^{-{N/2}}f_\varepsilon\rightharpoonup f\quad\mbox{weakly in }L^2(\Omega)\quad\mbox{if }N>2,&\\ &({{r_\varepsilon}\over\varepsilon})^{-1}(\ln(\varepsilon/r_\varepsilon) )^{-{1/2}}f_\varepsilon\rightharpoonup f\quad\mbox{weakly in }L^2(\Omega) \quad\mbox{if }N=2.& \end{eqnarray*} Then $u$ will be the solution of \begin{eqnarray*} &-\mathop{\rm div}(A^0.\nabla u)=f\quad\mbox{in }\Omega,\\ &u =0\quad\mbox{on }\partial \Omega. \end{eqnarray*} This approach has been used in \cite{Conca-Do} for the case $A=I$, in \cite{Cio-Do} when $A=I$ and $r_\varepsilon=\varepsilon$, and in \cite{Hajji1} for the case where $r_\varepsilon> \varepsilon^{N/(N-2)}$ using the $H^0$-convergence and some arguments given by S. Kaizu in \cite{Kaizu}. \section{Proof of the main result} Observe first that $S_\varepsilon$ is admissible in $\Omega$, in the sense of the $H^0$-convergence (\cite{Hajji1,Cio-SJ,Conca-Do,Tartar}). Then there exists an extension operator $P_\varepsilon$ satisfying (\ref{lot10}). On the other hand, the matrix $A^0$ can be defined by $$A^0\lambda={{\cal M}}_{Y}({}^tA\nabla w_\lambda)={1\over|Y|} \int_Y{}^tA\nabla w-\lambda \,dy,\quad\forall\lambda\in{\mathbb R}^N,$$ where for every $\lambda\in{\mathbb R}$, $w_\lambda$ is the solution of the problem \begin{eqnarray}\label{lot12} &-\mathop{\rm div}({}^tA\nabla w_\lambda)=0\quad\mbox{in }Y,&\\ &\mbox{with } w_\lambda-\lambda y\quad\mbox{$Y$-periodic}.&\nonumber \end{eqnarray} For $x\in {\mathbb R}^N$, let \begin{equation}\label{lot13} w_\lambda^\varepsilon (x)=\varepsilon w_\lambda ({x\over\varepsilon}). \end{equation} To simplify notation, let \begin{eqnarray}\label{lot14} \delta^\varepsilon= \left\{ \begin{array}{ll} (r_\varepsilon/\varepsilon)^{-{N/2}}& \mbox{if $N>2$},\\ (r_\varepsilon/\varepsilon)^{-1}(\ln(\varepsilon/r_\varepsilon))^{-1/2} & \mbox{if $N=2$}. \end{array}\right. \end{eqnarray} Taking $u_\varepsilon$ as a test function in the variational formulation of (\ref{lot4}), and using the classical techniques of {\em a priori} estimates, one can easily show the existence of two constants c and c' independent of $\varepsilon$ such that $$c'\leq \| \nabla (\delta^\varepsilon u_\varepsilon) \|_{L^2(\Omega_\varepsilon) }\leq c. $$ Hence, from (\ref{lot9iii}), up to a subsequence, \begin{equation}\label{lot15} P_\varepsilon(\delta^\varepsilon u_\varepsilon)\rightharpoonup u\quad\mbox{weakly in }H_0^1(\Omega). \end{equation} Set now $\xi^\varepsilon=A^\varepsilon\nabla[P_\varepsilon(\delta^\varepsilon u_\varepsilon)]$. Then using (\ref{lot15}), (\ref{lot9i})-(\ref{lot9iii}) and (\ref{lot2})-(\ref{lot3}), one shows that $\xi^\varepsilon$ is bounded in $L^2(\Omega)$, and so up to a subsequence \begin{equation}\label{lot16} \xi^\varepsilon\rightharpoonup \xi\quad\mbox{weakly in }L^2(\Omega). \end{equation} \paragraph{Case where (\ref{lot7}) is satisfied.} Let $\phi\in D(\Omega)$. Then from the variational formulation of (\ref{lot4}), one has \begin{equation}\label{lot17} \int_\Omega \chi_{\Omega_\varepsilon}\xi^\varepsilon.\nabla\phi \,dx =\delta^\varepsilon\int_{\partial S_\varepsilon}h_\varepsilon \phi \,d\sigma\,. \end{equation} If $N(\varepsilon)$ denotes the number of the holes included in $\Omega$, one has then \begin{eqnarray} |\delta^\varepsilon\int_{\partial S_\varepsilon}h_\varepsilon\phi \,d\sigma| &\leq &\| \phi\|_{L^\infty(\Omega)}\delta^\varepsilon\sum_{k\in{{\cal K}}} \int_{\partial(r_\varepsilon(S+k))}|h({x\over{r_\varepsilon}})| \,d\sigma(x) \nonumber\\ &\leq &c \delta^\varepsilon N(\varepsilon)r_\varepsilon^{N-1} \int_{\partial S}|h| \,d\sigma \label{lot18} \\ &\leq &c \delta^\varepsilon{{r_\varepsilon^{N-1}}\over{\varepsilon^N}}| \partial S|^{1/2}\| h\|_{L^2(\partial S)}. \nonumber \end{eqnarray} From (\ref{lot14}), one can write $$ \delta^\varepsilon{{r_\varepsilon^{N-1}}\over{\varepsilon^N}}= \left\{ \begin{array}{ll} ({{{r_\varepsilon}^{N-2}}\over{\varepsilon^N}})^{1/2} &\mbox{if $N>2$},\\[2pt] [\varepsilon^{-2}(\ln(\varepsilon/r_\varepsilon))^{-1}]^{1/2} &\mbox{if $N=2$}, \end{array}\right. $$ and so in virtue of (\ref{lot7}), \begin{equation}\label{lot19} \displaystyle\lim_{\varepsilon\to 0}\delta^\varepsilon{{{r_\varepsilon}^{N-1}} \over{\varepsilon^N}}=0, \end{equation} hence $$\lim_{\varepsilon\to 0}\delta^\varepsilon \int_{\partial S_\varepsilon}h_\varepsilon\phi \,d\sigma =0\,. $$ On the other hand, it is easy to show that $$\chi_{\Omega_\varepsilon}\to 1\quad\mbox{strongly in }L^p(\Omega) \quad\forall p\in[1,\infty[,$$ hence \begin{equation}\label{lot20} \int_\Omega\chi_\varepsilon\xi^\varepsilon.\nabla\phi \,dx\to \int_\Omega\xi. \nabla\phi \,dx. \end{equation} One can deduce that, as $\varepsilon\to 0$ in (\ref{lot17}), $$\int_\Omega\xi\nabla\phi \,dx=0,\quad\forall\phi\in D(\Omega).$$ Consequently \begin{equation}\label{lot21} -\mathop{\rm div}\xi=0\quad\mbox{in }\Omega. \end{equation} It remains to identify the function $\xi$. Let $w_\lambda^\varepsilon$ be the function defined by (\ref{lot12})-(\ref{lot13}). Then $$w_\lambda^\varepsilon\rightharpoonup \lambda x\quad\mbox{weakly in } H^1(\Omega), \mbox{ and so }L^p(\Omega)\mbox{ strong }\forall p<2^* $$ where ${1/{2^*}}={1/2}-{1/N}$, with $N\geq 2$. Let $\phi\in D(\Omega)$, by choosing $\phi w_\lambda^\varepsilon$ as a test function in the variational formulation of (\ref{lot4}), one has \begin{equation}\label{lot22} \int_{\Omega_\varepsilon}\xi^\varepsilon \nabla(\phi w_\lambda^\varepsilon) \,dx=\delta^\varepsilon\int_{\partial {S_\varepsilon}}h_\varepsilon \phi w_\lambda^\varepsilon \,dx\,. \end{equation} To pass to the limit as $\varepsilon\to 0$ in (\ref{lot22}), we set \begin{equation}\label{lot23} \int_{\Omega_\varepsilon}\xi^\varepsilon \nabla(\phi w_\lambda^\varepsilon) \,dx=J_1^\varepsilon+J_2^\varepsilon\,, \end{equation} where $$J_1^\varepsilon=\int_{\Omega_\varepsilon}\xi^\varepsilon \nabla \phi. w_\lambda^\varepsilon \,dx\quad\mbox{and}\quad J_2^\varepsilon=\int_{\Omega_\varepsilon}\xi^\varepsilon \nabla w_\lambda^\varepsilon.\phi \,dx. $$ Using the results given by G. Stampacchia in \cite{Stamp} (see also \cite{Brez}), one can deduce that $w_\lambda\in L^\infty(Y)$, so \begin{equation}\label{lot24} \chi_{\Omega_\varepsilon}w_\lambda^\varepsilon\to \lambda x\quad \mbox{strongly in }L^2(\Omega). \end{equation} This with convergence (\ref{lot16}), gives \begin{equation}\label{lot25} J_1^\varepsilon =\int_\Omega \chi_{\Omega_\varepsilon}w_\lambda^\varepsilon \xi^\varepsilon \nabla\phi \,dx\to \int_\Omega \lambda x\xi\nabla\phi \,dx \quad\mbox{as }\varepsilon\to 0\,. \end{equation} Now, we may write \begin{equation}\label{e33"} J_2^\varepsilon=\displaystyle\int_\Omega \xi^\varepsilon \nabla w_\lambda^\varepsilon\phi \,dx-\displaystyle\int_{S_\varepsilon}\xi^\varepsilon \nabla w_\lambda^\varepsilon\phi \,dx\,. \end{equation} One the one hand, \begin{eqnarray*} \int_\Omega \xi^\varepsilon \nabla w_\lambda^\varepsilon\phi \,dx &=& \int_\Omega {}^tA^\varepsilon \nabla w_\lambda^\varepsilon \nabla[P_\varepsilon(\delta^\varepsilon u_\varepsilon)\phi] \,dx -\int_\Omega {}^tA^\varepsilon\nabla w_\lambda^\varepsilon \nabla\phi P_\varepsilon[(\delta^\varepsilon u_\varepsilon] \,dx\\ &=&-\int_\Omega {}^tA^\varepsilon\nabla w_\lambda^\varepsilon \nabla\phi P_\varepsilon[(\delta^\varepsilon u_\varepsilon] \,dx \end{eqnarray*} because, from the definition of $w_\lambda^\varepsilon$, $$ \int_\Omega {}^tA^\varepsilon \nabla w_\lambda^\varepsilon \nabla[P_\varepsilon(\delta^\varepsilon u_\varepsilon)\phi] \,dx=0\,. $$ From the definition of $A^0$, ${}^tA^\varepsilon\nabla w_\lambda^\varepsilon\rightharpoonup A^0\lambda$ weakly in $L^2(\Omega)$. From (\ref{lot15}), up to a subsequence, $$P_\varepsilon(\delta^\varepsilon u_\varepsilon)\to u\quad\mbox{strongly in}L^2(\Omega),$$ which implies $$\int_\Omega {}^tA^\varepsilon\nabla w_\lambda^\varepsilon \nabla\phi P_\varepsilon(\delta^\varepsilon u_\varepsilon) \,dx \to \int_\Omega A^0\lambda u \nabla \phi \,dx\,. $$ Hence \begin{equation}\label{lot26} \int_\Omega \xi^\varepsilon \nabla w_\lambda^\varepsilon \phi \,dx\to -\int_\Omega A^0\lambda \nabla \phi u \,dx\,. \end{equation} On the other hand, \begin{equation}\label{lot27} |\int_{S_\varepsilon}\xi^\varepsilon \nabla w_\lambda^\varepsilon\phi \,dx| \leq c\| \xi^\varepsilon\|_{L^2(\Omega)}\| \nabla w_\lambda^\varepsilon \|_{L^2(S_\varepsilon)}. \end{equation} Since $\| \xi^\varepsilon\|_{L^2(\Omega)}$ is bounded, \begin{equation}\label{lot28} |\int_{S_\varepsilon}\xi^\varepsilon \nabla w_\lambda^\varepsilon \phi \,dx|\leq c \| \nabla w_\lambda^\varepsilon \|_{L^2(S_\varepsilon)}. \end{equation} Note that \begin{eqnarray*} \| \nabla w_\lambda^\varepsilon\|_{L^2(S_\varepsilon)}^2 &=&\int_{S_\varepsilon}|(\nabla w_\lambda^\varepsilon)(x)|^2 \,dx\\ &=&\sum_{k\in{{\cal K}}}\int_{r_\varepsilon (S+k)}|(\nabla w_\lambda^\varepsilon)(x)|^2 \,dx\\ &=&\sum_{k\in{{\cal K}}}\int_{r_\varepsilon (S+k)}|({\nabla}_y w_\lambda)({x\over\varepsilon})|^2 \,dy\\ &=& N(\varepsilon)\varepsilon^N\int_{{r_\varepsilon\over\varepsilon}S}| ({\nabla}_y w_\lambda)(y)|^2 \,dy\\ &\leq& c\int_{{r_\varepsilon\over\varepsilon}S}|\nabla w_\lambda|^2 \,dy\,. \end{eqnarray*} Since $r_\varepsilon/\varepsilon\to 0$ and $w_\lambda\in H^1(Y)$, it follows that $$\int_{r_\varepsilon S/\varepsilon} |\nabla w_\lambda|^2 \,dy\to 0\,.$$ Using (\ref{lot28}), one has $$\int_{S_\varepsilon}\xi^\varepsilon \nabla w_\lambda^\varepsilon \phi \,dx\to 0\quad\mbox{as }\varepsilon\to 0. $$ This, with (\ref{e33"}) and convergence (\ref{lot26}) imply that \begin{equation}\label{lot29} J_2^\varepsilon\to -\int_\Omega A^0\lambda \nabla\phi u \,dx. \end{equation} Next we pass to the limit in the right hand of (\ref{lot22}). With the same argument as in (\ref{lot18}), \begin{eqnarray*} |\delta^\varepsilon\int_{\partial S_\varepsilon} h_\varepsilon\phi w_\lambda^\varepsilon \,d\sigma |&\leq & c\delta^\varepsilon N(\varepsilon) r_\varepsilon^{N-1}\int_{\partial S}|h w_\lambda| \,d\sigma\\ &\leq & c\delta^\varepsilon{{r_\varepsilon^{N-1}}\over{\varepsilon^N}} \| w_\lambda\|_{L^2(\partial S)}|\partial S|^{1/2}\| h\|_{L^2(\partial S)}. \end{eqnarray*} Since we have shown that $$\displaystyle\lim_{\varepsilon\to 0}\delta^\varepsilon{{r_\varepsilon^{N-1}} \over{\varepsilon^N}}=0,$$ from (\ref{lot7}) one deduces that $$\delta^\varepsilon\int_{\partial S_\varepsilon} h_\varepsilon\phi w_\lambda^\varepsilon \,d\sigma \to 0. $$ Finally, by passing to the limit as $\varepsilon\to 0$ in (\ref{lot22}), and using (\ref{lot27}) and (\ref{lot29}) one obtains $$\int_\Omega\lambda x \xi\nabla \phi \,dx-\int_\Omega A^0\lambda \nabla\phi u \,dx=0, $$ hence, from (\ref{lot21}) it follows that $$\int_\Omega \xi\lambda \phi \,dx=\int_\Omega A^0 \lambda \nabla u \phi \,dx\forall\phi\in D(\Omega),\forall\lambda\in{\mathbb R}^N, $$ i.e., $\xi=A^0 \nabla u$. \paragraph{Case where (\ref{lot8}) is satisfied.} Let $\phi\in D(\Omega)$. Then from the variational formulation of (\ref{lot4}), \begin{equation}\label{lot30} \int_\Omega\chi_{\Omega_\varepsilon}\xi^\varepsilon.\nabla\phi \,dx =\delta^\varepsilon\int_{\partial S_\varepsilon}h_\varepsilon \phi \,d\sigma. \end{equation} The arguments used the proof of (\ref{lot20}) can be applied here to obtain $$\int_\Omega\chi_{\Omega_\varepsilon}\xi^\varepsilon.\nabla\phi \,dx \to\int_\Omega\xi.\nabla\phi \,dx\,.$$ To pass to the limit in the right-hand side of (\ref{lot30}), we introduce $N$ as the solution to \begin{eqnarray*} &-\mathop{\rm div}N=0\quad\mbox{in }S,&\\ & N.n=-h\quad\mbox{on }\partial S\,.& \end{eqnarray*} The existence of $N$ is assured by the hypothesis $I_h=0$. Set $\displaystyle{N_\varepsilon(x)=N({{x-\varepsilon k}\over{r_\varepsilon}})}$, for $x$ in $(\varepsilon Y\setminus r_\varepsilon S)_k$. Then $$ \int_{\partial S_\varepsilon}h_\varepsilon\phi \,d\sigma =\int_{S_\varepsilon}\nabla\phi.N_\varepsilon \,dx,$$ hence $$\delta^\varepsilon|\int_{\partial S_\varepsilon}h_\varepsilon\phi \,d\sigma| \leq \delta^\varepsilon\| \nabla\phi\|_{L^2(S_\varepsilon)}\| N_\varepsilon\|_{L^2(S_\varepsilon)}.$$ Note that $\| N_\varepsilon\|_{L^2(S_\varepsilon)}\leq c({r_\varepsilon\over\varepsilon}) ^{N/2}\| N\|_{L^2(S)}$, so \begin{equation}\label{lot31} \delta^\varepsilon|\int_{\partial S_\varepsilon}h_\varepsilon\phi \,d\sigma| \leq c\delta^\varepsilon({{r_\varepsilon}\over\varepsilon})^{N/2} \| \nabla\phi\|_{L^1(S_\varepsilon)}. \end{equation} Since $$ \delta^\varepsilon({{r_\varepsilon}\over\varepsilon})^{N/2}= \left\{ \begin{array}{ll} 1& \mbox{if $N>2$} \\[2pt] (\ln(\varepsilon/ r_\varepsilon))^{-1/2} & \mbox{if $N=2$}, \end{array} \right. $$ it follows from (\ref{lot31}), when $N=2$, that $$\lim_{\varepsilon\to 0}\delta^\varepsilon| \int_{\partial S_\varepsilon}h_\varepsilon\phi \,d\sigma|=0\,.$$ For $N>2$, one has $$\delta^\varepsilon|\int_{\partial S_\varepsilon}h_\varepsilon\phi \,d\sigma|\leq c\| \nabla\phi\|_{L^2(S_\varepsilon)}. $$ Since $\chi_{\Omega_\varepsilon}\to 1$ strongly in $L^p(\Omega)$, for all $p\in[1, \infty [$ and $\phi\in D(\Omega)$, one deduces that \[ \int_{\Omega}(1-\chi_\varepsilon)|\nabla\phi|^2 \,dx\to 0\,. \] Hence, by passing to the limit as $\varepsilon\to 0$ in (\ref{lot30}), one obtains $$\int_\Omega \xi.\nabla\phi \,dx=0\,,$$ then $-\mathop{\rm div}\xi=0\quad\mbox{in }\Omega$. Let $w_\lambda^\varepsilon$ be the function defined by (\ref{lot12})-(\ref{lot13}) and $\phi\in D(\Omega)$. As in the previous case, by using $\phi w_\lambda^\varepsilon$ as a test function in the variational formulation of (\ref{lot4}), one has $$\int_{\Omega_\varepsilon}\xi^\varepsilon.\nabla(\phi w_\lambda^\varepsilon) \,dx=\delta^\varepsilon\int_{\partial S_\varepsilon}h_\varepsilon \phi w_\lambda^\varepsilon \,d\sigma\,. $$ From (\ref{lot23}), (\ref{lot25}) and (\ref{lot29}), one has \begin{equation}\label{lot32} \displaystyle{\int_{\Omega_\varepsilon}\xi^\varepsilon. \nabla(\phi w_\lambda^\varepsilon) \,dx\to\int_\Omega\lambda x.\nabla\phi \,dx-\int_\Omega A^0\lambda.\nabla\phi u \,dx}. \end{equation} Now we show that \begin{equation}\label{lot33} \delta^\varepsilon|\int_{\partial S_\varepsilon}h_\varepsilon \phi w_\lambda^\varepsilon \,d\sigma|\to 0. \end{equation} One has \begin{eqnarray*} \lefteqn{\delta^\varepsilon|\int_{\partial S_\varepsilon}h_\varepsilon \phi w_\lambda^\varepsilon \,d\sigma|}\\ &=& \delta^\varepsilon| \int_{S_\varepsilon}\nabla(\phi w_\lambda^\varepsilon).N_\varepsilon \,dx|\\ &\leq &\delta^\varepsilon|\int_{S_\varepsilon}\nabla\phi.w_\lambda ^\varepsilon.N_\varepsilon \,d\sigma|+\delta^\varepsilon| \int_{S_\varepsilon}\phi.\nabla w_\lambda^\varepsilon.N_\varepsilon \,d\sigma|\\ &\leq &\delta^\varepsilon\| N_\varepsilon\|_{L^2(S_\varepsilon)} \| \nabla\phi w_\lambda^\varepsilon\|_{L^2(S_\varepsilon)} + \delta^\varepsilon\| N_\varepsilon\|_{L^2(S_\varepsilon)}\| \phi\nabla w_\lambda^\varepsilon\|_{L^2(S_\varepsilon)}\\ &\leq &c\delta^\varepsilon({{r_\varepsilon}\over\varepsilon})^{N/2} \left\{\| \nabla\phi w_\lambda^\varepsilon\|_{L^2(S_\varepsilon)} +\| \phi\nabla w_\lambda^\varepsilon\|_{L^2(S_\varepsilon)}\right\}\\ &\leq &c\delta^\varepsilon({{r_\varepsilon}\over\varepsilon})^{N/2} \left\{\| \nabla\phi\|_{L^\infty(\Omega)}\| w_\lambda^\varepsilon\| _{L^2(S_\varepsilon)}+\| \phi\|_{L^\infty(\Omega)}\| \nabla w_\lambda^\varepsilon\|_{L^2(S_\varepsilon)}\right\}.\\ &\leq &c\delta^\varepsilon({{r_\varepsilon}\over\varepsilon})^{N/2} \left\{\| w_\lambda^\varepsilon\|_{L^2(S_\varepsilon)}+\| \nabla w_\lambda^\varepsilon\|_{L^2(S_\varepsilon)}\right\}. \end{eqnarray*} Note that \begin{eqnarray*} \| \nabla w_\lambda^\varepsilon\|_{L^2(S_\varepsilon)}^2 &=& \int_{S_\varepsilon}|\nabla w_\lambda^\varepsilon|^2 \,dx =\sum_{k\in{{\cal K}}}\int_{r_\varepsilon(S+k)}|\nabla w_\lambda^\varepsilon|^2 \,dx\\ &\leq & N(\varepsilon)\varepsilon^N\int_{{{r_\varepsilon}\over\varepsilon}S} |\nabla w_\lambda|^2 \,dx\leq c\int_{{{r-\varepsilon}\over\varepsilon}S} |\nabla w_\lambda|^2 \,dx\,. \end{eqnarray*} Since $w_\lambda\in H^1(S)$ and $r_\varepsilon/\varepsilon \to 0$, $$\lim_{\varepsilon\to 0}\int_{{{r_\varepsilon}\over\varepsilon}S}|\nabla w_\lambda|^2 \,dx =0\,.$$ Hence $\| \nabla w_\lambda^\varepsilon\|_{L^2(S_\varepsilon)}\to 0$. On the other hand, one has $\| w_\lambda^\varepsilon\|_{L^2(S_\varepsilon)}\leq c$. Finally, as $$\lim_{\varepsilon\to 0}\delta^\varepsilon({{r_\varepsilon}\over\varepsilon}) ^{N/2}=0\,,$$ one deduces (\ref{lot33}). This and (\ref{lot32}) completes the proof, using the same arguments as in the previous case. \paragraph{Acknowledgments} The author would like to thank Professor Patrizia Donato for her help on this work. \begin{thebibliography}{10} \bibitem{Brez} {\sc Brezis H.} \newblock {\em Analyse fonctionnelle, th\'eorie et applications}. \newblock Masson, 1992. \bibitem{H-conv} {\sc Briane M., A. Damlamian \& Donato P.} \newblock {\em H-convergence in perforated domains}, volume~13. \newblock Nonlinear partial Differential Equations \& Their Applications, Coll\`ege de France seminar, H. Br\'ezis \& J.-L. Lions eds., Longman, New York, \`a paraitre. \bibitem{Cio-Do} {\sc Cioranescu D.\& Donato P.} \newblock {\it Homog\'en\'eisation du probl\`eme de Neumann non homog\`ene dans des ouverts perfor\'es}. \newblock {\em Asymptotic Analysis}, 1:115--138, 1988. \bibitem{Cio-SJ} {\sc Cioranescu D. \& Saint Jean Paulin J.} \newblock {\it Homogenization in open sets with holes}. \newblock {\em Journal of Mathematical Analysis \& Applications}, 71:590--607, 1979. \bibitem{Conca-Do} {\sc Conca C. \& Donato P.} \newblock {\it Non-homogeneous Neumann problems in domains with small holes}. \newblock {\em Mod\'elisation Math\'ematiques et Analyse Num\'erique}, 4(22):561--608, 1988. \bibitem{Hajji1} {\sc Donato P. \& El Hajji M.} \newblock {\it An application of the $H^0$-convergence to some nonhomogeneous Neumann problems}. \newblock {\em GAKUTO International Series, Math. Sc. and Appl., Gakkotosho, Tokyo, Japan}, 9:137--156, 1997. \bibitem{Kaizu} {\sc Kaizu S.} \newblock {\it The Poisson equation with nonautonomous semilinear doundary conditions in domains with many tiny holes}. \newblock {\em Japan. Soc. for Industr. \& Appl. Math.}, 22:1222--1245, 1991. \bibitem{Levy} {\sc Levy T.} \newblock {\it Filtration in a porous fissured rock: influence of the fissures connexity}. \newblock {\em Eur. J. Mech, B/Fluids}, 4(9):309--327, 1990. \bibitem{Stamp} {\sc Stampacchia G.} \newblock {\em Equations elliptiques du second ordre \`a coefficients discontinues}. \newblock Presses Univ.Montreal, 1966. \bibitem{Tartar} {\sc Tartar L.} \newblock {\em Cours Peccot}. \newblock Coll\`ege de France, 1977. \end{thebibliography} \noindent{\sc Mohamed El Hajji } \\ Universit\'e de Rouen, UFR des Sciences \\ UPRES-A 60 85 (Labo de Math.) \\ 76821 Mont Saint Aignan, France \\ e-mail: Mohamed.Elhajji@univ-rouen.fr \end{document}